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1. INTRODUCTION 

The one-sided linear process (LP) is defined as follows: 

where the innovations Z,,'s are i.i.d. random variables and ai are constant 
coefficients such that Crm=, a: < co . 

Linear processes have a wide range of applications in time series analysis. 
A large class of time series processes can be modelled in such a way, including 
a subset of the fractional ARIMA processes (see Brockwell and Davis (1987)). 
Additionally, we say that (X,) is a short-range dependent process if the following 
condition is satisfied: 

It is obvious that if x;"=, IXrm=, a, a, + jl < co and E (Z:) < co, then the linear 
process (X,) is short-range dependent. 
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Let G be a measurable function such that E IG(X,)I c co. In statistical 
inference for time series, it is an important problem to investigate the asymp- 
totic behavior of the partial sums Sn = x:=, (G (Xi) - EG (xi)), since many statis- 
tics are of this form. This problem has been considered by many authors. For 
example, Davydov (1970) considers the special case G(x) = x, which is also 
discussed in Giraitis and Surgailis (1986). This problem has been considered 
recently by Ho and Hsing (1996), (1997), Hsing (2000), Koul and Surgailis 
(2001), Wu (2002). 

The central limit theorem for multiple linear processes with heavy tailed 
innovations has been proved by Wu (2003). A very simple question is whether 
one can prove a central limit theorem (CLT) under a short-range dependence 
without additional assumptions on the (ar) and (2,) and for the most general 
class of functions G. 

The generalization of the one-sided linear process is the multidimensional 
linear process (MLP), defined as follows: 

where the innovations (2,) = (Zil), . . ., Zim)) are i.i.d. random vectors in Rm, 
with mean zero and 

The (Ar) are the nonrandom matrices, where ZrCO=, IIArI12 < a, A. = I, and the 
matrix norm 11.11 is such that, for every z d m ,  

where 1.1 is the usual Euclidean norm. We will also consider the following assump- 
tions : 

CO 

(a2) IJAr1)2 = (O(i-? for some t > 1, 
r = j  

(bi) the density of the vector Z1 is the Lipschitz function, 

(b2 (t)) EIZllt<co for some t > 2 .  

In Section 4 we prove the CLT for the sums of functionals of linear 
processes. Let 9 [0, 11 be the space of all real functions defined on [O, 11 that 
are right-continuous and have left-side limits with Skorokhod topology (see 
Billingsley (1968)). We will show that, under some simple conditions, 

n - ' ' 2 ~ l n t l * ~ { ~ ( t ) , ~ < t < 1 )  in 9[O, 11 for some a. 
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The basic idea of this proof is the martingale decomposition of the process 

This decomposition is of the following form (see also Ho and Hsing (1996) 
and (1997)): 

a3 

(1.3) Y. = C U,,,, where Un,, = E{Y,IFn-s}-E{r,IFn-s-,}, 
s = O  

where Fn : = a (. . . , Zn - , , 2,) is the a-field generated by the innovations in the 
"past" < n, (X,,) is an m-dimensional process (MLP), and G: Rm -+ R is a real 
function such that E IY,IQ i oo for some Q 2. 

In the proof of the main theorem we use the idea introduced by Koul and 
Surgailis (1997). 

Theorem 2.2 is a simple corollary to the theorem of Maxwell and Wood- 
roofe (see Wu (2002), Corollary 1). In this context see also Ho and Hsing (1997). 
They proved that if Crm=, la,[ i oo, E (2:) i oo, and (ao) holds, then under some 
regularity conditions on G (for example, if the derivative of G is bounded and 
continuous, or G is any polynomial) 

s./& * N (0, g2)  for some a i co 

(see Theorem 4.1 in Ho and Hsing (1997)). 
On the other hand, under the assumptions that 

n 

is Lipschitz for all sufficiently large n, an = n-? L(n) for some y > 1, where L (.) 
is a slowly varying function, Wu (2002) proved the CLT. 

2. MAIN RESULTS 

The main results are the central limit theorems for linear process. Let 

where Fs is the distribution function of 2;: A, Z,-, and EG2 (XI) < oo. We 
consider the following conditions : 

for each s = 1, 2, . . . and all x, y E Rm, where 

sup Lip (G,) < C for some constant C, 
s > o  

(Lip *) IG, (x) - Gs (Y)I d Lip (Gs) Ix - Y 1 
for sufficiently large s, where Lip (G,) < C for some constant C for sufficiently 
large s. 
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THEOREM 2.1. Assume that (a,) holds, (b2 (t)) is fu&lled with t = 2, and 
(Lip) is satisfied. Then 

where cr2 : = E (Yl)2 + 2 Cj?', E (Yl Yl + j )  and B is a standard Brownian motion 
on [0, 11. 

