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I 

I 1. INTRODUCTION 

I 
I In a number of studies in probability theory, e.g. Brownian motion (writ- 

ten later as BM) and empirical process, the laws of the following random 
variables play an important role: 

(a) If (B,, t 20) denotes BM, then variables of that kind are 

where for u 2 0, g, = sup ( s  < u : B, = 0}, d ,  = inf ( s  > u : B, = 0}, to name 
only a few of them. 

(b) Likewise, if (Z,, t EN = (0, 1, 2, . . .)) denotes a standard random walk 
(written in the sequel as RW), i.e. 2, = 5, + . . . + t,, where t,, . . ., 5,  are i.i.d. 
and P(5, = 1) = P (5, = - 1) = 112, then there are obvious counterparts of the 
previous sup-type Brownian variables. 

The distributions of such variables are not particularly simple: for in- 
stance, in the Brownian case, their densities may be expanded in terms of theta 
functions. However, if instead of the fixed time 1, we consider these maxima at 
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random time 0, an independent exponential random variable with parameter 
A2/2, and if in the standard RW case, 0 denotes a geometric random variable 
with parameter 1 - q, then the expressions of the corresponding laws are fairly 
simple - thanks to the independence of 0 and B, and scaling properties of BM; 
it is not so difficult to invert the Laplace transforms, hence to recover the theta 
function expansions. 

, This remark justifies that in the present paper we are focussing attention 
on a number of Brownian functionals considered at independent exponential 
time. We also consider the RW counterparts, taken at an independent geomet- 
ric time. 

We present our results in the form of two self-explanatory tables. 

TABLE 1. A list of interesting maxima 

NOTATION. For BM: b denotes Brownian bridge, m - Brownian meander, e - 
normalized excursion, and 0 - exp(A2/2), i.e., its density is 

For RW: 0-Geom(1-q), i.e., P ( B = k ) = ( l - q ) q k  ( k = O ,  1 , 2  ,... ), a =  

(1 - J G F ) / q ,  and 

We now explain the presence of Table 2: while dealing with the variables 
in Table 1, we found that the random times, which are very naturally involved, 



Standard random walk and Brownian motion 9 1 

TABLE 2. A list of interesting times 

NOTATION. N, fi - Jf (0, I), U 42 (0, I), e exponential with mean 1. 

deserve some particular attention, hence our Table 2, which helps to identify 
the laws of the scaling factors in Table 1 for BM. 

The rest of the paper is devoted to the discussion of all the entries in the 
two tables. Before we shift to these detailed computations, let us discuss a little 
about the nature of this paper: although a number of results found here are 
well known to, e.g., Brownian experts, we feel that the RW counterparts are 
somewhat original, and moreover we also discuss infinite divisibility properties 
related to lengths of BM and RW excursions. As the reader will notice, we shall 
skip the discussion of well-known properties, in particular about independence 
of certain fragments of the Brownian path. Nonetheless, in the Appendix, we 
give a word of explanation about the identities in law found in the first column 
of Table 1; they are justified by the scaling property of Brownian motion 
together with some deeper results about random Brownian scaling, depending 
on the random times being considered. 

Finally, let us indicate some notation used throughout the paper: X - Y 
means that the random variables X and Y have the same distribution; such an 
identity in law will often involve X = AB, and Y = CD, say, with the under- 
standing that A and B, on one hand, and C and D on the other hand are 
independent. In any case, the context should help the reader understand pre- 
cisely how the various variables are stochastically linked or independent. 



92 T. Fujita and M. Yor  

2. COIMPUTATIONS OF DISTRIBUTIONS FOR TNE SIX MAXIIMA 

( 1 )  P (supuse lBuI G A) 

P(supIBUI < A) = l-P(supIB,I 2 A) = 1-P(O 2 T,*) 
use use 

= 1 - E (-TI) (where T z  = inf ( t  : lBtl = A}) 

P(supIZUI < A ) =  1-P(supIZ,I > A ) =  1 - P ( 0 2  T,*) 
u Q B  U S @  

= l - E ( q q  (where T I = i n f { t : ( Z , I = A } )  

= 1 - E ( q T - ~  A TA ) (where T + A = i n f ( t : Z t = f A } )  

E (exp  ( - TA)) (where TA = inf ( t  : B, = A}) 

= 1 -  1 
exp ( - AA) = tanh (AA). 

cosh (AA) 
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We start with 

P(suP IBtI < A) P ( sup IBtI d A) = P (sup IB,I < A), 
t d g e  geGtQ0 t 6 0  

since pre-go events and post-go events are independent (see Revuz and Yor [lo], 
Chapter XII). Then we get 

tanh (AA) 
P (  sup lBtl < A ) =  1 - l/cosh (IA) = tanh (+). g e d t Q 0  

For random walk, we do as with the preceding argument: 

