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Abstract. The main purpose of this paper is to establish the asymptotic
properties of the expectation and variance of periodogram for nonstationary,
almost periodically correlated time series. We expand our consideration to
the whole bifrequency square (0, 2π]2. We show the exact form of asymp-
totic covariance between two values of periodogram which are calculated
at different points. This result implies that periodogram is not consistent
in mean square sense for any point from bifrequency square (0, 2π]2. Fi-
nally, under the moment and α-mixing condition, we prove the consistency
of smoothed periodogram.
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1. INTRODUCTION

The concept of a class of periodically and almost periodically correlated (PC
and APC) stochastic processes and time series was firstly introduced by Gladyshev
[9], [10] and Hurd [12]–[14]. Such a class of stochastic processes and time series
occurs in many fields including telecommunications (see [6], [7]), meteorology
(see [1], [17]), finance (see [2], [4], [20]), econometrics (see [21], [22]) and many
other fields (see [8]). Therefore, in the last years this field is a topic of the intensive
research.

It can be stated that the spectral theory of continuous time APC processes was
more broadly investigated than its discrete-time counterpart. Hurd [13] has shown
that a smoothed periodogram is consistent (in mean square sense) for a PC Gaus-
sian stochastic process. Leśkow [19] has shown that for φ-mixing APC stochastic
processes observed in continuous time a smoothed periodogram is consistent and
asymptotically normal. However, these results have not been applied yet to the time
series context. It is well known that the theory of PC and APC stochastic processes
observed in continuous time and the theory of PC and APC time series must be
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considered separately (for more details see [8]). This difference leads to other as-
sumptions concerning theorems for these processes and other techniques in proofs.
In the literature the PC and APC time series are often called cyclostationary (CS)
and almost cyclostationary (ACS). The definition of PC and APC time series is
the same as the definition of cyclostationary and almost cyclostationary ones in
the wide sense, respectively. The review of the theory of cyclostationarity for time
series and stochastic processes can be found in [8].

This paper is devoted to a study of properties of bias and variance of smoothed
and non-smoothed periodogram for APC time series {Xt : t ∈ Z}. In Section 3 we
focus our attention on the bias of a periodogram for all points from bifrequency
square (0, 2π]2. We show the rate of convergence of bias of periodogram for points
which belong to spectral mass location and beyond this set.

On the other hand, Section 4 is devoted to a study of second order properties of
periodogram and consistency of smoothed periodogram. We show the exact form
of asymptotic covariance between two values of periodogram which are calculated
at different points. Moreover, this result holds for a more general class of time
series than the APC case. The asymptotic form of variance of periodogram sug-
gests inconsistency of the periodogram on the whole bifrequency square (in mean
square sense). Finally, we show consistency (in mean square sense) of smoothed
periodogram in the APC case. Recall that in the literature the asymptotic properties
of the periodogram and its modification were considered only for points from spec-
tral mass location. It was done under the φ-mixing condition in the PC and APC
case (see [13], [16]) and under the α-mixing condition in the stationary case (see
[25]). It is innovative in this work that all results in Sections 3 and 4 are presented
for all points from bifrequency square (0, 2π]2. Moreover, in our considerations
we use the α-mixing condition instead of the φ-mixing condition. All proofs are
contained in the Appendix.

2. BASIC DEFINITIONS AND ASSUMPTIONS

In this section we recall basic definitions and introduce the notation that is
helpful for subsequent work. Let us start with the definition of an almost periodic
function taken from [3]. It will be used to introduce the definitions of PC and APC
time series (see [9], [14]).

DEFINITION 2.1. A function f(t) : Z → R is said to be almost periodic in
t ∈ Z if for any ε > 0 there exists an integer Lε > 0 such that among any Lε > 0
consecutive integers there is an integer pε > 0 such that

sup
t∈Z
|f(t + pε)− f(t)| < ε.

