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Abstract. Recently, a Heavy Traffic Invariance Principle was 
proposed by Szczotka and Woyczyliski to characterize the heavy traf- 
fic limiting distribution of normalized stationary waiting times of 
G/G/l queues in terms of an appropriate convergence to a LBvy pro- 
cess. It has two important assumptions. The first of them deals with 
a convergence to a Lbvy process of appropriate processes which is well 
investigated in the literature. The second one states that the sequence 
of appropriate normalized stationary waiting times is tight. In the 
present paper we characterize the tightness condition for the case of 
GI/GI/ l  queues in terms of the first condition. 
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1. I r n O D U C T I O N  

Consider a sequence of queueing systems of GI/GI/l type with FIFO 
discipline of service. The n-th queueing system is generated by a sequence 
{(v,,~, u,,~), k 2 1) of pairs of nonnegative random variables v,,, and u,,, such 
that {u,,~, k 2 1) and {u,,, k 2 1) are mutually independent and each of them 
is a sequence of mutually independent and identically distributed (iid) r.v.'s 
with distribution functions B, and A,, respectively, and with finite means 

d f - df df - fin = Ev,,~ and u, = Eu,,~ such that a, = v, - I& < 0. Here v,,, represents the 
service time of the k-th customer in the n-th queue and u,,, represents the 
interarrival time between the arrivals of the (k- 1)-st and k-th customers to the 
n-th system. Let con be a stationary waiting time in the n-th queueing system, i.e. 

k 

a n  E sup C ( ~ n , ~ -  ~ n , ~ ) .  
k b O  j=l 
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It is well known that con % co as a, f 0. The main problem of the heavy traffic 
theory for GI/GI/l queues deals with an asymptotic of con as a, f 0. So the first 
problem is to investigate conditions on {(v,,~, u,,~), k 2 1) and constants c,, 
0 < c, f coy under which o,/c, converge in distribution to a nondegenerated 
random variable as a, f 0, i.e. 

The second problem deals with identification of the distribution 9 ( W ) .  It 
is well known that if the variances V a r ( ~ , , ~ )  and Var(unSl) are such that 
Var (v,,~) + Var (u,,~) converge to finite positive numbers, then (1) holds with 
c, = l/la,l and W has an exponential distribution. Boxma and Cohen [2] con- 
sidered (1) in the case when the distributions 9 (v,,,) and 2 (u,,,) are Pareto 
distributions or Pareto distributions with some disturbances. In such situations 
those distributions have infinite variances. They showed that 9 (W) in (1) is the 
Mittag-Leffler distribution for some {c,} if the tail of 9 (v,,~) is heavier than the 
tail of 9 ( ~ , ~ ) ,  while it is the exponential distribution if the tail of 9(u,,,) is 
heavier than the tail of S'(v,,,). Boxma and Cohen [2] analyzed the problem 
in Laplace transform terms. Another approach to consider (I), based on 
a stable-lkvy approximation, was done by Whitt [11] for GI/GI/l queues. 
A general approach to investigate (I), based on an approximation by a process 
with stationary increments, was done by Szczotka and Woyczyriski [9], [lo] 
for G/G/l queues generated by stationary sequences {(v,,,, u,,,), k 2 I), which 
allow some dependencies between random variables. That analysis restricted to 
GI/GI/l queues is based on an approximation by a general LCvy process and 
on the relation 

[ntl 

con = sup (Z,(t)- [nt] la,l), where Z, (t) = C (~,,~-u,,~- a,), t 2 0, n 2 1. 
O < t < m  j= 1 

We analyze one of the main results from [9], formulated there as the 
Heavy Traflc Invariance Principle for queues: Assume that the following con- 
ditions hold: 

I. X, = Z Jc, % X, in the Skorokhod J1 topology in D [0, co), with 
X being a G v y  process; 

11. p, r n la,l/c, -+ j ,  0 < #I < co ; 
111. the sequence (w,/c,} is tight. 
Then (1) holds with W = supost < , (X (t) - Pt). 
Conditions for convergence I are well known in the literature of that 

subject. Namely, Prokhorov's result (formulated here in Proposition 1) states 
that conditions P1-P4 (given in Section 2) are necessary and sufficient for 
condition I to hold in the case of GI/GI/l queues. Condition I1 deals with rates 
of convergences a, f 0 and c, f co. Some sufficient conditions for 111 are given in 
[9] and [lo] for a general case of G/G/l queues. The main aim of the paper 
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I 
I is to characterize condition 111 for the case of GI/GI/l queues in terms of 
I conditions I and I1 or, equivalently, in terms of conditions PI-P4 and 11. To 
I 

6 > 

describe the main results of the paper let us define 
I 

d f 1 [ntl df 1 [ntl 
X l ( t ) = - C ( ~ , , ~ - i & )  and X ; ; ' ( ~ ) = - - C ( U , , ~ - G ) ,  t > o .  

