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Abstract. The aim of this paper is to refine a weak invariance 
principle for stationary sequences given by Doukhan and Louhichi 
[lo]. Since our conditions are not causal, our assumptions need to be 
stronger than the mixing and causal 0-weak dependence assumptions 
used in Dedecker and Doukhan 151. Here, if moments of order greater 
than 2 exist, a weak invariance principle and convergence rates in the 
CLT are obtained; Doukhan and Louhichi [lo] assumed the existence 
of moments with order greater than 4. Besides the q- and x-weak 
dependence conditions used previously, we introduce a weaker one, 1, 
which fits the Bernoulli shifts with dependent inputs. 
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Let (X,),, be a real-valued stationary process. A huge amount of ap- 
plications make use of such times series. 

Several ways of modeling weak dependence have already been proposed. 
One of the most popular is the notion of mixing (see 171 for bibliography); this 
notion leads to a very nice asymptotic theory, in particular a weak invariance 
principle under very sharp conditions (see [26] for the strong mixing case). 
Such rnixing conditions entail restrictions on the model. For example, Andrews 
exhibits in [I] the simple counterexample of an autoregressive process which 
does not satisfy any mixing condition and innovations need much regularity in 
both MA(co) and Markov models. Doukhan and Louhichi introduced in [lo] 
new weak dependence conditions in order to solve those problems. We intend 
to sharpen their assumptions leading to a weak invariance principle. A com- 
mon approach to derive a weak invariance principle for stationary sequences is 
based on a martingale dserence approximation. This approach was first ex- 
plored by Gordin in [14]; necessary and sufficient conditions were found by 
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Heyde in [15]. Let A, be a filtration. Heyde's martingale difference approxima- 
tion is equivalent to the existence of moments of order 2 and 

Martingale theory leads directly to invariance principles (see also [27]). In the 
following, the adapted case refers to the special case where X, is At-measura- 
ble. The natural filtration is written as A, = o(x, i < t) for independent and 
identically distributed inputs (Y,),,,; thus X, can be written as a function of the 
past inputs : 

Then only the first series in (1.1) needs to be considered. Using the Lindeberg 
technique, Dedecker and Rio [6] relax (1.1). Bernstein's blocks method allowed 
also Peligrad and Utev [22] to improve on (1.1). Such projective conditions are 
related to dependence coefficients; Dedecker and Doukhan obtain sharp results 
for the causal Sdependence in [ 5 ]  and Merlevede et al. address the mixing 
cases in a nice survey paper [20]. 

Martingale difference approximation is not always easy, for instance in the 
particular case where a natural filtration does not exist. The most striking 
example is given by associated sequences (Xt)tE,. Let us recall this notion. 
A series is said to be associated if Cov(fl, f2) 2 0 for any two coordinatewise 
nondecreasing functions fl and f2 of (X,, , . . . , X,,,,) with Var (fi) + Var (f,) < m. 
However, Newman and Wright [21] obtain a weak invariance principle under 
the existence of second order moments and 

Theorems 2.1 and 2.2 propose invariance principles under general assump- 
tions: they apply to the non-causal Bernoulli shifts with weakly dependent 
inputs (Y,),,, 

(1.4) xt = H(Y,-,, ~ E Z ) .  

Heredity of weak dependence through such non-linear functionals follows 
from a new I-weak dependence property; a function of a A-weak dependence 
process is A-weakly dependent, see Section 3.2. Analogous models with depen- 
dent inputs are already considered by [3]. If X, = L z u j  E;-j, Peligrad and 
Utev [23] prove that the Donsker invariance principle holds for X as soon as it 
holds for the innovation process Y; The non-linearity of H considered here is an 
important feature which has not been frequently discussed in the past. The 
condition of moments with order greater than 4 on the observations needed in 
[lo] is reduced to a one of the moments with order greater than 2 and the 
results rely on specific decays of the dependence coefficients. We do not reach 
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the second order moment condition of [I51 (or projective conditions) and [21]. 
We conjecture that some time series satisfy weak dependence conditions with 
fast enough decay rates in order to ensure a Donsker type theorem but they 
satisfy neither condition (1.1) nor other projective criterion (see [20]) nor as- 
sociation nor Gaussianity. More general models (1.4) are considered here while 
causal models (1.2) fit to the adapted case and to projective conditions. How- 
ever, proving this conjecture is really difficult since condition (1.1) has to be 
checked for each a-algebra do. 

The paper is organized as follows. In Section 2 we introduce various weak 
dependent coefficients in order to state our main results. Section 3 is devoted to 
examples of weak dependent models for which we discuss our results. We shall 
focus on examples of A-weakly dependent sequences. Proofs are given in the 
last section; we first derive conditions ensuring the convergence of the series c2. 
A bound of the A-moment of a sum (with 2 < A < m) is proved in Section 4.2; 
this bound is of an independent interest since for example it directly yields the 
strong laws of large numbers. The standard Lindeberg method with Bernstein's 
blocks is developed in Section 4.3 and yields our versions of the Donsker 
theorem. Convergence rates of the CLT are obtained in Section 4.4. 

2. DEFINITIONS MAIN RESULTS 

2.1. Weak dependence assumptions 

DEFINITION 2.1 (Doukhan and Louhichi [lo]). The process (X*),, is said 
to be ( E ,  $)-weakly dependent if there exist a sequence ~ ( r )  J 0 (as r T a) and 
a function $ : NZ x (R')' + Rc such that 

(Cov(f (Xs,, . - - 3  Xsu), g(Xt,, . . a ,  Xt"))l < $(u, V, Lipf, Lipg)g(r) 

for any r 2 0 and any (u+v)-tuples such that s, < ... < su < su+r < t, < ... < t,, 
where the real-valued functions f and g are defined on Wu and Ru, respectively, 
satisfy 11 f l l m  < 1, llgllm < 1 and are such that Lip f + Lip g < co, where 

Lip f = SUP I f ( ~ 1 ,  ..., ~ u ) - f ( ~ 1 ,  ..., Yu)l 
( x , . .  " ( y . ,  y  1x1 -y1l+ - + Ixu-Yul ' 

Specific functions t,b yield notions of weak dependence appropriate to 
describe various examples of models: 

* rc-weak dependence for which t,b (u, v, a ,  b) = uvab, in this case we sim- 
ply write E (r) as K (r); 

* u' (causal) weak dependence for which $(u, v, a, b) = vab, in this case 
we simply write ~ ( r )  as ~ ' ( r ) ;  this is the causal counterpart of K coefficients 
which is recalled only for completeness; 
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Q ?-weak dependence, $(u, v, a, b) = ua+vb, in this case we write 
E (r) = q (r) for short; 

8-weak dependence is a causal dependence which refers to the function 
$(u, v, a,  b) = vb, in this case we simply put ~ ( r )  = 8(r) (see [5]); this is the 
causal counterpart of coefficients which is recalled only for completeness; 

R-weak dependence $ (u, v, a,  b) = uvab + ua + vb, in this case we write 
E (r) = A (r). 

Re mark  2.1. Besides the fact that it includes q- and K-weak dependences, 
this new notion of bweak dependence will be proved to be convenient, for 
example, for the Bernoulli shifts with associated inputs (see Lemma 2.1 below). 

