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Abstract. In infinite-dimensional Banach spaces there is no complete
characterization of the Lévy exponents of infinitely divisible probability
measures. Here we propose a calculus on Lévy exponents that is derived
from some random integrals. As a consequence we prove that each selfde-
composable measure can by factorized as another selfdecomposable mea-
sure and its background driving measure that is s-selfdecomposable. This
complements a result from the paper of Iksanov, Jurek and Schreiber in the
Annals of Probability (2004).
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1. INTRODUCTION

Recall that a Borel probability measure µ, on a real separable Banach space E,
is called infinitely divisible if for each natural number n there exists a probability
measure µn such that µ∗nn = µ; the class of all infinitely divisible measures will be
denoted by ID. It is well known that their Fourier transforms (the Lévy–Khintchine
formulas) can be written as follows:

(1.1) µ̂(y) = eΦ(y), y ∈ E′, and the exponents Φ are of the form

Φ(y) = i〈y, a〉 − 1
2
〈y, Ry〉+

∫
E\{0}

[ei〈y,x〉 − 1− i〈y, x〉1B(x)]M(dx),

where E′ denotes the dual Banach space, 〈·, ·〉 is an appropriate bilinear form be-
tween E′ and E, a is a shift vector, R is a covariance operator corresponding to
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the Gaussian part of µ, and M is a Lévy spectral measure. There is a one-to-one
correspondence between µ ∈ ID and the triples [a,R, M ] in its Lévy–Khintchine
formula (1.1); cf. Araujo and Giné [1], Chapter 3, Section 6, p. 136. The function
Φ(y) from (1.1) is called then the Lévy exponent of µ.

REMARK 1.1. (a) If E is a Hilbert space, then Lévy spectral measures M
are completely characterized by the integrability condition

∫
E
(1∧ ‖x‖2)M(dx) <

∞, and Gaussian covariance operators R coincide with the positive trace-class
operators; cf. Parthasarathy [12], Chapter VI, Theorem 4.10.

(b) When E is a Euclidean space, then Lévy exponents are completely char-
acterized as continuous negative-definite functions; cf. Cuppens [4] and Schoen-
berg’s theorem on p. 80.

Finally, a Lévy process Y (t), t  0, means a continuous in probability process
with stationary and independent increments and Y (0) = 0. Without loss of gener-
ality we may and do assume that it has paths in the Skorokhod space DE [0,∞) of
E-valued càdlàg functions (i.e., right continuous with left-hand limits). There is a
one-to-one correspondence between the class ID and the class of Lévy processes.

The càdlàg paths of a process Y allow us to define random integrals of the
form

∫
(a,b]

h(s)Y
(
r(ds)

)
by the formal formula of integration by parts. Namely,

(1.2)
∫

(a,b]

h(s)Y
(
r(ds)

)
:= h(b)Y

(
r(b)

)− h(a)Y
(
r(a)

)−
∫

(a,b]

Y
(
r(s)

)
dh(s),

where h is a real-valued function of bounded variation and r is a monotone and
right-continuous function. Furthermore, we have

(1.3)
(
L

( ∫
(a,b]

h(s)Y
(
r(ds)

)))b
(y) = exp

[ ∫
(a,b]

log
(
L(

Y (1)
))b(

h(s)y
)
r(ds)

]
,

where L(·) denotes the probability distribution and µ̂(·) denotes the Fourier trans-
form of a measure µ; cf. Jurek and Vervaat [10] or Jurek [7], or Jurek and Mason
[9], Section 3.6, p. 116.

2. A CALCULUS ON LÉVY EXPONENTS

Let E denote the totality of all functions Φ : E′ → C appearing as the expo-
nent in the Lévy–Khintchine formula (1.1). Hence we have

(2.1) E + E ⊂ E , λ · E ⊂ E for all positive λ,

which means that E forms a cone in the space of all complex-valued functions
defined on E′. Furthermore, if Φ ∈ E , then all dilations Φ(a·) ∈ E . These follow
from the fact that infinite divisibility is preserved under convolution and under
(convolution) powers to positive real numbers.
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Here we consider two integral operators acting on E or its part. Namely,

(2.2)

J : E → E , (JΦ)(y) :=
1∫
0

Φ(sy)ds, y ∈ E′;

I : Elog → E , (IΦ)(y) :=
1∫
0

Φ(sy)s−1ds, y ∈ E′.