Cn j = 1  Cn j =  1 

Then X ,  = x:-X,A. Furthermore, let G7 denote the condition that n%/c,2 4 O 
and niii/ci -+ 0. The main results of the paper are formulated in Theorems 1-3. 
Theorem 1 states that if X f  3 XB and X t  3 X A  in the Skorokhod J1 topology 
in D [0, GO), where X B  and X A  are independent LCvy processes with E x B ( t )  = 
EXA( t )  = 0 and conditions I1 and 6 7  hold, then the sequence {o,Jc,) is 
tight and 

w,Jcn 5 sup ( X B ( t ) - X A ( t ) - p t ) .  
O Q t c m  

Here arises the following question. Can we characterize condition 111 in terms 
of conditions I and II? An answer to this question is positive and is given in 
Theorem 2: If condition I holds with E X ( t )  = 0  and furthermore conditions 11, 
6 7  and 

I are satisfied, then (o, /c , )  is tight and 

on/cn 3 SUP ( X  ( t)  - Pt). 
OCt<ao 

Another characterization of condition 111, without condition 6 7 ,  is given in 
Theorem 3 which states that if {B,) and {A,)  satisfy conditions 61-65 for- 
mulated in Section 2 and condition I1 holds, then {w,/c,) is tight. 

Recapitulating, the main result dealing with the conditions for GI/GI/l  
queues under which o,/c ,  converge is stronger than the result given in [2]. It is 
also stronger than an appropriate result in [ l o ]  given by case (iv) of Proposi- 
tion 5 there. The main result of the paper does not assume finiteness of mo- 
ments of order higher than 1 for v,,, and u  ,,I. 

The structure of the paper is as follows. In the next section we give some 
notation and preliminary results. The main results are formulated in Section 3, 
and Section 4 contains the proofs of all results. 

2. PRELIMINARIES 

LCvy process. Let Y = {Y ( t ) ,  t  0) be a LCvy process (see [5]) without 
Gaussian component and with sample paths in the space D [0, co). Then the 
characteristic function of Y ( t )  has the form 
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where 

(2) $,,, (u) = iub + J (eiYx - 1) v (dx) + j (eiux - 1 - iux) v (dx), 
1x1 > r  O<lxl<r 

the drift b is a real number, the spectral measure v is a positive measure on 
(- co , co) such that v ((0)) = 0 and it integrates the function min (1, x2) on 
(- m ,  co), while r is a positive number such that the points -r and r are 
continuity points of the spectral measure v. The function t,bb,v(~) is called the 
characteristic exponent of the process J! It is well known (see Theorem 6.1 in 
[ 5 ] )  that E I Y (l)lb < m if and only if J I X I ,  [xi6 v (dx) < m, where 6 2 1. In 
such a situation the characteristic exponent $ b , V ( ~ )  can be written in the fol- 
lowing form: 

m 

(3) t,bb,v (u) = iub (r) + j (eiYX- 1 -iux) v (dx), 
- m  

where b (r) = b + f l X l ,  xv (dx) and b (r) = EY (I). Hence, if E Y (t) = 0, then 
b =  -J 

1x1 ' T  
xv (dx). 

Convergence to a LBvy process. A LCvy process can be considered as the 
limiting process of the processes 

where cn,j are r.v.3. In the sequel we recall some special case of the classical 
Prokhorov's result providing sufficient and necessary conditions for such a con- 
vergence in the case when, for each n > 1, {[,,,, k 2 1) is a sequence of iid 
r.v.'s with distribution function F, and expectation El,,, = 0. First we intro- 
duce a definition of Prokhorov's condition for {F,) in which M and N are real 
nondecreasing functions on ( - a ,  0) and (0, m), respectively, such that 
M (x) 2 0, - N (x) 2 0 and lirn,, -, M (x) = lirn,, , N (x) = 0. These func- 
tions define a spectral measure v on ( -  coy m) by its values on the intervals 
(a, b) in the following way: v (a, b) = M (b)- M (a) for - co < a < b < 0, 
v (a, b) = N (b) - N (a) for 0 < a < b < m and v ((0)) = 0. 