Re mark 2.2. If functions f and g are complex-valued, the previous in- 
equalities remain true if we substitute ~(r) /2 for ~ ( r ) .  A useful case of such 
complex-valued functions is f (xl , . . ., x,,) = exp (it (xl + . . . +xu)) for each t E R, 
u E N *  and (x, , . . ., xu) E Ru (see Section 4.3). This indeed corresponds to the 
characteristic function adapted to derive the convergence in distribution. 

2.2. Main results. Let (XJ,, be a real-valued stationary sequence of mean 
zero satisf*g 

(2-1) EIXoIm < co for a real number m > 2. 

Let us assume that 

Denote by W the standard Brownian motion and by Wn the partial sums 
process: 

1 [ntl 

Wn(t)=.CXi for t ~ [ O , l ] , n > l .  

We now present our main results, which are new versions of the Donsker weak 
invariance principle. 

THEOREM 2.1 (K-dependence). Assume that the O-mean K-weakly dependent 
stationary process (X,), satisjies the condition (2.1) and K (r) = O (r -") (as r f m) 
for K > 2 + l/(m - 2). Then a2 defined by (2.2) is finite and 

Vlr, (t) 3 aW (t) as n -, oo in the Skorokhod space D ([O, 11). 

Remark 2.3. Under the more restrictive K' condition, Bulinski and Sash- 
kin [4] obtain invariance principles with the sharper assumption K' > 1 + 
+ 1Mm-2). Our loss is explained by the fact that K'-weakly dependent se- 
quences satisfy ~ ' ( r )  2 xs,r~,. This simple bound follows from the definitions. 

The following result relaxes the previous dependence assumptions at the 
price of a faster decay of the dependence coefficients. 
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THEOREM 2.2 (A-dependence). Assume that the 0-mean A-weakly dependent 
stationary inputs satisfy the condition (2.1) and A(r) = Lo (r-9 (as r f CQ) for 
A > 4 + 2/(m-2). Then a2 defined by (2.2) is Jinite nnd 

(t) % a W  (t) as n -P co in the Skorokhod space D ([O, 11). 

Remark 2.4. In comparison with the result obtained by Dedecker and 
Doukhan [5], our outcomes are not as good under 6-weak dependence. We 
work under more restrictive moment conditions than these authors. The same 
remark applies for all projective measures of dependence; here we refer to 
results in [15], [21], [6] and [22]. 

Remark 2.5. However, the examples of Section 3.2 stress the fact that 
such results are not systematically better than those of Theorem 2.2; for such 
general examples, we even conjecture that theorems of [15], 1211, 161 or [22] 
do not apply. 

Remark 2.6. The technique of the proofs is based on the Lindeberg 
method. In fact, we prove that I E  (4 (s./&) - q5 (ON))/  = o (n-') (4 denotes here 

i the characteristic function) for O < c < c*, where c* depends only on the pa- 
rameters rn and JC or 1, respectively. If m and u (or A) both tend to infinity, we 
notice that c* + $. As K or 1 tends to infinity and m < 3, c* always remains 
smaller than (m-2)/(2m-2) (see Proposition 4.2 in Section 4.4 for more 
details). 

Remark 2.7. Using a smoothing lemma also yields an analogous bound 

I 
for the uniform distance: 

I 
1 
I =o(n-') for some c < c l .  

A first and easy way to control c' is to let c' = c*/4 but the corresponding rate 
is a really bad one (see e.g. [Ill). The Esseen inequality holds with the optimal 
exponent 112 in the independent and identically distributed case (see [24]) 
and Rio [26] reaches the exponent 113 in the case of strongly mixing sequences. 
In Proposition 4.2 we achieve c' > c*/4. Analogous results have been settled 
in [8] for weakly dependent random fields. Previous results in [15], [21], 
[6] or [22] do not derive such convergence rates for the Kolmogorov dis- 
tance. 

Let us denote by R(') = U,, , {z E ItZ I zi = 0, lil > I) the set of finite se- 
quences of real numbers. We consider functions H: R(Z) 4 Ig such that if 
x, y E R(=) coincide for all indices but one, say let s E Z ,  then 

(2.4) Iff(x)-N(y)l ,< bs(11~11' v 1) Ixs-~sl, 

4 - PAMS 27.1 
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where z E R ( ~  is defined by z, = 0 and zi = xi = yi for i # s. Here llxll = 

supi,, lxil. In Section 3.2, we prove the existence of the sequence 

X n  = lim H((~n-jlu<I))jsZ),  
I.-+ m 

where (VfGz is a weakly dependent real-valued input process. We denote this 
process by X,, = H(Y,_,., j e Z )  for simplicity and we derive its I-weak invari- 
ance properties. Various asymptotic results, among which our weak invariance 
principle, follow Theorem 2.2. 

COROLLARY 2.1. Let (QEZ be a stationary A-weakly dependent process 
(with dependence coeflcients I y  (r)) and H : R(Z) -, R satisfying the condition (2.4) 
for some 1 > 0. Let us assume that there exist real numbers m, m' with 
EIYoIm' < oo such that m > 2 and m' 2 ( l+l)m.  

Then X ,  = N (Y,-,, i E Z )  exists and satisfies the weak invariance principle 
in the following cases: . 

Geometr ic  case: b, < ~ e - ~ l ' l  and Ip (r )  < De-ar for a,  b,  C ,  D > 0. 
Riemannian case: b, < C(l+lrl)-b and &(r) < Dr-a for a ,  C ,  D > 0 

with the conditions 

for 1 = 0 ,  b >  1;  
b-1 

(2.5) 
\ 2 

b(m'- 1 +1) 
a > (b-2)(m1-I-1)( 4+- m Z 2 )  for 1 > 0 ,  b > 2. 

Remark 2.8. The previous conditions are also tractable in the mixed 
cases. We explicitly state them for I > 0 :  

b,<Ce-blrl and I y ( ~ ) < D r - a  

if moreover 

a > and b ,  C ,  D > 0 ,  
mf-1-1 

b, < C lrl-b and Ay(r) < De-a' 

if a ,  C ,  D > 0 and b > (6m - 10)/(m - 2). 

3. EXMPLES 

Theorem 2.1 is useful to derive the weak invariance principle in various 
cases. This section is aimed at a detailed treatment of the Bernoulli shifts with 
dependent inputs. The important class of Lipschitz functions of dependent 
inputs is presented in a separate section. The importance of our results is 



Invariance principle for weakly dependent stationary models 51 

highlighted by the models of the first subsection. More general non-linear 
models are considered in the second subsection. Some of those examples illus- 
trate the conjecture we made in the Introduction but we were not able to prove 
it formally. 

3.1. Lipschitz processes with dependent inputs. Consider Lipschitz functions 
H : R@) + R, i.e. the functions for which the condition (2.4) is satisfied for 1 = 0. 
A simple example of this situation is the two-sided linear sequence 

with dependent inputs (x),,,. As quoted in [I71 for the case of linear processes 
with dependent input, there exists a very general solution; essentially, any 
Donsker type theorem for the stationary inputs implies the central limit theo- 
rem for any linear process driven by such inputs. More precisely, Theorem 5 of 
[23] states that this process even satisfies the Donsker invariance principle if 
Cj lajl < a. 