Note that J is well defined on all of E since, by (1.3), JΦ is the Lévy exponent of
the well-defined integral

∫
(0,1)

tdY (t), where Y (1) has the Lévy exponent Φ; cf.
Jurek [7] or [8]. On the other hand, I is only defined on Elog, which corresponds to
infinitely divisible measures with finite logarithmic moments, since IΦ is the Lévy
exponent of the random integral −

∫
(0,1)

tdY (− ln t) =
∫

(0,∞)
e−sdY (s), where

Φ is the Lévy exponent of Y (1) that has finite logarithmic moment; cf. Jurek and
Vervaat [10].

Here are the main algebraic properties of the mappings J and I.

LEMMA 2.1. The operators I and J acting on appropriate domains (Lévy
exponents) have the following basic properties:

(a) I,J are additive and positive homogeneous operators;
(b) I,J commute under the composition and J (I(Φ)

)
= (I − J )Φ.

Other equivalent forms of the last property are:

J (I + I) = I; I(I − J ) = J ; (I − J )(I + I) = I.

P r o o f. Part (a) follows from the fact that E forms a cone. For part (b) let us
note that

(
J (I(Φ)

))
(y) =

1∫
0

(I(Φ)
)
(ty) dt =

1∫
0

1∫
0

Φ(sty)s−1dsdt

=
1∫
0

t∫
0

Φ(ry)r−1drdt =
1∫
0

1∫
r

Φ(ry)dt r−1dr

=
1∫
0

Φ(ry)r−1dr −
1∫
0

Φ(ry)dr = IΦ(y)− JΦ(y)

= (I − J )Φ(y),

which proves the equality in (b). Note that from the above (the first line of the above
argument) we infer also that the operators I and J commute, which completes the
argument. ¥

LEMMA 2.2. The operators I and J , defined by (2.2), have the following
additional properties:

(a) J : Elog → Elog and I : E(log)2 → Elog.
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(b) If (I − J )Φ ∈ E , then the corresponding infinitely divisible measure µ̃
with the Lévy exponent (I − J )Φ(y), y ∈ E′, has finite logarithmic moment.

(c) (I − J )Φ + I(I − J )Φ = (I − J )Φ + JΦ = Φ for all Φ ∈ E .

P r o o f. (a) Since the function E 3 x→ log(1 + ‖x‖) is subadditive, for an
infinitely divisible probability measure µ = [a,R,M ] we have

(2.3)
∫
E

log(1 + ‖x‖)µ(dx) <∞ iff
∫

{‖x‖>1}
log(1 + ‖x‖)M(dx) <∞

iff
∫

{‖x‖>1}
log ‖x‖M(dx) <∞;

cf. Jurek and Mason [9], Proposition 1.8.13. Furthermore, if M is the spectral Lévy
measure appearing in the Lévy exponent Φ, then JΦ has a Lévy spectral measure
JM (we keep that potentially conflicting notation), where

(2.4) (JM)(A) :=
∫

(0,1)

M(t−1A)dt =
∫

(0,1)

∫
E

1A(tx)M(dx)dt

for all Borel subsets A of E \ {0}. Hence
∫

{‖x‖>1}
log ‖x‖(JM)(dx) =

∫
(0,1)

∫
E

1{‖x‖>1}(tx) log(t‖x‖)M(dx)dt

=
∫

(0,1)

∫
{‖x‖>t−1}

log(t‖x‖)M(dx)dt =
∫

{‖x‖>1}

1∫
‖x‖−1

log(t‖x‖)dtM(dx)

=
∫

{‖x‖>1}
‖x‖−1

‖x‖∫
1

log w dw M(dx)

=
∫

{‖x‖>1}
‖x‖−1[‖x‖ log ‖x‖ − ‖x‖+ 1]M(dx)

=
∫

{‖x‖>1}
log ‖x‖M(dx)−

∫
{‖x‖>1}

[1− ‖x‖−1]M(dx).

Since the last integral is always finite as we integrate a bounded function with
respect to a finite measure, we get the first part of (a). For the second one, let us
note that

∫
{‖x‖>1}

log ‖x‖(IM)(dx) =
∞∫
0

∫
{‖x‖>1}

log ‖x‖M(etdx)dt

=
1
2

∫
{‖x‖>1}

log2 ‖x‖M(dx),

where IM is the Lévy spectral measure corresponding to the Lévy exponent IΦ.
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For the part (b), note that the assumption made there implies that the measure

(2.5) M̃(A) := M(A)−
∫

(0,1)