DEFINITION 1. A sequence of distribution functions {F,) satisfies the Pro- 
khorov condition (shortly, condition P) with drift b, and a spectral measure v if 
the following conditions hold: 

P1 nF, (yc,) + M (y) and n (I  - F, (xc,)) + - N (x), as n co, for all continu- 
ity points y < 0 and x > 0 of the functions M and N, respectively; 

P2 lirn sup n (1 - F,  (xc,) + F, (- xc,)) = 0; 
x + m  n 

n 
P3 b. lim - J xdF, (x) and 1b.l < co ; 

n+m 1 x l ~ r . z ~  
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n 
P4 lim lim sup, f x2 dF, (x) = 0. 

&-0 n+m cn IX~<EC" 

PROPOSITION 1 (Prokhorov 141). Let, for each n 2 1, {m,k, k 3 1) be a se- 
quence of iid random variables with means zero, distribution functions F,, and let 
Y be a L6vy process with the characteristic exponent given by (2) with the pair 
(b,, v). Then Y, 3 Y in D [0, co) equipped with J1 Skorokhod topology if and 
only if {F,) satisfies condition P with drij't b, and a spectral measure v. 

In the paper we consider a situation when a Ltvy process Y from Proposi- 
tion 1 satisfies E Y  (t) = 0, which is equivalent to the following condition: 

P5 j 1x1 v (dx) < CYJ and b, = - j xv (dx). 
1x1 > 1 lxI>r 

But I,,, >, xv (dx) = f I: xdM (x) + xdN (x). Therefore, using the formula for 
integrating by parts, we see that under condition P5 the following holds: 

Let F: (x) = P (v, ,~ - 17, < x) and F t  (x) = P (u,,~ - ii, < x). Then immediately 
from Proposition 1 we infer that if {F:} and {F;;') satisfy conditions PI-P4 
with pairs (b:, vB) and (b:, vA), respectively, then 

where XB and XA are LCvy processes with pairs (b:, vB) and (bp, vA), respec- 
tively. 

In the paper we use also a reverse result to the above in some sense. 
Namely, let 

d f 
Cn,k = (~,,k - V,) - (un,k - Gn), n, k 2- 1, and F:'A = P (L,k < x). 

PROPOSITION 2 (see [8], Theorem 1). Let (F:**} satisfy conditions PI-P4 
with functions N, M, the pair (b,, v) and assume that the following conditions 
hold: 

-r  - r 

( 6 )  lim f nF2A (xc,) dx = j M (x) dx. 
n-*m - m  -m 

Then {F:) and {F;;') satiSfy conditions PI-P4 with pairs (b:, vB) and (b$, vA), 
respectively, where b, = b: - b,A, vB (a, b) = v (a, b), vA (a, b) = v (- b, - a) for 
0 < a  < b and vB(a, b) = vA(a, b) = 0 for a < b < 0. 

Modifications of conditions PI-P4. Conditions P1-P4 deal with centered 
r.v.'s by expected values. Here we consider some their modifications for not 

8 - PAMS 27.1 
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centered positive r.v.'s. In Proposition 3 we show that those two sets of con- 
ditions are equivalent under some additional assumptions. The conditions in- 
troduced here are more natural for our analysis of tightness of {o,/c,). 

Let {v , ,~ ,  k ), 1, n 2 1) be an array of nonnegative r.v.'s which are iid for 
d f each n 2 1 with distribution functions G, and finite means IC, = Ey,,,. Intro- 

duce the following notation for conditions on {G,): 

G1 lim n(1-  G, (xc,)) = - f iG(x) for the continuity points x > 0 of fiG; 
n d  m 

6 2  lirn sup n (1 - 6, (xc,)) = 0;  
x+m n 

-G df n 
6 3  br - - l i m - S x d G , ( x )  and ( @ ~ < c o  for some O < r < c o ;  

n-+ m cn rc, 

EC, 

6 4  lim lim sup S x2 dG, ( x )  = 0 ;  
& + O  n-+m Cn o 

I 

i 
m 00 

G5 J x@ (dx) < co and @ = - J x f G  (dx), where @ is defined by mG; 
I 1 r 

G6 lim IC,/C, = 0 ;  
n-+ m 

6 7  lim nrci/c; = 0. 
n-m 

Notice that G7 implies G6 and it specifies the rate of convergence 66 .  
! Define F: (x )  d = f P (v , ,~  - IC, < X )  = G, ( x  + IC,) for - co < x < co and 