P (sup IZ,I < A) P ( sup (ZtI < A) = P(sup IZt( < A). 
t d g e  g e d t d 0  t < O  

Then we get 

f -'?/(@-A + CIA) a-A/2 - a-412 
P (  sup (ZtI < A) = - - 

g e d t d 0  (cl-A-CIA)/(a-A+aA) a-A/2+aA/2 '  

P(sup IBtI < A) = P(d0 < T,*) = l-P(O>gq) 
t d d e  

= 1 - E (exp ( - A2 gq/2)) 

= 1- l/cosh (LA) 
= 1- tanh (LA) 

AAlsinh (LA) I A  ' 

since the following equality holds: 
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(5) P (su~OSt Gde lBtl < A) 

If 0 6 x < A, we have 

I X 
P (  SUP lBtl < A I lBel = X) = P(To < TAP,) = I--. 

O s t s de A 

I Clearly, if A < x, we obtain P (supOGtG,, I B,J < A I 1 Bel = x) = 0. Then we get 

A 1 - e - A A  

= a ( l - 3 h - - d x  = 1-  AA a 

(5') P (supest Gde IZtI < A) 

If x < A, we have 
X 

P (  SUP IZtI < A I IZoI = X) = P(To < TA-,) = 1 --. 
O G t d d g  A 

Clearly, if A < x, we obtain P(supeStSde IZtI 6 A I lZel = x) = 0. Then we get 

I where we used the following facts: 

Then 

and we see that 

(6) (su~ge st S d e  1 BtI < A) 

P (  sup IB,I < A ) =  
P ( s u ~ t <  de I BtI < A) 

g e S t < d e  P (sup, Sge IBtI < A) 

- - 1 - (tanh (AA))/IA 1 
= ~ 0 t h  @A)--. 

tanh (LA) AA 
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P (  sup IZtI < A) = 
P (suptsd, IZt1 < A) 

g e C t d d e  lJ (su~t<ge IZtI < A) 

3. COMPUTATIONS OF DISTRIIBU'PIONS FOR TWE SIX TIMES 

In this section, we slightly change our presentation, by first discussing the 
Brownian case, then the RW case. 

We use the notation Pa,, and ya for some beta and gamma distributed 
variables. Recall that 

I We also use en, or Exp(A), to denote an exponentially distributed variable 
I with parameter A. Finally, U is uniform on (0, 1). 
I 

I 3.1. The BM case 
I (a) It is well known that g, and t -gt are arcsine distributed. So we get 
I 

N2 
~ e - e - ~ e - -  a2 ' 

By scaling, 
2 N2 

do-0 - e(dl-1) - 8Bf Tl - - - e  1 2 ~ 2  

since 

dl-1 = inf{u I B1+, = 0) = inf{u ( Bl+,-B, = -B,), 

dl-g1 -- dl-1 
-l+-Nl+ 

1 -g1 1 -g1 

m f 2e 1 1 N1+7N1+-N-N- 
N 2~112 P1/2,1 U2' 
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where we used the fundamental fact about the meander 
I 

that rn: - 2e (see Biane and Yor [5]) .  Then we get 

0-g, N2  
de-gew--- 

U 2  A2U2' 

(b) We remark that we get similar results for any Bessel process with 
dimension 6 = 2  (1 -a) (0 < 6 < 2), which, in fact, has been the starting point of 
the paper by Bertoin et al. [ I ] ,  where four properties of (do-g,) are discussed. 

Let R, be the Bessel process with dimension 6 = 2  (1 -a) (0 < 6 < 2). 
We define g, = sup {s < u : R, = 0) ,  d, = inf {s  > u : R, = 0 )  for u >, 0. 

Then we get 
R  : dl-1 = inf(u: R1+. = 0 )  - -. 
2YU 

Consequently, 
dl - 1  1  - )  2e 
- N  N-  

1-61 2Y u 2YU' 

I where we used the fact that the distribution of the meander process at time 1 is 

I the same for every 6 (see Yor [12]). Then we get 
I dl-gl e 1 1 -,-+I w - w -  
I 
I 1-g1 Y ,  Be, 1 

~ 1 1 " '  

I Hence 
0-go 71-u 

I do--go - e(dl-gl)  - U"" - - ~ 1 1 ~ '  

which implies 

E (exp ( - L (do = (1 + - La, where 0  - Exp  (112). 

Again this is the starting point of the paper by Bertoin et al. [I]. 