M(t−1A)dt  0 for all Borel sets A ⊂ E \ {0}

is the Lévy spectral measure of some µ̃. [Note that there is no restriction on the
Gaussian part.] In fact, if M̃ is a nonnegative measure, then it is necessarily a Lévy
spectral measure because 0 ¬ M̃ ¬ M and M is a Lévy spectral measure; cf.
Araujo and Giné [1], Chapter 3, Theorem 4.7, p. 119. To establish the logarithmic
moment of µ̃ we argue as follows. Observe that for any constant k > 1 we have

0 ¬
∫

{1<‖x‖¬k}
log ‖x‖M̃(dx)

=
∫

{1<‖x‖¬k}
log ‖x‖M(dx)−

∫
(0,1)

∫
{1<‖x‖¬k}

log ‖x‖M(t−1dx)dt

=
∫

{1<‖x‖¬k}
log ‖x‖M(dx)−

∫
(0,1)

∫
{t−1<‖x‖¬kt−1}

log(t‖x‖)M(dx)dt

=
∫

{1<‖x‖¬k}
log ‖x‖M(dx)−

∫
{1<‖x‖¬k}

1∫
‖x‖−1

log(t‖x‖)dtM(dx)

−
∫

{k<‖x‖}

k‖x‖−1∫
‖x‖−1

log(t‖x‖)dtM(dx)

=
∫

{1<‖x‖¬k}
log ‖x‖M(dx)−

∫
{1<‖x‖¬k}

‖x‖−1
‖x‖∫
1

log(w) dw M(dx)

−
∫

{k<‖x‖}
‖x‖−1

k∫
1

log(w) dw M(dx)

=
∫

{1<‖x‖¬k}
log ‖x‖M(dx)−

∫
{1<‖x‖¬k}

‖x‖−1(‖x‖ log ‖x‖ − ‖x‖+ 1)M(dx)

− (k log k − k + 1)
∫

{‖x‖>k}
‖x‖−1M(dx)

=
∫

{1<‖x‖¬k}
(1− ‖x‖−1)M(dx)− (k log k − k + 1)

∫
{‖x‖>k}

‖x‖−1M(dx)

¬M(‖x‖ > 1) <∞,

and consequently
∫
{‖x‖>1} log ‖x‖M̃(dx) < ∞. This with property (2.3) com-

pletes the proof of the part (b).
Finally, since (I − J )Φ is in a domain of definition of the operator I, so the

part (c) is a consequence of Lemma 2.1 (b). Thus the proof is complete. ¥
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3. FACTORIZATIONS OF SELFDECOMPOSABLE DISTRIBUTIONS

The classes of limit laws U and L are obtained by non-linear shrinking trans-
formations and linear transformations (multiplications by scalars), respectively; cf.
Jurek [7] and references therein. However, there are many (unexpected) relations
between U and L as was already proved in Jurek [7] and more recently in Iksanov
et al. [6]. Furthermore, more recently selfdecomposable distributions are used in
modelling real phenomena, in particular in mathematical finance; for instance cf.
Bingham [2], Carr et al. [3] or Eberlein and Keller [5]. This motivates further stud-
ies on factorizations and other relations between the classes U and L, like those in
Theorems 3.1 and 3.2 below.

In this section we will apply the operators I and J to Lévy exponents of
selfdecomposable (the class L) and s-selfdecomposable (the class U) probability
measures. For the convenience of the readers recall here that

(3.1) µ ∈ L iff ∀(t > 0)∃νt µ = Te−t µ ∗ νt

iff µ = L( ∫
(0,∞)

e−tdY (t)
)
, L(

Y (1)
) ∈ IDlog;

µ ∈ U iff µ = L( ∫
(0,1]

t dY (t)
)
, L(

Y (1)
) ∈ ID.

Measures from the class U are called s-selfdecomposable; cf Jurek [7], [8]. The
corresponding Fourier transforms of measures from L and U follow easily from
(1.2) and (1.3); cf. Jurek and Vervaat [10] or the above references.

LEMMA 3.1. If µ is a selfdecomposable probability measure on a Banach
space E with characteristic function µ̂(y) = exp[Φ(y)], y ∈ E′, then

Φ̃(y) := Φ(y)−
∫

(0,1)

Φ(sy)ds = (I − J )Φ(y), y ∈ E′,

is a Lévy exponent corresponding to an infinitely divisible probability measure with
finite logarithmic moment.

Equivalently, if M is the Lévy spectral measure of a selfdecomposable µ, then
the measure M̃ given by

M̃(A) := M(A)−
1∫
0

M(t−1A)dt, A ⊂ E \ {0},

is a Lévy spectral measure on E that additionally integrates the logarithmic func-
tion on the complement of any neighborhood of zero.