NG d=f N ,  M~ d=I My vG d=l v in condition P1 for { F f ) .  
From the relation F: (xc,) = G, (c, ( x  + rc,/c,)) it follows that under con- 

dition 6 6  we obtain MG ( y )  = lim,,, Ff (yc,) = 0, which in turn implies that 
the spectral measure vG has support in (0 ,  co). The following proposition gives 
some relations between conditions P1-P4 and 6 1 4 4 .  

PROPOSITION 3. If condition G6 holds, then the following relations are sat- 
isjed : 

(i) { F f )  satisJies P1 with N~ = fiG iff {G,) satisfies G1 with flG = N' 
(ii) {F;) satisfies P2 i$" {G,) satisfies 62.  

(iii) If 6 1  holds, then {F:) satiSJies P3 with br = gf iff {G,) satisfies 63. 
(iv) If G3 holds and (6,) satisfies G4, then { F f )  satisfies P4. 
Reverse: if 61,  G3 and 6 7  hold and { F f )  satiSJies P4, then (6,) satisfies 64. 
(v) Conditions P5 for { F z )  and G5 are equivalent with Ff = by. 

From Proposition 3 we obtain the following remark. 
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Remark  1. Under the condition 6 7  the set of conditions PI-P4 is equiv- 
alent to the set of conditions G1-64. 

3. MAIN RESULTS 

The main results of the paper are given in the following two theorems. 

THEOREM 1. Let Xfl % X B  and X t  3 X A  in the Skorokhod J1 topology 
in D[O, a), where X B  and X A  are independent Lkvy processes with 
EXB(t)  = EXA( t )  = 0 and let conditions I1 and 6 7  hold. Then the sequence 
{w,/c,) is tight and 

P w,/c, + sup ( X B  ( t )  - X A  (t)  - pt). 
Odt<co  

THEOREM 2. Let condition I hold with E X ( t )  = 0 and assume that condi- 
tions I1 and G7 are satisfied. Furthermore, let 

- r  

(7) lim lim j nFFA (xc,) dx = 0.  
r + w  n-rm -, 

Then {w,/c,} is tight and 

o,/cn 3 sup (x (t )  - pt). 
O d t < m  

THEOREM 3. Let (B,) and {A,) satisfy conditions GI-G5 with spectral 
Lkvy measures vA and vB, respectively, and let condition I1 hold. Then the se- 
quence {o,/c,) is tight. 

The proofs of Theorems 1 and 2 are based on Propositions 1-3 from 
Section 2 and on Lemmas 1-3 formulated below. The proof of Theorem 3 is 
based on Lemmas 1-3. In those lemmas we use the notation w: and w f  for the 
stationary waiting times in some M/GI/l  and GI/M/1 queueing systems, re- 
spectively. To define them let us denote by {y",,, k > 1 )  a sequence of iid r.v.'s, 
mutually independent of the sequences {v,,,, k 2 1)  and {u,,,, k 2 1)  and such 
that y,,, are exponentially distributed with mean 

df - 
Jn EY,,~ - vn + 3 (ii, - h). 

Since ij,, -% = a,/2 < 0 and fi - ii, = a,/2 < 0, the quantities 

are finite with probability one. Hence we get the following inequality: 

(9) 0, < w:+w;r. 
LEMMA 1. If the sequences {ofl/c,} and (a,"/cn) are tight, then {w,/c,} is tight. 
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LEMMA 2. Let {B,) satisfy conditions G1-64 and let condition I1 hold. 
Then for each s 2 0 the following convergence holds: 

(10) lim E (exp (- sof/c,)) = 
n-t m 

where 
m r 

(1 1) r C / B  ( s )  = - sb; + j (ePSX - 1) vB (dx) + 1 (e-Sx - 1 + sx) vB (dx) 
r 0 

and vB is the spectral measure defined by N B  fvom 6 1 .  Moreover, if {B,) satisfies 
condition 6 5 ,  then 

m 

$" (s)  = J (e-Sx - 1 + sx) vB (dx) 
0 

and lyB(s) is the Laplace-Stieltjes transform of a probability measure on 
LO, 00)- 

Let A,,, be a number from the interval (0, I), being the root of the fol- 
lowing equation: 

where An denotes the Laplace-Stieltjes transform of A,. 