THEOREM 2.2. Assume that (a2) holds, (b2 (t)) is fu&lled with t > 2, and 
(Lip*) is satisfied. Then (2.1) holds with cr2 : = limn,, n- ' E (S:). 

Remark  2.1. In comparison with the assumptions of Theorem 4.1 of Ho 
and Hsing (1997) our assumptions do not require the existence of the fourth 
moments of innovations and the condition C(t, 7, 1) (ibidem, p. 1639). It is 
easily seen that every Lipschitz function G satisfies the assumption (Lip), but 
not every Lipschitz function satisfies the assumptions of Theorem 4.1. Similar- 
ly, not every integrable function fulfills the assumptions of the Theorem of Ho 
and Hsing (1997), but every integrable function satisfies the condition (Lip) (see 
Proposition 4.1). 

3. AUXILIARY LEMMAS 

We need the following lemmas for the proof of Theorem 2.1. The first one 
follows immediately from general theorems about weak convergence. The sec- 
ond lemma is the CLT for the martingale differences by Billingsley. 

Assume that w,, T/,,., . . . are stochastic processes for n = 1, 2, . . . 
LEMMA 3.1 (Theorem 4.2 in Billingsley (1968)). Suppose that the following 

assumptions hold for every u E N: 

(i) T/,,. cr, B as n -+ m, where B is a standard Brownian motion on [0, 11; 
(ii) cr2 = lim,,, crz > 0; 
(iii) we have 

lim inf lim sup P (I I/;,  - W,I 2 E )  = 0 for any E > 0. 
,--+a n + c o  

Then 
W,+oB a s n - m .  

LEMMA 3.2 (CLT for the martingale differences, Theorem 23.1 in Billings- 
ley (1968)). Suppose that the martingale dgerence sequence (M,, pi), is stationa- 
ry, ergodic, and centered, with Var(Ml) < m. Then 

where o2 = Var (MI) for each t E [0, 11. 
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Additionally, we will use the following lemmas. Let 1 1 . 1 1 2  denote the norm 
in S 2 ,  i.e., llXllz = [E  lX12]1'2 and Uj, be such as in (1.3). 

LEMMA 3.3 (Lemma 6.4 in Ho and Hsing (1996)). Cov {Uj,., Ui,r) = 0 for 
any i, j e Z ,  s,  EN and j-s # i-k. 

LEMMA 3.4. The following statements are true: 
If IlG(xl)ll2 < a ,  then 

for any k~ N. 
If (Lip) holds, then 

for any  EN and for s = 1, 2, . . ., where C is a constant. 

LEMMA 3.5. Under the assumptions of Theorem 2.1 

Additionally, xT= IE (Yl Yl < oo. 

The proofs of Lemmas 3.4 and 3.5 are contained in the Appendix. 

4. PROOF OF THE MAIN RESULTS 

In this section we prove Theorems 2.1 and 2.2. Let us start with the proof 
of Theorem 2.1. 

P roo f  of Theorem 2.1. Let 

1 [ntl 1 [nt] u - 1 

We will show that all the conditions (i)-(iii) of Lemma 3.1 are satisfied. In order 
to prove (i), we apply the Koul and Surgailis (1997) decomposition. We have 

1 [nt] u - 1  

K,n:=- C C Uj+s,s+Hu,n. 
& j = l s = o  

Since, for some constant C, IIUj,sl12 < C (see Lemma 3.4) for s = 0, 1, . . . and 
any j E N, we have maxj,, EU,f, < C2, and therefore 

H u n  = 0 ( n  1 )  for every u E N .  
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Hence 

(4.2) E l u , .  5 0 (in probability) for every U E N .  

Put 
u - 1  

Since (M,(u), F ~ ) ~  is a stationary, ergodic, centered sequence of the martingale 
differences, by Lemma 3.2 we obtain 

1 [nt] u - 1  1 [ntl 

(4.3) --C C U j + s , s = - C  Mj(u)*ouB as n-co, 6 j=1 s = o  & j = i  

where ot = Var (MI (u)). 
By (4.2), (4.3) and the decomposition (4.1), we get 

Thus, the condition (i) of Lemma 3.1 is satisified. 
The proof of condition (ii) follows immediately from Lemma 3.5. 
Thus, it remains to prove the condition (iii). Notice that, by Chebyshev's 

inequality, 

From Lemma 3.3 and the Schwarz inequality we have 

Hence, by Lemma 3.4, we infer that for some constant C 

Finally, we have 

Hence, applying (a,), we see that the condition (iii) of Lemma 3.1 holds. This 
completes the proof of Theorem 2.1. c 
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With reference to Theorem 2.1 the following property is worth proving: 

PROPOSITION 4.1. Let Lip(G) denote the Lipschitz constant of the func- 
tion G. The following statements are true: 

(i) If G is Lipschitz and (b,) holds, then (Lip) is satisfied with constant 
Lip (G,) bounded as follows: 

Lip (G,) < Lip (G) . 
(ii) If G is integrable, i.e. G E L1 (Rm), and (b,) holds, then (Lip) is satisfied 

with constant Lip (G,) bounded as follows: 

Lip (Gs) d L ~ P  (fl) S IG ($1 ds, 

where fl is the density of Z1. 
(iii) If m = 1 and G has a bounded total variation, then (Lip) is satisfied with 

constant Lip(G,) bounded as follows: 

where llGlltv denotes the total variation of G on the real line and the following 
condition holds: 

(bo) there exists some constant C such that sup,,, Lip (F,) < C, where F, is 
the distribution function of c:: a, Z, -, . 