A simple example of the Lipschitz non-linear functional of dependent 
inputs is 

In this case the inequality (2.4) holds with 1 = 0 and br 6 lgl. 
Another example of this situation is the following stationary process: 

where the inputs (Y,),= are bounded. In this case, the inequality (2.4) also holds 
with 1 = 0 and b, < 2 llYollm la,l. 

To apply our result, we compute the weak dependence coefficients of such 
models. 

LEMMA 3.1. Let (I;),, be a strictly stationary process with a finite moment 
of order m > 2 and H :  R(=) + R satisfying the condition (2.4) for E = 0 and some 
nonnegative sequence (b,),,, such that L = x j b j  < co. Then: 

IheprocessX,, = H(Y,-j,j~Z):=lim,,,H(Y,-jlCjBI), j€Z) isas tr ic t -  
ly stationary process with jinite moments of order m. 

If the input process (E;)tEZ is I-weakly dependent (the weak dependence 
coefzcients are denoted by I,@)), then (XJ,, is I-weakly dependent and 

If the input process (I;)teZ is q-weakly dependent (the weak dependence 
coefzcients are denoted by qy(r)), then (X,),= is q-weakly dependent and 
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Remark 3.1. Let (I;),= be a strictly stationary process with a finite mo- 
ment of order m > 2 If L = xj 151 < m, the process Xn = x,,? %- is a strict- 
ly stationary process with finite moments of order m which satisfies the assump- 
tions of Lemma 3.1 with bj = laj/. Even if the weak invariance principle is 
already given in [23], our result is of an independent interest, for example for 
functional estimation purposes. For non-linear Lipschitz functionals it yields 
new central limit theorems. 

The result of Theorems 2.1 and 2.2 holds systematically in geometric cases. 
Then Riemannian decays are assumed, i.e. there exist a, C > 0 such that 

The conditions from [I51 are compared below with the conditions of Theo- 
rems 2.1 and 2.2 for specific classes of inputs 

3.1.1. LARCW(m) inputs. A vast literature is devoted to the study of con- 
ditionally heteroskedastic models. A simple equation in terms of a vector- 
valued process allows a unified treatment of those models, see [12]. Let (lt),,z 
be an independent and identically distributed centered real-valued sequence 
and a, aj, j € N * ,  be real numbers. LARCH(,) models are solutions of the 
recurrence equation 

m 

(3-3) E; = &(a+ C aj k;-j). 
j= 1 

We provide below suF~cient conditions for the following chaotic expansion: 

Assume that A = l l ~ o l l m ~ j , l  lajl < 1. Then one (essentially unique) stationary 
solution of equation (3.3) in G is given by (3.4). This solution is 0-weakly 
dependent with 0, (r) g Krl-aloga-l r for some constant K > 0. This implies 
the same bound on their coefficients (A, (r)),,,,. The condition (2.5) gives the 
weak invariance principle for (Xi),,, under the conditions E Il0Irn < + oo for 
rn > 2, a >  1, and 

a >=(4+&)+1. a-1 

The model (3.1) is also Neyde's martingale difference approximation (1.1) as 
soon as 

I 

Necessary conditions for the weak invariance principle are satisfied if a > $, 
[ail < Cj-" for some a > 1, Etg < + oo, and 11lollzEj,, lajl < 1. These con- 
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ditions are not optimal since in this case the process is adapted to the filtration 
At = o(&, i < t). Peligrad and Utev [22] extend the Donsker theorem to the 
cases where a > 3. Thus, our conditions are not optimal when compared to 
those of [23] in the linear case as in equation (3.1). However, for the non-linear 
Lipschitz functional, the result seems to be new. 

3.1.2. Non-causal LARCH(oo) inputs. The provious approach extends for 
the case of non-causal LARCH(m) inputs 

Doukhan et al. 1121 prove the same results of existence as for the previous 
causal case oust replace summation over j > 0 by summation over j # 0) and 
the dependence becomes of q-type with 

where A (x) = xljlsx lajl, A = llCollm xja 191 < 1. By the condition (2.5) the 
weak invariance principle holds for (X,),,, if 11(011 < coy a > 1 and 

Notice that a very restrictive new assumption is that inputs need to be uniform- 
ly bounded in this non-causal case. This result is new, the conjecture is that 
(1.1) does not hold. 

3.1.3. Non-causal and non-linear inputs. The weak dependence properties of 
non-causal and non-linear inputs I; are recalled, see [lo] for more details. Let 
H:  (Rd)= -+ R be a measurable function. If the sequence (ln)n,z is independent 
and identically distributed on Rd, the Bernoulli shift with input process (<,),,, is 
defined as 

Yn=H((tn-i)i,~), n€Z .  

Such Bernoulli's shifts are q-weakly dependent (see [lo]) with q (r) < 26[r,21 if 

Then condition (2.5) leads to the invariance principle for (X,),, if E I YoIm < co 
for rn > 2, a > 1 and 6, < ~ r - a  for 

Conditions (1.1) of [15] do not give clear restrictions on coeficients for 
these models. We do not know other weak invariance principle in that general 
context. 
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3.1.4. Associated inputs. A process is associated if Cov (f (Y(")), g (Y("))) 2 0 
for any coordinatewise non-decreasing functions f, g: Rn -, R such that the 
previous covariance makes sense with Y(") = (Yl, . . ., Y,). The rc-weak depen- 
dence condition is known to hold for associated or Gaussian sequences. In 
both cases we have the relation 

(r) = sup ICov (Yo, 5)l. 
j a r  

Notice that the absolute values are needed only in the second case since for 
associated processes these covariances are nonnegative. Independent sequences 
are associated as well and Pitt [25] proves that a Gaussian process with 
nonnegative covariances is also associated. Finally, we recall that non-decreas- - 

ing functions of associated sequences remain associated. Associated models are 
classically built this way of independent and identically distributed sequences 
(see [18]). 

Suppose that the inputs (atEZ are such that ~ ( r )  < Cr-" (for some 
a, C > 0). For the associated cases and model (3.1), the invariance principle of 
[21] follows from the remark in [I91 as soon as EY2 < + ao, a > 1 and a > 1. 
These conditions are optimal, they correspond to x. Cov (X,, Xj) < co. Such 
strong conditions are due to the fact that zero correlaiion implies independence 
for associated processes. Our conditions for the invariance principle are much 
stronger: E IYIm < + oo with rn > 2, a > 1 and 

a >l+ol(4+&). a-1 

In the special case of K-weak dependent inputs that are not associated, the 
optimal weak invariance principle of [21] does not apply, see e.g. [lo]. 

3.2. The Bernoulli shifts with dependent inputs. Let H : -, R be a measu- 
rable (not necessarily Lipschitz) function and X, = H (Y, - ,, i E Z). Such models 
are proved to exhibit either A- or v-weak dependence properties. Because the 
Bernoulli shifts of rc-weak dependent inputs are neither K -  nor q-weakly depen- 
dent, the rc case is here included in the A one. 