3.2. The RW ease. The identity 

2k 2(n-k) 2-2,, 
P ( g 2 . = 2 k ) = ( k ) (  n-k ) (k=O,  1, ..., 4 

is well known (see Feller [7]). Then 
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1 Consequently, 

E(;)()(:).k+l ( k = 0 , 1 , 2 ,  . ). P(8 -go  = 2 k + l )  = - 

Then 

Comparing formulae (*) and (**), we see that the distributions of go and 8-g ,  
are not the same, but they are close and in the Brownian limit they coincide. 
We remark that 

E (so Po) = E (tge') = 
1 - sq  

I 
I where 8' - Geom(1 -sq). By this formula we recover 
I 
I 

Next we investigate ~ ( t d e ) :  

where 8' - Geom (1 - t). Hence, similarly we get 

1 -sq 
Then 

By the independence of do-go and go, we obtain 

7 - PAMS 27.1 
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I We note also that 

To obtain the BM result, we put t  = e-"At7 s  = e-BAt7 u = e-yAt7 q = 1 -,uAt, 
and letting At tend to O7 we get 

~ ( ~ - a d e ~ - B s e ~ - ~ @ )  = ,u 
J=(JC+&)' 

where 0 - Exp(,u). This allows to recover the BM result in (3.1). 

E DIVISIBILITY PROPERTIES 
OF LENGTHS OF EXCURSIONS IN BM AND RW 

First we consider the infinite divisibility properties of random times as- 
sociated with RW. 

Formulae found in the next theorem express the Lkvy-Khintchine repre- 
sentation of the infinitely divisible variable at hand. 

1 THEOREM 4.1. The generating functions of 0, g,, 0 -go, d, - g, and do are 
given by: 

I 
m 

(2) 1 -q2 t2  = exp(- C (1 -tn),ul{n)), 
n =  1 

where pl {2k)  = qZk/2k for k 2 1, ,ul {2k + 1)  = 0 for k 2 0 ;  

03 

(3) 
( l - q ) ( l  +qt) "' = exp(- c (1 -tn),u2{n)), E(t@-g? = ( ) (1+q)( l -q t )  a= 1 

where p2{2k+l)=q2k '1 / (2k+l)  for k 2 0 ,  ,u2{2k) = O  for k 2  1; 

Jm-JCF a 
(4) ~ ( t d e - g e - ~ ) =  

t2 JW = exp (- (1 -tn) ~3 
n = l  

where 
1 2(1-m) 2m 

~ ~ { 2 l ) = ~ ~ ~ ( ~ - ~ ) ( ~ ) 4 ~ ~ .  ,u3{2l+l}=O f o r 1 2 0 :  

m 

E (tde - 2 )  = E (tge) E (tde-ge-2) = exp (- C (1 - tn) ( P I  + pj {n)). 
n= 1 
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P r o  of. Since (I), (2), (3) are easy, we only prove (4). We have 

1 ' 2(1-m) 2m 2(1-m) t2' z t 2 ' i . ~ (  1-m ) ( m ) 2 m o ) m (  i - m  )(T) 1=0 

= ( 1  -t2)-1/2(1-q2t2)-1/2. 

On the other hand, 

Comparing these two last expressions, we obtain 

and 
~ 3 { 2 1 + 1 } = O  forZ>o.m 

This result suggested us to find the analogous result in the BM case, which 
has been further extended in Bertoin et al. [ I ] .  

THEOREM 4.2. For BM, taking 6 - elm - Exp(m), we obtain 

where 
a x x  1 

n(dx)  = -J- 1 
ePmY dy. 

0 2 n  Jrn 
Proof. We have 

We generalize this result to Bessel processes and investigate further results 
in Bertoin et al. [I]. 
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- I 5. RELATION TO RIE 'S ZETA FUNCTIONAL EQUATION 

It is known that the maximum of BM excursion is related to Riemann's 
zeta function; see Biane [2], Biane et al. [3], Biane and Yor [4], Chung [6] ,  
Yor [13], Williams [Ill .  In this section we note that the distribution of the 
maximum of the Brownian excursion stradding an independent exponential 
time gives Riemann's zeta functional equation via another time randomization 
than the exponential one. This represents a slight variation of some of the 
arguments used by the previous authors. 