P r o of. The condition (i) is clear. In order to prove (ii), let us notice that 

where f, denotes the density of random vector C: 1 A, Zlc -, . Since f, = g, * f, , 
where g, * f, denotes the convolution of the densities g, and f,, and g, is the 
density of C ~ ~ : A , Z ~ ~ - , ,  f, is also the density of Z,, so by (b,) we obtain 

In order to prove (iii), let us observe that from the elementary properties of 
the functions F, and G, we have 

G(z)F,(z-x)liE"-G(z)F,(z-y)lzz"=O for each x, y. 

Consequently, by the formula for the integration by parts for Stieltjes integrals, 
we obtain 

where F, is the distribution function of C: 1 a, Z, -, . 
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Therefore, (b,) yields sup,,, Lip (F,) 6 C and 

IG,(x)-Gs(y)l < Lip(Fs)Ix-yl IIGII*. 6 c IIGlltv Ix-yl. 

Now we prove our second main result, i.e. Theorem 2.2. 

P r o of of The  o re  m 2.2. Since the sequence Zi = (. . . , Zi- ,, Zi) is a sta- 
tionary ergodic Markov chain, by the theorem of Maxwell and Woodroofe 
(Theorem 1 in Wu (2002)) it is sufficient to prove that 

(4.4) Il(G G) ( ~ , ) I I ,  = 6 (n3 for some K < *, 

where (T/. G) (s) = E {G" (xi) ( g o }  and G (xi) = G (xi) - EG (Xi). 
Obviously, 

because EG (Xi) = E (E { G (xi) I 901) = E ( ~ i  (Era= A r zi - r)), 
From the triangle inequality we get 

Notice that Gi (0) = E (G (zf~', Ar Z t-r )) and 

Then from (4.9, using (Lip*), we obtain 

By (a,) and (1.1), we have 
aJ aJ 

JIG A r ~ i - ~ l J ~  < (C 1 1 ~ ~ 1 1 ~ ) ~ ' ~  = 6(i-t12) for some t > 1, 

which is the desired result (4.4). 

5. APPENDIX 

P r o of of Lemma 3.4. The bound (3.1) follows immediately from the 
obvious fact : 

IIG(xk)-E {G(xk) 1 9 k - 1 } 1 1 2  < llG(xk)112. 



CLT for functionals of linear processes 243 

Thus, it remains to prove (3.2). By the definition of Gs,  we obtain 

where Rk,s = xk -~~~~ A, Z k - , .  By independence of As 2,-, and Rk,,+ , ,  we 
have Gs + ( x )  = J' Gs ( x  + z )  dF ,s (z) ,  where F , ,  is the distribution function of 
As Z k  - ,  . Hence 

Consequently, applying the condition (Lip), we get 

From ( 1 . 1 )  and (1.2) we obtain EIASZk-,1 6 llAsll, and hence 

and 
Ileik,slj2 < C llAsll for some constant C. 

This completes the proof of Lemma 3.4. 

Proof  of Lemma 3.5. Let us notice that 

Hence, by Lemma 3.3, 

E(Ul+S,S Ul+P,P) = E(U1,S G + p - s , p ) ,  

and, consequently, 
u - 1  

0: = C E(U1,S Ul+p-,,PI. 
s , p  = 0 

Clearly, we have 

Let C, C' and C" be some constants. By the Schwarz inequality and Lem- 
ma 3.4, we have 
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Thus 

Hence, by the condition (ao), the sum zs:p =, E (U1. Ul +, -,,,) is absolutely 
convergent and 

03 

0:- l , s l + p - s , p  as u + m .  
s,p = 0 

Since, by Lemma 3.3, 

(5.2) E(Ui,sUj,p)=O for i - s # j - p ,  

we have 
03 

From the fact that C'=, Uk,s -+ Y, in L2 (P) we conclude 

Consequently, 
03 

0: -E(Y?)+2 C E(Yl Yl+j) as u -r co. 
j=1 

We now prove the second part of our lemma. It follows from Lemma 3.3 that 

Hence, by (5.1), we have 

Finally, we get CJ?=, IE (Yl Yl +,)I < m, which is a desired result. 
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