LEMMA 3. Let {A,) satisfy conditions G1-G5 and condition 11. Then 

(1 3) 
(1 - L0,n) cn > lim inf - 

n v, 

and the sequence {of/c,)  is tight. Moreover, if 

then 

From the proofs of Lemmas 2 and 3 we get immediately the following 
corollary. 

COROLLARY 1. If each subsequence of the sequences {A,) and {B,) satisfies 
conditions G1-65, then {o,/c,) is tight. 

4. PROOFS 

In this section we give proofs of Proposition 3, Lemmas 1-3 and Theo- 
rems 1 and 2. 
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Proof of Proposition 3 
(i) First notice that in view of Ff Cyc,) = G, (c, (y + K,/c,)) and G6 we get 

M~ (y) = lirn F: ( yc,) = lirn 6, (c, ( y + K,/c,)) = 0 for y < 0. 
n n 

Now observe that the following relations hold: 

G,(c,x) = F~(c,x-K,) < F~(c ,x )  = G,(~,(~+K,/c,)), 

Ff (c, X) = G, (C,X + K,) 2- 6, (c, X) = F: (c, (X - u,/c,)). 

For E > 0 let no be such that for n >, no the inequality u,/c, G E holds, which is 
guaranteed by 66 .  Consequently, we obtain 

1-G,(c,x) ), 1-Ff(c,x) >, 1-G,(c,(x+E)), 

1-F$(c,x) G 1-G,(c,x) G 1-F;(c,(x-E)). 

Hence, if x is a continuity point of vG, then the above implies 

lirn n (1 - G, (c, x)) = lirn (1 - Ff (c, x)), 
n n 

, which proves equivalence (i). 

(ii) The proof of equivalence (ii) runs over in a similar way to the proof of 
equivalence (i). 

The proofs of (iii) and (iv) are given here in terms of r.v.'s q, = y,,, with 
distribution functions 6, and means u,, respectively. Then Ff are distribution 
functions of q,-K,, respectively, and I (A)  denotes the indicator of a set A. 1 (iii) Notice that 

j (16) E (r, - u,) I (lq, - xnl G PC,) = - E (r, - K,) 1 (Irn - > rcn) 
I 

I = -Eq,I(q, > rc,)+Eq,I(rc, < y, < rc,+u,) 

-Eq,I(q, < -rc,)-Ey,I(-rc, < qn < --rcn+u,)+unP(lq,,-~,~ > rc,). 

1 If G I  and G6 hold, then by equivalence (i) we get 
I 

I n 
(1 7) lim - Eq, I (re, < q, < rc, + K,) 

n-. m C, 

< lirn (r + K,/c,) nP (rc, < y, ,< c, (r + xn/cn)) = 0. 
n+ m 

In a similar way we obtain 
n 

(18) lim-Eq,I(-rc, <: y, < -c,(r-K,/c,)) = 0. 
n + m  C, 

Hence, if 6 1  and G6 hold, then by equivalence (i) and next by (17), (18) and (16) 
we get 

n n 
(19) lim - E (y, - u,) 1 (lqn - rcn1 < rc,) = - lirn - Eq, 1 (q, > rc,), 

n-,m C, n- rm C, 

which proves (iii). 
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I 
i (iv) Let E > 0 and no be such that for n 2 no the inequality rcn/cn < E holds. 

To prove that G 4  implies P4 under 61 and G 6  notice that for n 2 no the 
I following inclusions of sets hold: 

I Hence for n 3 no we have 

which shows that 6 4  implies P4. 
To prove that P4 implies 6 4  under G 1  and G 7  notice that 

Hence for rcn/cn < E we have 

I 

I 

I Therefore 

Denote by Dn,i, i = 1 , 2 , 3 ,  the i-th component of the above sum. Applying 
condition P4 to component we get 

lim lim sup D ,  = 0. 
E + O  n , ,  

Next, applying conditions 6 1 , G 3  and 66, which imply P3, to component D , , ,  
we obtain 

lim lim sup D,,, = 0. 
e - 0  

Finally, applying condition 6 7  to component Dn,3, we have 

lim lim sup D,,, = 0. 
E-0 n + m  

Hence by the inequality 
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i 
we get 

n 
lim lim sup, ~ q :  I (q,  < EC,) = 0 .  
e-0  n - t m  C ,  

This ends the proof of (iv). 