Notice that any periodic function is also almost periodic. A simple example of
an almost periodic function is f(t) = sin(ωt), where the argument t ∈ Z and ω is
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a frequency from the interval (0, 2π]. If we take an ω such that ω/2π is a rational
number, then easy calculations show that f(t) is a periodic function. If we take, for
example, ω =

√
2, then we get an almost periodic function which is not periodic.

DEFINITION 2.2. A second order real-valued time series {Xt : t ∈ Z} is
called almost periodically correlated (APC) if both mean µ(t) = E(Xt) and auto-
covariance functions B(t, τ) = cov(Xt, Xt+τ ) are almost periodic functions at t
for every τ ∈ Z. We say that the time series is periodically correlated (PC) if the
mean and autocovariance functions are periodic in t for every τ ∈Z.

In this paper we are interested in the second order structure of APC time series,
so it is assumed that our time series is zero-mean, i.e. µ(t) ≡ 0.

Take any τ ∈ Z. Then the autocovariance function B(·, τ) has the Fourier
representation (see [14])

(2.1) B(t, τ) ∼ ∑

λ∈Λτ

a(λ, τ)eiλt,

where a(λ, τ) are Fourier coefficients of the following form:

a(λ, τ) = lim
n→∞

1
n

n∑

j=1

B(j, τ)e−iλj

and for fixed τ the set Λτ ⊂ [0, 2π) is the set of all frequencies λ for which
a(λ, τ) 6= 0. Let Λ denote the sum Λ =

⋃
τ∈Z Λτ . Below we formulate some

assumptions regarding the set Λ and the summability of the Fourier coefficient
a(λ, τ). These assumptions are used in the next sections.

ASSUMPTION 2.1. Assume that for the APC time series {Xt : t ∈ Z}
(a) the set Λ is finite;
(b) there exists a real number C0 <∞ such that

∑∞
τ=−∞ |a(λ, τ)| < C0 for

any λ ∈ Λ;
(b′) there exists a real number C1 <∞ such that

∑∞
τ=−∞ |τ ||a(λ, τ)| < C1

for any λ ∈ Λ.

Notice that under Assumption 2.1 (a) the Fourier representation (2.1) becomes
equality and the set Λτ can be replaced by Λ. Moreover, it is easy to see that
Assumption 2.1 (b′) implies (b).

Let us introduce the frequency domain theory for APC time series. We start
from the assumption that our APC time series {Xt : t ∈ Z} is harmonizable, so it
can be represented as a stochastic integral

Xt =
2π∫
0

eiξtZ(dξ),

where {Z(ξ) : 0 < ξ ¬ 2π} is a zero-mean complex-valued random process. Then
a signed measure defined on the bifrequency plane (0, 2π]2 as R

(
(a, b]× (c, d]

)
=
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E
[(

Z(b)− Z(a)
)(

Z(d)− Z(c)
)]

, where 0 < a ¬ b ¬ 2π, 0 < c ¬ d ¬ 2π, has
a support contained in the set S of parallel lines:

S =
⋃

λ∈Λ
{(ξ1, ξ2) ∈ (0, 2π]2 : ξ2 = ξ1 − λ}.

Gladyshev [9] has shown that all PC time series are harmonizable. Moreover,
for the PC case the set Λ is finite and is contained in the set {λ = 2kπ/T, k =
0, 1, 2, . . . , T − 1}. But this property does not hold for the APC case.

The Fourier coefficients {a(λ, τ) : λ ∈ Λ} are Fourier transforms of complex
measures rλ(·):

a(λ, τ) =
2π∫
0

eiξτrλ(dξ)

(see [13]), where the measure rλ can be identified with the restriction of the signed
measure R(·, ·) to the line ξ2 = ξ1 − λ. Assume in addition that for any λ ∈ Λ
there exists a spectral density function gλ(·) such that

(2.2) a(λ, τ) =
2π∫
0

eiξτgλ(ξ)dξ and gλ(ν) =
1
2π

∞∑

τ=−∞
a(λ, τ)e−iντ .