Consider the non-Lipschitz function H defined by 

In this case, Lemma 3.1 does not apply. To derive weak dependence properties 
of such processes, we assume that H satisfies the condition (2.4) with 1 # 0, 
which remains a stronger assumption than that for the case of independent 
inputs (see (3.5)). Relaxing the Lipschitz assumption on W is possible if we 
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assume the existence of higher moments for the inputs. The following lemma 
gives both the existence and the weak dependence properties of such models. 

LEMMA 3.2. Let (x)iEZ be a stationary process and assume that H :  R@) + R 
satisfies the condition (2.4) for some l > 0 and some sequence bj 2 0 such that xj Ijl bj < co. Let us assume that there exists a pair of real numbers (m, m') with 
E IYoIm' < co such that m > 2 and m' 2 ( I +  1)m. Then: 

The process X, = W(Y,-,, ~ E Z )  is well defined in G i.e., it is a strictly 
stationary process. 

If the input process is I-weakly dependent (the weak dependence 
coeflcients are denoted by I Z y  (r)), then X, is I-weakly dependent and there exists 
a constant c > 0 such that 

I (k) = c inf [ x VJ bj + (2r + ly  (k - 2r)(m'- l + l ) ]  . 
I 

rd[k /21  l j l g ,  

If the input process (x) ,  is rl-weakly dependent (the weak dependence 
coeflcients are denoted by qy (r)), then X ,  is q-weakly dependent and there exists 
a constant c > 0 such that 

q ( k ) = c  inf [ x  ~jIbj+(2r+1)1+'1(m'-1)q,(k-2r)(rn'-2)~(rn'- I)]. 
rs[k/21 l j l 2 r  

Such models were already mentioned in the mixing case by Billingsley [2] 
and Borovkova et al. 131. The proofs are given in Section 4.6. 

3.2.1. Volterra models with dependent inputs. Consider the function H de- 
fined by 

K 
( k )  H (x )  = C C aj,, ..., jkxjl xjk* 

k=O j ~ ,  ...,jk 

Then if x,  y are as in (2.4), we have 

From the triangular inequality we thus derive that Lemma 3.2 may be written 
with l = K -  1, 

K 

a s  = C x(k7s'~az!...jk~, 
k = l  

where x"'" stands for the sums over all indices in zk where one of the indices 
jl , . . . , jk takes on the value s and 

K 

L = C x lag! ...,j k l .  
k = O  jl, ...,j k 
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i For example, 

1 yield bs < Csd-I-" or b, < C'e-", respectively, for some constant C > 0. 

3.2.2. Markov stationary inputs. Markov stationary sequences satisfy a re- 
currence equation 

z, = F@n-1, . . a ,  2,-a ,  tn), 

where (tnlnGz is a sequence of independent and identically distributed random 
variables. In this case Y, = (Z,, . . ., Zn-d+ l) is a Markov chain Y, = M (Y,- (3 
with 

(3.6) M(xl, .. ., Xd, <) = (F(x1, ., Xd, 0, XI, . a  - 2  ~ d - 1 ) .  

Theorem 1.1V.24 of [13] proves that equation (3.6) has a stationary solution 
(ZJ,, in I?' for m 2 1 if IIF(0, <)11, < oo and there exist a norm I I - I I  on Rd and 
a real number a E [O, 1[ such that IIF (x, 5) - F (y, ()I], < a llx -yll. In this set- 
ting, 6-dependence holds with OZ(r) = (as r ?  oo). We shall not give 
more details about the significative examples provided in [9]. Indeed, we 
already mentioned that our results are suboptimal in such causal cases; such 
dependent sequences may however also be used as inputs for the Bernoulli 

I shifts. 
1 3.2.3. Explicit dependence rates. We now specify the decay rates from Lem- 
I ma 3.2, For standard decays of the previous sequences, it is easy to get the 
I following explicit bounds. Here b, c, C, D, I ,  q  > 0 are constants which may 
I 
I differ from one case to the other. 
i 

Assume that bj < C ([il+ l)-b. If Ay ( j )  < Dj-I or q y  (j) < Dj-4, then by 
I a simple calculation we optimize both terms in order to prove that 

I(k) < ckA1, where Al = -A 

(b - 2) (m' - 2) 
q  (k) < ckA2, where Az = - q  

(b-l)(mt-1)-1' 
respectively. 

Note that in the case where m' = oo this exponent may be arbitrarily close 
to A for large values of b > 0. This exponent may thus take all possible values 
between 0 and 1. 

Assume that bj < ~e-lilb. If ly (j) < ~ e - j '  or q y  Cj) < ~ e - j "  we obtain 
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or 

I? (k)  < &'"' - 1 - "'l'"' - b (m' - 2) 
l'exp - ( qkbjm'-1)+2r(m'-2) 

respectively. 
The geometric decay of both (bJj,, and the weak dependence coefficients 

of the inputs ensure the geometric decay of the weak dependence coefficients of 
the Bernoulli shift. 

0 If we assume that the coefficients (bj)j,z associated with the Bernoulli 
shift have a geometric decay, say bj  < Ce-"Ib, and that A,@ < Dj-A or 
qY (j) < Dj-" we obtain the bounds 

respectively. 
If m' = oo, tightness is reduced by a factor log2 k with respect to the 

dependence coefficients of the input dependent series (I&),,,. 

I If we assume that the coefficients (bj)j,, associated with the Bernoulli 

I shift have a Riemannian decay, say bj < C(VI + l ) -b ,  and that ly (j) < D e - j h r  
qy  Cj) < De-jv, we find I (k )  = ~ k ~ - ~  or q(k)  < ck2-4 respectively. 

1 All models or functions of models we present here are A-weakly dependent. 
We treat some basic examples in detail when a discussion with other results is 
possible. We believe that for some models I-weak invariance properties follow 
by easy computations, and then statistical results like our weak invariance 
principle. 

4. PROOFS OF TNE MAIN RESULTS 
1 

Our proof for central limit theorems is based on a truncation method. For 
a truncation level T 2 1 we shall write Xk = fT (X,)  - E f, (X,)  with f ,  (X) = 
X v (- 7') A 1: From now on, we shall use the convenient notation a, 5 b, 
for two real sequences (a,),,, and (b,),, when there exists some constant C > 0 
such that la,] < Cb, for each integer n. We also remark that X ,  has moments 
of all orders because it is bounded. In the sequel, we put p = EIXolm. 
For any a < in, we control the moment El fT(Xo)-XoIa with Markov ine- 
quality 

IfT ( X O ) - X O I a  I X O I a l a ~ o l  2 T )  < pTa-'". 

Thus using the Jensen inequality yields 

(4- 1) llXO-Xolla < 2p11a T1-mla.  

Starting from this truncation, we are now able to control the limiting variance 
as well as the higher order moments. 
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In this section we prove that the central limit theorems corresponding to 
the convergence W, (1) 4 W (1) in both Theorems 2.1 and 2.2 hold and we shall 
provide convergence rates corresponding to these central limit theorems. The 
weak invariance principle is obtained in a standard way from such central limit 
theorems and tightness, which follows from Lemma 3.2, by using the classical 
Kolmogorov-Centsov tightness criterion (see 121). In the last subsection, we 
prove Lemma 4.2 that states the properties of our (new) Bernoulli's shifts with 
dependent inputs. 