The proof of the equivalence of P5 and 6 5  is obvious. This completes the 
proof of Proposition 3. rn 

Proof of Lemma 1. The proof of Lemma 1 follows from inequality (9). EPJ 
I 

In the sequel we use the notation 8, and a, for the Laplace-Stieltjes 
transforms of (B,)  and {A,}, respectively. 

Proof of Lemma 2. Using the form of the distribution function for the 
stationary waiting time in M/GI/ l  queue, given in [3], p. 255, formula (4.82), 
and next applying the consideration from Section 4.2 in [9], we get the fol- 
lowing form of the Laplace-Stieltjes transform for o f / c , :  

1 
(20) E ~ X P  (- sw:/c,) = (exp (- sx/c,) - 1 + sx/c,) d ~ ,  (x )  

where 
- I - I  n lanl P n  

P n  = - - 
Cn 2c, 2 

and j?: + P/2 by condition 11. Now by the definition of B,(s) we obtain 

= n 1 (exp ( - sx/c,) - 1 + sx/c,) dB, ( x )  = n j (e-"" - 1 + sx)  dB, (xc,). 
0 0 

But 
m E 

(21) j ( e - " - 1 + s x ) d ~ , ( x c , ) = j ( e - s x - l + s x ) d B , ( x c , )  
0 0 

r m m 

+ 1 (e-" - 1 + sx) dB, (xc,) + s j xdB, (xc,) + j (e-" - 1 )  dB, (xc,) 
e r r 

where E and r are continuity points of the spectral measure v. Using the in- 
equality e-"- 1 +sx  $ s2 x2 and condition 6 4  to the first component on the 
right-hand side of the above equality, i.e. to nC,,, we get 

6 E 

(22) lim lirn sup n j (e-" - 1 + sx)  dB, (xc,) < lim lim sup n J ( s x ) ~  dB, (xc,) 
~ - t m  n- tm 0 ~ - + m  n 0 
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Applying condition 6 3  to the third component of (21), i.e. to nC,,,, we obtain 

m 

(23) 
n Co B sn 1 xdB, (xc,) = s - 1 xdB, (x)+ - sbr . 

r Cn rc, 

To consider components nC,,2 and nC,,, let us define measures v! on (0, a )  by 
v! (a,  b) = n (B,  (bc,) -B, (ac,)) for 0 < a < b. Then by 6 1  and 6 2  we have 
v, (a, b) + vB (a, b) RB (b) - RB (a), as n + m, if a and b are continuity points 
of the spectral measure vB. Furthermore, let us define probability measures 
F,, and v" on [E, c ~ )  by f,, = v,/v, (E, a) and v" = vB/vB (E, m), respectively. Since 
E is a continuity point of vB, by conditions G1 and 6 2  we get the weak 
convergence fn * f. The functions e-" - 1 and e-" - 1 + sx of variable x are 
continuous on [0, a). Furthermore, they are bounded on [E, m) and [ E ,  r ] ,  
respectively. These facts jointly with fn * v" give the following convergences: 

E E E 

and 

(24) lim lim n j (e-,"- 1 + sx) dB, (xc,) = 1 (eTSx- 1 + sx) vB (dx). 
E-0 n-r  w 0 

Similarly we get 

m m m 

I 
(25) n~(e-""-1)dB,(xc , )=~(e-""-1)v~(dx)+~(e-"-1)vB(dx) .  

1 r r r 
I 
I Now compiling convergences (22H25) with (21) we get the first assertion of 

Lemma 2, i.e. (10) and (11). 
To prove the second assertion of the lemma we need to show that YB(s)  

is a continuous function at s = 0, i.e. lim,,o YB(s )  = 1. This holds if 
lim,-ro $B (s)/s = 0. But 

rCIB (4 m 

lim - = - b: - j xvB (dx). 
s-0 S r 

Hence by assumption G5 we get lim,-ro $B (s)/s = 0. This completes the proof of 
the lemma. 