Notice that, under Assumption 2.1 (b) there exists a complex density function sat-
isfying (2.2) for any λ ∈ Λ.

Let us recall definitions of Fourier transform and periodogram for APC time
series. Assume that we have a sample {X1, X2, . . . , Xn} from APC time series
{Xt : t ∈ Z}. Denote by In(ν) = (2πn)−1/2

∑n
t=1 Xte

−iνt the Fourier transform
at point ν ∈ R. Then the bifrequency periodogram P̂n(ν, ω) computed at point
(ν, ω) ∈ R2 takes the form P̂n(ν, ω) = In(ν)In(ω), where z denotes the conjuga-
tion of the complex number z. Denote by Pn(ν, ω) the expectation value of bifre-
quency periodogram. It will be shown later that for any point (ν, ω) ∈ (0, 2π]2 the
limit limn→∞ Pn(ν, ω) exists. Denote such a limit by P (ν, ω).

Notice that the periodogram P̂n(ν, ω) is a periodic function at ν and at ω with
the same period equal to 2π. Therefore, we study the properties of periodogram
for (ν, ω) ∈ (0, 2π]2.

Now we introduce the well-known definition of α-mixing sequence. The the-
oretical background for α-mixing time series can be found, for example, in [5].

DEFINITION 2.3. The time series {X(t) : t ∈ Z} is called α-mixing (or strong-
ly mixing) if α(s)→ 0 for s→∞, where

α(s) = sup
t∈Z

sup
A∈FX(−∞,t)
B∈FX(t+s,∞)

|P (A ∩B)− P (A)P (B)|

and FX(t1, t2) stands for the σ-algebra generated by {X(t) : t1 ¬ t ¬ t2}.
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In the remark below we show the connection between Assumption 2.1 and
the α-mixing sequence, which corresponds to our time series {Xt : t ∈ Z}. The
appropriate summability of the α-mixing sequence is assumed in Section 4 instead
of Assumption 2.1 (b) and (b′).

REMARK 2.1. Let α(·) be an α-mixing sequence for the time series {Xt : t ∈
Z}. If we assume that there exists a real number δ > 0 such that supt∈Z ‖Xt‖2+δ<
∆ <∞ and

(2.3)
∞∑

k=1

αδ/(2+δ)(k) <∞,

then the assumption (b) holds. If instead of the condition (2.3) we assume that

∞∑

k=1

kαδ/(2+δ)(k) <∞,

then the assumption (b′) holds.

This follows from the inequality

(2.4) |a(λ, τ)| ¬ 8∆2αδ/(2+δ)(|τ |),

which is given by the estimation

|a(λ, τ)| = lim
n→∞

∣∣∣∣
1
n

n∑

j=1

B(j, τ)e−iλj

∣∣∣∣ ¬ lim
n→∞

1
n

n∑

j=1

|B(j, τ)|

¬ lim
n→∞

1
n

n∑

j=1

| cov(Xj , Xj+τ )|,

and Lemma 6.1 in the Appendix.

3. ASYMPTOTIC PROPERTIES OF THE BIAS OF A PERIODOGRAM

In this section we study asymptotic properties of the bias of a periodogram
for APC time series. We start with showing that for any point (ν, ω) 6∈ S the ab-
solute value of the expectation of periodogram is bounded by O(n−1) times some
function that depends on point (ν, ω).

THEOREM 3.1. Let {X1, X2, . . . , Xn} be a sample from zero-mean APC time
series {Xt : t ∈ Z}. Suppose that Assumptions 2.1 (a) and (b) hold. Then for any
(ν, ω) ∈ (0, 2π]2 such that (ν, ω) 6∈ S we have

|Pn(ν, ω)| ¬ D(ω − ν)C0|Λ|
2πn

,
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where |Λ| is the power of the set Λ and D(·) is a function which is defined on the
complement of the set Λ and has the following form:

D(α) = max
λ∈Λ
{2/

√
2− 2 cos(λ− α)}.