P r o o f. If µ = [a,R,M ] is selfdecomposable (or, in other words, a class L
distribution), then we infer that

M(A)−M(etA)  0 for all t > 0 and Borel A ⊂ E \ {0},
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and that there is no restriction on the remaining two parameters (the shift vec-
tor and the Gaussian covariance operator) in the Lévy–Khintchine formula (1.1).
Multiplying both sides by e−t and then integrating over the positive half-line we
conclude that M̃ , given by (2.5), is a non-negative measure. Since M̃ ¬ M and
M is a Lévy spectral measure, so is M̃ ; cf. Theorem 4.7 in Chapter 3 of Araujo
and Giné [1]. Finally, our Lemma 2.2 (b) gives the finiteness of the logarithmic
moment. Thus the proof is complete. ¥

THEOREM 3.1. For each selfdecomposable probability measure µ, on a Ba-
nach space E, there exists a unique s-selfdecomposable probability measure µ̃ with
finite logarithmic moment such that

(3.2) µ = µ̃ ∗ I(µ̃) and J (µ) = I(µ̃).

In fact, if µ̂(y) = exp[Φ(y)], then (µ̃)̂ (y) = exp
[
Φ(y)−

∫
(0,1)

Φ(ty)dt
]
, y ∈ E′.

In other words, if Φ is the Lévy exponent of a selfdecomposable probability
measure, then (I − J )Φ is the Lévy exponent of an s-selfdecomposable measure
with the finite logarithmic moment and

(3.3) Φ = (I − J )Φ + I(I − J )Φ = (I − J )Φ + JΦ.

P r o o f. Let µ̂(y) = exp[Φ(y)] ∈ L. From the factorization in (3.1) (the first
line) we infer that Φt(y) := Φ(y) − Φ(e−ty) are Lévy exponents as well. Hence,

Φ̃(y) :=
∫

(0,∞)

Φt(ty)e−tdt = Φ(y)−
∫

(0,∞)

Φ(e−ty)e−tdt =
(
(I − J )Φ

)
(y)

is a Lévy exponent as well, because of Lemma 3.1. Again by Lemma 3.1 (or
Lemma 2.2 (b)), a probability measure µ̃ defined by the Fourier transform (µ̃)̂ (y) =
exp(I − J )Φ(y) has logarithmic moment. Consequently, I(µ̃) is a well-defined
probability measure whose Lévy exponent is equal to I(I − J )Φ. Finally, Lem-
mas 2.1 (b) and 2.2 (c) give the factorization (3.2).

Since I(µ̃) ∈ L has the property that µ̃ ∗ I(µ̃) is again in L, therefore Theo-
rem 1 from Iksanov et al. [6] implies that µ̃ ∈ U , i.e., it is an s-selfdecomposable
probability distribution.

To see the second equality in (3.3) one should observe that it is equivalent to
the equality JΦ = I(I − J )Φ that indeed holds true in view of Lemma 2.1 (b).

Suppose there exists another factorization of the form µ = ρ ∗ I(ρ) and let
Ξ(y) be the Lévy exponent of ρ. Then we see that Φ(y) = Ξ(y) + (I Ξ)(y) =
(I + I) Ξ(y). Hence, applying to both sides I − J we conclude that

(I − J )Φ =
(
(I − J )(I + I)) Ξ = Ξ,

where the last equality is from Lemma 2.1 (b). This proves the uniqueness of µ̃ in
the representation (3.2), and thus the proof of Theorem 3.1 is completed. ¥
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REMARK 3.1. The factorization (3.2) in Theorem 3.1 can be also derived
from previous papers as follows:

For each selfdecomposable (or class L) µ there exists a unique ρ ∈ IDlog such
that µ = I(ρ); Jurek and Vervaat [10]. Since µ̃ := J (ρ) is an s-selfdecomposable
(class U) with logarithmic moment (cf. Jurek [7]), therefore I(µ̃) ∗ µ̃ ∈ L in view
of Iksanov et al. [6]. Finally, again by Jurek [7], I(µ̃) ∗ µ̃ = J (I(ρ) ∗ ρ

)
= I(ρ) =

µ, which gives the decomposition.
However, the present proof is less involved, more straightforward and, more-

over, the result and the proof of finiteness of the logarithmic moment in Lemma
2.2 (b) are completely new. Last but not least, the “calculus” on Lévy exponents,
introduced in this note, is of an interest in itself.

REMARK 3.2. In the case of Euclidean space Rd, using Schoenberg’s theo-
rem, it follows immediately that Φ̃ is a Lévy exponent; cf. Cuppens [4], pp. 80–82.