4.1. Variances 
LEMMA 4.1 (Variances). If one of the following conditions holds: 

then the series a2 is convergent. 

P r o  of. Using the fact that 8 0  = gT (X,) is a function of X, with 
Lip g, = 1 and llgTll < 21; we derive 

(4.4) ICov (xO,  &)I < K (k) or ICov (go, &)I < (4T + 1) A (k), 

respectively. In the K dependent case, the truncation may thus be omitted and 

w5) lcov (XO, Xk)l < K (k). 

In the following, we shall only consider A dependence. We develop 

We use a truncation T (to be determined) and the bounds given in (4.1) and 
(4.4); then the Holder inequality with the exponents l/a+ l/m = 1 yields 

lCov(X0, Xk)I < (4T+ l)~(k)+2llXollrn Il~o-Xolla 

$ (4T + 1) A (k) + 4p1/"+ I/" T1 -"la 

$ (4T+ l)l(k)+4pT2-". 

Choosing T"'- l = p/A (k) we obtain 

(4-6) ICov (X,, Xk)I $ 9y1/(m-1) A (k)(m-2)/(m- I) . 

4.2. A A-order moment bound 
LEMMA 4.2. Let (X,),,Z be a stationary and centered process. Let us assume 

that E IXolm < oo and that this process is either K-weakly dependent with ~ ( r )  = 

O (r-") or A-weakly dependent with A (r) = O (rPA). If K > 2 + l/(m - 2) or 
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1 > 4+ 2/(m-2), then for all A > 2 small enough there exists a constant C > 0 
such that 

IlSnll, s c&. 
Remark 4.1. A E ] ~ ,  ~ + A A B A ~ [ ,  where AandBareconstantssmaller 

than m-2 and depend on m and on K or 2, respectively. Equations (4.10) and 
(4.11) below precise the previously involved constants A and B. 

Remark 4.2. The constant satisfies 

5 
> (2(A - 1)1IA Icov ( x ~ I  xk)I ' 

keZ 

Under the conditions of Lemma 4.2, using Lemma 4.1 we obtain 

c ICov(Xo, Xk)l < a. 
k€Z 

Remar k 4.3. The result is sketched from Bulinski and Shashkin [4]. 
However, their dependence condition is of causal nature while our is not. It 
explains a loss with respect to the exponents 1 and K. In their K'-weak depen- 
dence setting the best possible value of the exponent is 1 while it is 2 for our 
non-causal dependence. 

P r o  of of Lemma 4.2. For convenience, let us put in the sequel 
A = 2 + 6 and m = 2 + 1. Like in [16] or [4], we proceed by induction on k for 
n < 2k to prove that 

We assume that the condition (4.7) is satisfied for all n < 2K-1. Setting N = 

we have to find a bound for 111 + ISNll(A. We can divide the sum SN into three 
blocks: the first two blocks have the same size n < 2K-1 and are denoted by 
Q and R; the third block V; located between Q and R, has cardinality q < n. We 
then have 

111 + lsnrllld < 111 + I Q I  + lRlll~ + Ilvll~. 

By the recurrence assumption, the term llVllA is directly bounded by 
Ill +lVlllr s c&. Writing q = t N b  with b < 1 and 0 < { < 1, we see that this 
term is of order strictly smaller than a. For 111 + I Q I  + IRIIIA, we have 

E(1 + I Q I  + IWA < E(1+ I Q I  + IR1I2 (1 + I Q I  + IRI)" 

< E(1+2 I Q I  +2 IRI + (lQl+ IRI)") (1 + I Q I  + IRI)'. 

We expand the right-hand side of this expression. Then the following terms (i), 
(ii), (iii) appear: 

(9 E (1 + lQl  + lRO% 1 + IQl; + IRI: Q 1 + 2c6(&)*. 
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(ii) E I Q I  (1 + I Q I  + IRI)" E IQI ((1 + IRI)" IQl6) 
< E IQI (1 + IRI)'+E lQll". 

The term E IQI1+' is bounded by llQll:+', and then by cl+*(&)'+'. 
Using the Holder inequality, we see that the term E IQI (1 + IRl)' is bounded by 

IlQlll+a12 lll+IRIII:. It is at least of order c ~ ~ ( f i ) ' + ' ,  analogous to the latter 
one, where we exchange the roles of Q and R. 

(iii) E (IQI + IR1I2 (1 + IQI + IRl)'. 

For this term, we use an inequality from [4] and we obtain 

Now, by (4.7), we get E lQIA d CA(&)'. The second term is its analogue with 
R substituted for Q. The third term has to be handled with a particular care as 
follows. 

We use the weak dependence notion to control EQ2(1 +IRI)\nd 
ER2 (1 + IQ1)8. Denote by X the variable X v T A (- T) for a real T > 0 to be 
determined later. By extension, Q and R denote the truncated sums of the 
variables Xi. We have 

We begin with a control of EQ2 I I R I  - IRII? Using the Holder inequality with 
2/m + l/mf = 1 yields 

llQllA is bounded by using (4.7) and 

We then bound lIRI,, d (IRI/T)" with a =  m-am', and hence 

By convexity and stationarity, we have E IRIm < nmE IXoIm, so that 

2 R - 6 < n 2 + m / m ' ~ G - m / m '  EQ (I I I I) - 

Finally, observing that pnlmf = m - 2, we obtain 

EQ2 (IRI - IRl)' 5 nm TA-". 

We get the same bound for the second term: 
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For the third one, we introduce a covariance term 

The latter is bounded with IQ): IRl; < c'(&)~. The covariance is verified as 
follows by using the weak dependence: 

0 in the K-dependent case: n2 TK (q), 
in the I-dependent case: n3 T 2  I(q). 

We then choose either the truncation Tm-*-I = nm-'/rc (q) or the trun- 
cation Tm-* = nmW3/I (q). At this point, the tree terms of the decomposition are 
of the same order: 

n3m-2A  K ( q y l - ~ j l l ( m - b -  under K-dependence , 
ElQl2 (1 + I R ) '  5 {~n5m-3AA(q)m-d)l~(m-*) under I-dependence . 

Let q = Nb. We note that n < N/2 and this term is of order: 
~ ( 3 m -  24 + ~ K ( A - m ) ) / ( m - a -  1)  under K-weak dependence, 

N(5m- 3A +b*(A-m))1(m-6) under I-weak dependence. 
Those terms are thus negligible with respect to NAI2 if 

3m-2A -(A/2)(m-6 - 1) 
(4.8) IC > b(m- A) under K-dependence , 

5m-34-(A/2)(m-6) 
(4.9) A > under A-dependence . b(m-A) 

Finally, using this assumption, b < 1 and n < N/2, we derive the bound for 
some suitable constants a l ,  a2 > 0: 

E (1 + ISNl)A < ((2-*I2 + rA) CA + 5 .  2-*I2 cd + a1 N-"9 ( f i )A.  
Using the relation between C and c, we conclude that the inequality (4.7) is also 
true at step N if the constant C satisfies the condition 

(2-&12 + tA) CA + 5 - 2-'I2 cA+al ~ - " 2  < CA. 