By Table 1 (last row) and Table 2 (row before last), taking 3, = 1, we have 

IN1 Mexc 1 P (A 2 ) = coth (A) --, where Me, = sup eu. 
A U G  1 

, Putting A = &/(,12/2), we get 

1 Putting GeXc = Mexc/q and using integration by parts, we obtain 
m - A2 1 - x2 

2 1 0 E (ex, (i X2 (aexc)2)) (i) 
m -A2v2 1 1 

= exp (T) (2-m)dv- 

I Then we have 
1 1 - 

v2 sinh2 v -&E('-exP( Mexc 2 (fiexc)' v 2  )). 
Then noting 

1 ' = l ( l - - E ( e x p ( ~ ) ) ) = E ( ~ e x p ( ~ ) d x ) ,  
v2 sinh2 v v2 

where T = Tj3)+ p!3), i.e. T is the independent sum of two first hitting times 
to 1 by 3-dimensional Bessel processes, we get 

x = e x c , T > x  Mexc ) . 
Using Chung's remark (Me,,)' - T,'/"z)+ 2132)' we get 
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This shows that 
'JT 

(*) E ( y "  = E (y1I2-s ), where F = - T. 
2 

We now explain the connection between (*) and the functional equation 
for Riemann's zeta function 4'. First, 5 is defined classically as 

m 

k-" for Re ( s )> l  
k =  1 

and extended meromorphically to the complex plane. Its functional equation is 
usually written as follows: 

s(s-1) 
t(s)=C(l-s), where <(s)=- 

2 
r (s/2) - 4' (s) . 

This is a translation of (*), since it is not difficult to show that 25(2s) = E (3') 
(see Biane [2] ,  Biane et al. [3], Biane and Yor 141, Chung [6], Yor [13], 
Williams [Ill). 

6. APPENDIX: A CASE STUDY OF AN INDEPENDENCE PROPERTY 
IN RANDOM BROWNIAN SCALING 

Consider (B,, u 2 0), a standard Brownian motion, starting at 0. Let 
0 ,< a < b denote two random times, and 

Thus (BF,bl, u < 1) is the process (B,, a < v < b), once it has been Brownian 
scaled so that the interval [a, b] becomes [0, 11. 

In this Appendix, we look at a number of examples where B[a,bl is indepen- 
dent of the length (b - a), and also at a number of opposite cases where (b - a) is 
not independent of B["sbl. This is motivated by the property that in the 1st 
column of Table 1, for 4 rows out of 6, we find that 

sup IBvl - &sup IBb7b11, 
a < v < b  u <  1 

where independence is now meant on the right-hand side(!) and it is not true for 
the remaining two rows. 

6.1. Three eases of independence 
Case  1. a=O,  b = g , ~ s u p { u < t :  Bu=O). 
Then B I O , g t l  is a standard Brownian bridge independent of g,, and in fact of 

o (gt; B,*+u, u 2 0). 
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Case 2. a = g t ,  b =d,=inf{u> t:  B,=O). 
Then lB[gt,dtl( is a standard BES (3) bridge, independent of 

D {B,; u < g,) v o (sgn (B,)) v o {a, ; Bd, + , , u 2 0). 

In particular, BIBt,dtl is independent of the pair (g,, d,), hence of (d,-g,). 
Case 3. a = g,, b = t. 
Then IBIBt*tll is a standard Brownian meander, independent of Fg, v 

a{sgn(B,)}. As a consequence, Bfgt?*] is independent of g,. 

6.2. Two eases of non-independence. The next two cases do not enjoy the 
independence property. 

Case 4. a = t, b = d,. 
Then BCtvdtl is not independent of d, (or dt-t). Indeed, the variable 

Bt B[t,dtl - 
O -&z 

is not independent of (at- t), since 

which shows very clearly that (d, - t) is not independent of st/*. A more 
interesting question, which we leave to the reader, is the following: what is the 
law of (d, - t) given B[t,dtl? 

Case 5. a = 0, b = d,. 
Then B[o*dtl is not independent of d,. 
We give two diiTerent arguments, which are also different from the ar- 

gument in Case 4. 
5a. First, we look at the local times of B[09dt1, i.e. for any test function 

The left-hand side is 

Hence, we have 
1 

El (B[O*dtl) 3 - EiL(B) for every y E R ,  
J;il 
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and so 
1 

LO, ( B [ O , ~ ~ ' )  = - L; (B) . 
J;i; 

Now, we can infer from this identity that d, is not independent of B[o*dtl. 
Assume the contrary; then 

But, the left-hand side is finite, whereas E(&) = m. 

5b. Another argument consists in noting that 

gJd, = sup (u < 1 : BrO,dtl = 0). 

So gJd, is measurable with respect to B[O1dtl, but is not independent of d,. 
Indeed, if it were independent of d,, we would have 

but the left-hand side is bounded by t, and the right-hand side is infinite. 
A more detailed study of this Case 5 is made in Fujita and Yor 181. 
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