Following Iksanov et al. [6], p. 1360, we will say that a selfdecomposable
probability measure µ has the factorization property if µ ∗ I−1(µ) is selfdecom-
posable as well. In other words, a class L probability measure convolved with its
background driving probability distribution is again class L distribution. As in Ik-
sanov et al. [6], Proposition 1, if Lf denotes the set of all class L distributions with
the factorization property, then

(3.4) Lf = I(J (IDlog)
)

= J (I(IDlog)
)

= J (L) and Lf ⊂ L ⊂ U .

COROLLARY 3.1. Each selfdecomposable measure µ admits a factorization
µ = ν1 ∗ ν2, where ν1 is an s-selfdecomposable measure (i.e., ν1 ∈ U) and ν2 is
a selfdecomposable one with the factorization property (i.e., ν2 ∈ Lf ). That is,
besides the inclusion Lf ⊂ L ⊂ U we also have L ⊂ Lf ∗ U .

P r o o f. Because of (3.2), ν1 := µ̃ is an s-selfdecomposable measure. Fur-
thermore, ν2 := I(µ̃) ∈ L has the factorization property, i.e., ν2 ∈ Lf , which com-
pletes the proof. ¥

EXAMPLE 3.1. Let Σp be a symmetric stable distribution on a Banach space
E, with the exponent p. Then its Lévy exponent Φp is equal to

Φp(y) = −
∫
S

|〈y, x〉|p m(dx),

where m is a finite Borel measure on the unit sphere S of E; cf. Samorodnitsky
and Taqqu [13]. Hence (I − J )Φp(y) = p/(p + 1)Φp(y), which means that in
Corollary 3.1, both ν1 and ν2 are stable with the exponent p and measures m1 :=(
p/(p + 1)

)
m and m2 :=

(
1/(p + 1)

)
m, respectively.

EXAMPLE 3.2. Let η denote the Laplace (double exponential) distribution
on the real line R; cf. Jurek and Yor [11]. Then its Lévy exponent Φη is equal
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to Φη(t) := − log(1 + t2), t ∈ R. Consequently, it follows that (I − J )Φη(t)
= 2(arctan t − t)t−1 is the Lévy exponent of the class U probability measure ν1

from Corollary 3.1, and
(
2t − arctan t− t log(1 + t2)

)
t−1 is the Lévy exponent

of the class Lf measure ν2 from Corollary 3.1.

Before we formulate the next result we need to recall that, by (3.1), the class U
is defined here as U = J (ID). Consequently, by iteration argument we can define

(3.5) U 〈1〉 := U , U 〈k+1〉 := J (U 〈k〉) = J k+1(ID), k = 1, 2, . . . ;

cf. Jurek [8] for other characterization of classes U 〈k〉. Elements from the semi-
groups U 〈k〉 are called k-times s-selfdecomposable probability measures.

THEOREM 3.2. Let n be any natural number and µ be a selfdecomposable
probability measure. Then there exist k-times s-selfdecomposable probability mea-
sures µ̃k, for k = 1, 2, . . . , n, such that

(3.6) µ = µ̃1 ∗ µ̃2 ∗ . . . ∗ µ̃n ∗ I(µ̃n), J k(µ) = I(µ̃k), k = 1, 2, . . . , n.

In fact, if Φ is the exponent of µ, then µ̃k has the exponent Ik−1(I − J )kΦ =
(I − J )J k−1Φ and

(3.7) Φ = (I − J )Φ + (I − J )JΦ + . . . + (I − J )J k−1Φ +

. . . + (I − J )J n−1Φ + J nΦ = (I − J n)Φ + J nΦ.

P r o o f. For n = 1 the factorization (3.6) and the formula (3.7) are true by
Theorem 3.1, with µ̃1 := µ̃. Suppose our claim (3.6) is true for n. Since ρ := I(µ̃n)
is selfdecomposable, applying to it Theorem 3.1, we have ρ = ρ̃ ∗ I(ρ̃), where
ρ̃ has the Lévy exponent (I − J )J nΦ = J n(I − J )Φ, and thus it corresponds
to an (n + 1)-times s-selfdecomposable probability because, by Theorem 3.1,
(I − J )Φ is already s-selfdecomposable; then we apply n times the operator J ;
cf. the definition (3.5). Thus the factorization (3.6) holds for n + 1, which com-
pletes the proof of the first part of the theorem.

Similarly, applying inductively the decomposition (3.3) and using Lemma 2.1
(b), we get the formula (3.6). Thus the proof is complete. ¥
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