Choose 

with c = ICov(X,, Xk)( .  
k € Z  

Then the previous relation holds for some 0 < 5 < 1. Finally, we use (4.8) and 
(4.9) to find a condition on 6. 

In the case of K-weak dependence, we rewrite inequality (4.8) as 

0 > d 2 + 6 ( 2 ~ - 3 - [ ) - ~ [ + 2 c + l ,  
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I 

I 
I which leads to the following condition on 6: 

(2~-3-c)~+4(~l : -2 l : - l )+ l :+3-2~ 
(4.10) S <  J 

2 
A ~ = A .  

We do the same in the case of the I-weak dependence and we obtain 

~ ( 2 1 - 6 - [ ) ~ + 4 ( 1 c - 4 ( - 2 )  + ~ + 6 - 2 ~  
(4.11) 

2 
A ~ = B .  

Remark 4.4. The bounds A and B are always smaller than 11. 

4.3. Proofs of Theorems 2.1 and 2.2. Let S = (l/&)Sn and consider 
p = p (n) and q = q(n) in such a way that 

and k = k (n) = n/Cp (n) + q (n)] , 
1 

Z = -(U1 + . . . + Uk) with U j  = C Xi, & ~ E B  j 

where Bi = ] ( p  + q) (j - I), ( p  + q) (j - 1) + p] n N is a subset of p successive in- 
tegers from (1,  . . ., n) such that, for j + j', Bj and By are at least distant of 
q = q (n) from each other. We denote by B> the block between Bj and B j + ,  and 

= ZiEBjXi. V, is the last block of Xi between the end of Bk and n. Further- 
more, let 

cri = Var (Ul)/p = (1 - lil/p) EXo Xi 
lil < P  

and 
u;+ ... +Uk 

Y = 
J;; 

, U ; N ~ t O y p ~ p 2 ) ,  

where the Gaussian variables 5 are mutually independent and also indepen- 
dent of the sequence (X,),,. We also consider a sequence UT, . . ., Uz of mutu- 
ally independent random variables with the same distribution as U1 and we let 
Z* = (UT + . . . + ~f)/fi. In the whole section, we fix t E R and we define 
f : Pild C by f (x) = exp (itx). Then 

Ef (9-f (an? = E f  (9-f ( z ) + E f  Q-f  (Z*)+Ef  (Z*)-f (r)+Ef (Y)-f  (cN). 

The Lindeberg method is devoted to prove that this expression converges to 
0 as n -, oo. The first and last terms in this equality are referred to as the 
auxiliary terms in this Bernstein-Lindeberg method. They come from the 
replacement of the individual initial - non-Gaussian and Gaussian, respec- 
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tively - random variables by their block counterparts. The second term is 
analogous to that obtained with decoupling and turns the proof of the central 
limit theorem to the independent case. The third term is referred to as the main 
term and, following the proof under independence, it will be bounded above by 
using a Taylor expansion. Because of the dependence structure, in the corre- 
sponding bounds, some additional covariance terms will appear. 

The following subsections are organized as follows: we first consider the 
auxiliary terms, the main terms are then decomposed by the usual Lindeberg 
method, and the corresponding terms coming from the dependence or the usual 
remainder terms (standard for the independent case) are considered in separate 
subsections. In the last one, we collect these calculations to obtain the central 
limit theorem. 

4.3.1. Auxiliary terms. Using Taylor expansions up to the second order, we 
obtain 

IEf ( 9 - f  (z)lG Ilf'Ilm EIS-ZI 
and 

We note that Z - S = (V1 + . . . + v,)/& is a sum of X,'s for which the number 
of terms is less than or equal to (k+ 1) q +p. Then inequalities (4.6) and (4.5), 
under conditions (4.3) or (4.2), respectively, entail 

Now Y -- a, N and, consequently, 

Since Ikpln-112 < ((k+l)q+p)/n, it remains to bound the quantity 

Let ai = IEXo XiI. Under the condition (4.3) or (4.2) (respectively), the series 
m Ci=o ai converge. Thus sj = xz a, --+ 0 as j + m and 

The CesPro lemma entails that the term 10;-a21 converges to 0. Hence 
IE f (S) - f (z)l+ IE f (Y)-f (oN)I tends to 0 as n f co. To determine the con- 
vergence rate, we assume that ai = @@-") for some a > 1; then 
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) I  
Observing that ai = EXo Xi = Cov(Xo, Xi), we then use inequalities (4.5) and 
(4.6) and we find a = u or a = A (m- 2)/(m - 1) depending on the weak-depen- 
dence setting. With p = no, q = nb for two constants a and b and by the relation 

I 1 1  fO1)l, < Itlj, those bounds become, up to a constant, 

for u-weak dependence, and 

It1 (n(b-a)/2 +n(a-1)/2)+ t2(nb-a+na(1 -A(m-2)/(m- 1)) ) 

for I-weak dependence. 

4.3.2. Main terms. It remains to verify the second and third terms of the 
sum. They are bounded as usual as follows: 

k k 

I IEf (2)-f (z*)l G C IEA jl IEf (Z*)-f (Y)I G C 9 

j= 1 j= 1 
. 1 where 

A j  = f (&+xj)-f (&+x$) for j = 1, . .., k 
I with 

i 1 1 x .  = -lJ * - -u.* WJ = Wj+ C x:, wj = C xi 
I 

i 6 .Iy x j - ~  J y  i >  j i < j  
and 

A;= f(W;+x$)-f(y!+x>) for j = 1 ,  ..., k 
with 

Using the special form of f and the independence properties of the variables 
UT and U:, we can write 

We then verify the two terms Ef (Ci,jxf) and E f  (TI) by the fact that 
11 f l l m  < 1 and we use the coupling to introduce a covariance term: 

I 

lEA j G I ~ o v ( f  (C xi), f (xj))l , IEA;l S IEf (xj) -Ef (xal- 
I ic j 

1 For Aj, we use the weak dependence. To do this, write 

lEA jl = lCov [F (X,, m € B i 9  i < j ) ,  G (X, ,  m  E Bj)]l, 
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with F (zl, . . ., z d  = f (xi,j ui/fi), where ui = zmi z,. We shall verify that 
I 

I llFllm < 1 and we control Lip P:  

Similarly, for G (zl, . . ., zp) = f ( z ) ,  we have IIGII, = 1 and 
Lip G 5 ltl/&. We then distinguish the two cases of weak dependence, observ- 
ing that the gap between the left and right terms in the covariance is at least q. 

- Under the K-weak dependence condition: 

lEAjl 5 kp-p.-.-. 
i 
I 
I 
I - Under the kweak dependence condition: 

I Itl It1 
IEAjl -j kp-p.--- + k p . l + p - - ) - i ( q ) .  It1 

( f i f i f i 6  
Note that these bounds do not depend on j: 

k p - t 2 . ~ ( q )  under K, 

kp.(t2+Itl&).i(q) undera. 
I 

i Since p = nu, q = nb, u (r) = O (r-K) or 1 (r) = O (r - A), these convergence rates 
become nlPUb or n1+(112-a)+ -Ib, respectively, in the K or A dependence context. 