Proof of Lemma 3. Since lo,, satisfies equation (12), we have 

d f  1-20,, 
z, = C , ~ ,  

v n  



I 
I 
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we get Lo,, = 1 -z, z7,,/cn, which together with (26) give the equality 

l -z ,--A " -n (:I) - = 0 .  
cn 

Hence 

which in turn gives 

(27) znpn = n ( l n ( ~ ) - ~ + ~ ~ ) .  
But 

m 

n (A. (zn/cn) - 1 + &, zn/cn) = n 1 (exp (- xzn/cn) - 1 + xzn/c$ dA. (x)  
0 

* C n  m 

= n l (exp ( - xzn/cn) - 1 + xzn/cn) dAn (x)  + n I (exp ( - xzn/cn) - 1 + xzn/cn) dA, ( x )  
0 *C" 

< n z : + r r x 2 d ~ n ( x ) + n  ~ A . ( X )  
C n  0 

1 rCn nz < nz; 7 J' x2 dA, ( x )  + 2 -2 xdA, (x) .  
I Cn o ' n  rcn 

Consequently, by (27), we get 

But by conditions 6 4  and 6 3  we have 

1 rCn n 
(29) lim sup n , 1 x2  d ~ ,  ( x )  < co and lim - j xdA, ( x )  = - b;4, 

n+m Cn o n rcn 

respectively. Therefore, if z, -, 0, then in view of limn P, = P and next in virtue 
of (28) and (29), and finally by lim,,, b:' = 0 we obtain P < 0, which contra- 
dicts the assumption that 0 < p <  co. Hence 

lim inf (1 - A,,,) cn/iin > 0. 
n-t m 

It is well known that for GI/M/l  queues the distribution function of on has 
I the form 

P ( o ,  > x )  = A,,, exp (-(1 -L0,,)x/i&,) for x 2 0 
I 

(see [3], p. 230, equation (2.98)). 



122 M. C z y s t o ~ o w s k ~  and W. Szczotka 

Hence 
P (on > XC,) = lo,. exp ( - (1 -lo,,) c, xli7,) for x 2 0 

and 

(30) lim sup P (w,/c, > x) = lim sup Ao,, exp ( - ( 1  -A,, ,)  c, ~ 1 % )  
n-t m n+ m 

< lim sup exp ( - (1 - lo,,) c, XI&). 
n-t m 

The above jointly with assertion (13) imply that the sequence {o , /c , )  is tight 
both in the case when 0 < lim inf,,, (1 -lo,.) c,/C, < co as well as in the case 
when lim sup,, , (1 -A0,,) c,/% = GO. 

To prove the second assertion of the lemma notice that under (14) we have 
A,,, + 1 ,  which by the second equality in formula (30) gives the second asser- 
tion of the lemma. This completes the proof of the lemma. se 

Proof of Theorem 1. By the assumptions X:%XB,  X$ % X A  and 
EXB(t )  = EXA( t )  = 0 and by Proposition 1 it follows that the sequences { F f }  
and {F;}  satisfy conditions PI-P5. This in turn and condition G7 imply that 
the sequences {B,)  and {A,}  satisfy conditions GI-G7.  Now by Lemma 2 we 
see that {of2/cn) is tight and, by Lemma 3, {w$/c,) is tight. This in turn and 
Lemma 1 imply that {o , /c , }  is tight. Hence conditions I, I1 and I11 hold, which 
implies that 

o , / c ,  3 sup ( X B  ( t )  - X A  (t)  - fit). 
O < t <  m 

This completes the proof of the theorem. rn 

Proof of Theorem 2. By the assumptions of Theorem 2 and by Proposi- 
tion 1 it follows that {F$*) satisfies conditions PI-P5. This together with 
assumption (7)  imply by Proposition 2 that {F:) and {F;;') satisfy condi- 
tions PI-P5. That in turn and condition G7 imply that {B,) and {A,)  
satisfy conditions 6 1 - 6 7 .  Therefore, from Lemmas 2 and 3 we infer that 
{wf2/cn} and { o f / c , }  are tight, which by Lemma 1 implies that {w,/c,) is 
tight. Hence conditions I, 11 and I11 are satisfied, which implies the conver- 
gence 

o,/c" 3 sup ( X  ( t )  - f i t )  . 
O d t i o o  

This completes the proof of the theorem. a 

Proof of Theorem 3. The proof of the theorem follows immediately from 
Lemmas 1-3. ~r 
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