1 For AS, Taylor expansions up to order 2 or 3, respectively, give 
I 
I I f  (~j*)-f (~(i)l < I~J-x[il llfl l lm + 3 ( ~ j * - ~ [ i ) ~  Ilf"llm+rj, 

rj<iIlf"llm(~j*-~$)2 or rj<iIlf"'ll,Ixj*-x;13. 

For an arbitrary 6~ [0, 11, we have 

By the stationarity of the sequence (Xi)1EZ, we obtain 

Lemma 4.2 allows us to find a bound for E  IS,^ 2+d.  If K > 2 + l/[ or A > 4 + 2/[, 
where u(r) = O(rPK) or A(r) = O(r-'1, then there exist 6 ~ 1 0 ,  [ A  l[ and 

5 - PAMS 27 1 
I 

I 

I 
I 
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C > 0 such that 
E ISp12+d < Cp1+612. 

We then obtain 
IEf (Z*)-f (r)l< ltI2" k(p/n)l'*I2. 

Since p = no, this bound is of order n(o-1)d/2 in both K- and I-weak dependence 
settings. 

We now collect the previous bounds to conclude that a multidimen- 
sional CLT holds under assumptions of both Theorems 2.1 and 2.2. Tightness 
follows from the Kolmogorov-Chentsov criterion (see [2])  and Lemma 4.2; 
thus both Theorems 2.1 and 2.2 follow from repeated application of the pre- 
vious CLT. sr 

4.4. Rates of convergence. Rates of convergence are now presented in two 
propositions of independent interest. We evaluate explicit bounds for both the 
difference of characteristic functions and the Berry-Esseen inequalities. 

PROPOSITION 4.1. Let (X,), be a weakly dependent stationary process 

I 
satisfying (2.1) with m = 2+[, then the diference between the characteristic 
functions is bounded by 

1 I E  (exp (itsn/&) - exp ( i t a ~ ) ) I  = o (n-') 

for some c < c* and all ~ E R ,  where c* depends on the weak dependent coef- 
Jicients as follows: 

under K-weak dependence, if ~ ( r )  = O (r-") for ~c > 2+ l/c, then 

c* = 
( u - l ) A  

A+2u( l+A) '  
where 

under I-weak dependence, i f  ;l (r) = O ( r - 9  for 1 > 4 + 215, then 

c* = ( ; l+l)B 
2+B+2A(l+B)' 

where 

(21-6-()2+4(1c-4c-2) +5+6-21 
B = J  2 A 1. 

We use the following Esseen inequality in Proposition 4.2 below. 

THEOREM 4.1 ([24], Theorem 5.1, p. 142). Let X and Y be two random 
variables and assume that Y is Gaussian. Let F and G be their distribution 
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functions with corresponding characteristic functions f and g. Then, for every 
T > 0, we have for suitable constants b and c: 

PROPOSITION 4.2 (A rate in the Berry-Esseen bounds). Let (X,),= be a real 
stationary process satisfying the assumptions of Proposition 4.1. Then 

sup (F ,  (x) - @ (x)/ = o (n-') 
X 

with c < c', where c' = c*/(3 + A) or c' = c*/(3 + B) in K- or 1-weak dependence 
contexts, respectively (A, B and c* are dejhed in Proposition 4.1). 

P r o  of of Proposi t ion  4.1. In the previous section, the different terms 
have already been bounded as follows: 

9 In the K-weak dependence case, the exponents of n in the bounds ob- 
tained in Section 4.3 are 

- for the auxiliary terms: (b -a)/2, (a- 1)/2 and a (1 - rc), 
- for the main terms: 1 - rcb and (a - 1) 612. 

Since S < 1 and b < a < 1, we have(a-1)6/2 > (a-1)/2 and 1-rcb > a(1-rc). 
The only rate of the auxiliary term it remains to consider is (b-a)/2 and we 
obtain 

a* = 
2 + r ) + 2 ~ 6  

6 [ 
2+a* - b* =- 

1+6 ' 
€10, a*[. 

6+2rc(l+S) 1 + 2u 

We conclude with standard calculations and with the help of the inequality 
6 < A (see (4.10)). 

In the 1-weak dependence case we have 
- for the auxiliary terms: (b - a)/2, (a - 1)/2 and a (1 -l), 
- for the main terms: 1 + (112 - a)+ - l b  and (a - 1) 612. 
Only three rates give the asydptotic: (a - 1) 612, 1 + (i- a) + - 1b and 

(b - a)/2. In the previous case, the optimal choice of a* was smaller than +. Then 
we have to consider here the rate 2 -a - l b  and not 1 - 2b. Thus 

Finally, we obtain a rate of n-'* using the inequality (4.11). rn 

Proof of Proposi t ion  4.2, Let us choose a* and b* as in the proof of 
Proposition 4.1. Now we need to make precise the impact of t on the ditferent 
term of the bound of the 2 distance between the characteristic functions of 
S and aN. Up to a constant independent of t, the Kolmogorov distance is 
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bounded by (It1 +t2 +lt12+c)n-@. Here 6 = A or B in the two contexts of 
dependence. Using Theorem 4.1 for a well-chosen value of T we obtain the 
assertion of Proposition 4.2. rn 

4.5. Rsof of Lemma 3.1. The case of Lipschitz functions of dependent 
inputs is divided into two sections devoted, respectively, to the definition of 
such models and to their weak dependence properties. 

4.5.1. Existence. Let Y(") = (YPi llil <s)iEz, YP) = (Y- l -s< iGs)isz for s E Z 
and H (Y'")) = lim,,, W (Y'")). In order to prove the existence of the Bernoulli 
shift with dependent inputs, we show that Xo is the sum of a normally conver- 
gent series in F; formally, 

xo = H ( Y ( ~ ) )  = H(o)+ (H ( ~ ( l ) )  - H  (0)) 
m 

+ C H ( Y ( " ~ ) ) - H ( Y ~ ) + ( H ( Y : ) ) - H ( Y ( ~ ) ) ) .  
s=  1 

From (2.4) we obtain 

By (I;),,,'s stationarity we get 
m 

(4.13) llXollrn < IIH(Y(l))-H(0)llm+ C IIN(Y('+ l))-H(~Y))IIm 
s = l  

Analogously, the process X, = H (I;-,, i E Z) is well defined as the sum of a nor- 
mally convergent series in Lm. The stationarity of (X,),, follows from that of the 
input process (Y,),,, . 

4.5.2. Weak dependence properties. Let X$) = H(Y(')) and 

Xs=(~s,Y...,Xs,), Xf=(Xti,".,Xt") 

for any k 2 O and any (u+v)-tuple such that s, < . . . < s, < s,+ k < tl  < 
. . . < t,. Then we have, for all functions f, g satisfying I l  f llm, llgllm < 1 and 
Lip f +Lips < oo, 

(4.14) lcov (f (XA g (xt))I < Icov (f (xs) -f ( ~ 3 ,  g (xt))I 

+ 1 cov (f (Xt))' g (X,) - g (XP))I 

+ lcov (f (Xt)), 9 (xl"))J 
:= T1+T2+T3. 
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Using the fact that llgll < 1, we bound the first term TI on the right-hand side 
of the inequality (4.14): 

u 

2Lip f - E I C (Xsi - X$))I < 2u Lip f max E I X ,  - X$)I. 
i = l  1 <i<u 

I 
Applying the inequality (4.13) in the case where m = 1, we obtain 

EIXs,-Xg)I < C bi Il&lll- 
I i 3 r  

The second term T2 is bounded in a similar way. The last term T, can be 
written as 

I C O V ( F ( ~ ) ( ~ ~ + ~ ,  1 < i < u, ljl < r), G(r)(xi+j7 1 < i < v ,  ljl < r))l, 

where ~ ( r )  : RU(~'+ 1) + R ~ ( r )  : p ( 2 r +  1) + W. Under the assumption r < [k/2], 
we use the E- or I-weak dependence of Y (where E = q)  in order to bound this 
covariance term by 

$ (Lip F('), Lip G('), u (2r + I ) ,  v (2r + 1)) E ,  - ,, 
with $ (u,  v ,  a ,  b)  = ua + vb or $ (u, v ,  a ,  b) = uvab + ua + vb, respectively. We 
compute 

Lip F(') = sup I f  (H(xsz+l,  1 G i < u ,  Ill < T I ) - f  (H(yS,+i, 1 < i < u ,  Ill < r))l 
CYE1 C-ralsr Ixs.+l-~s,+rI 

9 

where the supremum extends to x # y, where x ,  ~ E R ~ ( ~ ' + ~ ) .  Notice now that if 
x ,  y are sequences with xi = yi = 0 for (il 2 r, then the repeated application of 
the condition (2.4) yields 

(4.15) IH(x)-H(y)I d C bi Ixi-yiI < L C Ixi-yiI, 
lil <r lil Br  

where L = CiEZbi. Repeating the inequality (4.15), we obtain 

and we get Lip F(') < (Lip f )  L. Similarly, Lip G(') < (Lip g) L. 
Under rl-weak dependent inputs, we bound the covariance 

Under I-weak dependent inputs we have 

lcov(f (&I, LI (X,))I < (u Lip f + v Lip g + uv Lip f Lip g) 
I 
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4.6. Bwf of Lemma 3.2 

4.6.1. Existence. We decompose X, as above in the case E = 0. Here, we 
bound each of the terms by 

IH (Y'l') - H (011 < bo I Yo1 , 

IH(Y~) ) -H(Y(~) )~  G b s ( ~ ~ ~ ( s ) ~ ~ ;  v 1)lxl. 

Using the Holder inequality yields 

Hence the assumptions 1 + 1 < m' and CiEz lil bi < oo together imply that the 
variable H(Y) is well defined in i?. In the same manner, the process 
X, = H (Y , - i ,  i E 2) is well defined. The proof extends in @ if m 2 1 is such that 
( I  + 1) rn < m'. 

4.6.2. Weak dependence properties. Here, we exhibit some Lipschitz func- 
tions, and then we truncate inputs. We write P = Y v (- T )  A T for a trun- 
cation T set below. Let us put Xr) = H (Y(')) and Xf) = H (P"'). Furthermore, 
for any k >, 0 and any (u+v)-tuple such that sl < . . . < s, < su+ k < tl < 
. . . < t,, we set 

Xs=(Xs17...7Xsu), Xt=(Xtl,...,Xtv) 
and 

x = , . . . x ~j.) = (ax), . . . , xi:)). 

Then we have, for all J; g satisfying 11 f llm, llgllm < 1 and Lip f +Lipg < coy 

Using the fact that llgllco < 1, the first term U1 on the right-hand side of the 
inequality (4.16) is bounded by 

21.4 Lip f ( max E IXsi - X$I + rnax E IX$) - Xg)I). 
l S i 4 u  l s i d u  
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By the same arguments as those used in the proof of the existence of H (Y'")), 
we infer that the term U 1  is bounded by 

Notice now that if x, y are sequences with xi = yi = 0 for lil 2 r, then an 
infinitely repeated application of the inequality (2.4) yields 

(4.17) l H ( x ) - H ( ~ ) l  G L(Ilxll'oo v I I Y ~ ~ &  V 1) I Ix -YI ,  

where L = Ciez bi < co because Cis, lil bi < a. The second term U, is bounded 

by using (4.17): 

E I X ~ )  - Xg)l = E IH  (Y")) - H (P(*))I 

I < ~ ( 2 r + l ) ~ E (  max I~l ' lYj111yj13T) 
i -r<i,j<r 

< L(2r+ ~(Y~ll:: TZ+'-"'. 

The last term U 3  can be written as 

/ C O V ( F ( ~ ) ( ~ ~ + ~ ~  1 < i < u ,  ljl < r ) ,  G(r)(K,+j, 1 < i < v ,  bl < r)) / ,  

1 where Fr) : l) + R and G(') : R"(2r+1) + R. Under the assumption 
1 

I 
r < [k/2], we use the E- or I-weak dependence of Y (where E = q) in order to 

I bound this covariance term by 

I $ (Lip E'"), Lip G('), u (2r + I ) ,  v (2r + 1)) E, - ,, 
with $ (u,  v ,  a ,  b)  = uvab or $ (u,  v ,  a ,  b) = uvab +ua + vb, respectively. We 
evaluate 

Lip Pr) = sup If (H(%,+L, 1 G < u7 Ill < r))-f ( H ( F ~ ~ + ~ ,  1 < i < a ,  Ill < r))l 
xy=l I b j - ~ j l l  

7 

where the supremum extends to ( x l ,  . . ., x,J # ( y17  . . ., y,), where xi, y i ~ R 2 r + 1 .  
Using (4.17) we get 

U 

I F ( r ) ( ~ ) - F ( r ) ( ~ ) l  < Lip f L C (IIXs,llm v IIYs,llm v 1)' l l ~ s i - F s i I l  
i= 1 

U 

< LipfLT' C C Ixs,+l-~s~+lI. 
i= l  -r,<ZSr 

We thus obtain Lip P") < Lip f . L . TI. Similarly, Lip 6'') < Lip g . L - Tz.  
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Under y-weak dependent inputs, we bound the covariance 

ICov(f(x,), g(xt))l a ( ~ L i p f  +vLipg)(4 lilbi(llYoll~+IlYoll~~:) 
lil $ r  

+(2r+ 1) L((2r+ 1)2II~~ll$ T1+l-m'+ T1yy(k-2r))). 

We then fix the truncation 

T"'-1 - - 2(2r+ 1) IIYoll;: 
vlr (k-24 

to obtain the assertion of Lemma 3.2 in the y-weak dependent case. 
Under I-weak dependent inputs we have 

lcov (f (Xs), 9 (X,))l 

We then set a truncation such that 

~ l + m ' - l  = 2 I 1  yell;: 
LA (k - 2r) 

I , to obtain the assertion of Lemma 3.2 in the q-weak dependent case. rr 
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