The result above shows the rate of convergence to zero for expectation of a
periodogram on the complement of the support set S. For our subsequent consid-
erations it will be also important to examine the convergence of Pn(ν, ω) for points
from the support set S. The result below provides the answer to such a question.

THEOREM 3.2. Assume that we have a sample {X1, X2, . . . , Xn} from zero-
mean APC time series {Xt : t ∈ Z}. Then, under Assumptions 2.1 (a) and (b), for
any |λ| ∈ Λ and (ν, ν − λ) ∈ (0, 2π]2

Pn(ν, ν − λ) = gλ(ν) + o(1).

If Assumptions 2.1 (a) and (b′) hold, then for any |λ| ∈ Λ and (ν, ν − λ) ∈ (0, 2π]2

Pn(ν, ν − λ) = gλ(ν) + O(n−1)C1.

4. ASYMPTOTIC VARIANCE OF THE PERIODOGRAM AND CONSISTENT ESTIMATES

The first theorem in this section concerns the exact form of asymptotic co-
variance between two values of periodogram. This form suggests inconsistency of
periodogram in mean square sense for a wider class of time series than APC, that is,
those mentioned in Remark 4.1. Consistency is proved for smoothed periodogram
in Theorem 4.2. All results hold under the mixing and moment condition.

THEOREM 4.1. Let {Xt : t ∈ Z} be a zero-mean, APC and α-mixing time
series for which Assumption 2.1 (a) holds. Assume that there exists a real number
δ > 0 such that

(i) supt∈Z ‖Xt‖6+3δ ¬ ∆ <∞;
(ii)

∑∞
k=1 k2α(k)δ/(2+δ) ¬ K <∞.

Then

(4.1) lim
n→∞ cov

(
P̂n(ν1, ω1), P̂n(ν2, ω2)

)

= P (ν1, ν2)P (ω1, ω2) + P (ν1, 2π − ω2)P (ν2, 2π − ω1)

for any (ν1, ω1), (ν2, ω2) ∈ (0, 2π]2.

Now we formulate the corollary concerning the asymptotic variance of the
periodogram.
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COROLLARY 4.1. Assume that all the assumptions of Theorem 4.1 hold. Then
for any (ν, ω) ∈ (0, 2π]2 we have

lim
n→∞ var

(
P̂n(ν, ω)

)
= g0(ν)g0(ω) + |P (ν, 2π − ω)|2.

If we assume that

g0(ν)g0(ω) + |P (ν, 2π − ω)|2 > 0 for some (ν, ω) ∈ (0, 2π]2,

then the above corollary implies inconsistency of the estimator P̂n(ν, ω) in mean
square sense. If we assume that

g0(ξ) > 0 for any ξ ∈ (0, 2π],

then the estimator P̂n(ν, ω) is inconsistent for any point (ν, ω) ∈ (0, 2π]2.
To obtain the consistent estimator of P (ν, ω) we use the well-known technique

based on smoothing operation. Let {X1, X2, . . . , Xn} be a sample from the APC
time series {Xt : t ∈ Z}. Consider the following class of smoothed estimators of
P (ν, ω):

(4.2) Ĝn(ν, ω) =
1

2πn

n∑

t=1

n∑

s=1

Kn(s− t)XtXse
−iνteiωs,

where Kn(·) is a lag window function such that Kn(τ) = KLn(τ) = 0 holds for
|τ | > Ln, τ ∈ Z, and Ln is a sequence of positive integers tending to infinity
with n. Moreover, we assume that Ln/n→ 0. This estimator was first introduced
by Grenander and Rosenblatt in [11] for stationary time series in case ν = ω. The
first and second order properties of this estimator in stationary case can be found
in [24] and [25].

To prove consistency for the estimator (4.2) we take the following assumption
in this work:

ASSUMPTION 4.1. Assume that
(A1) |Kn(τ)| ¬ M <∞, where M is a constant which is independent of n

and τ ;
(A2) there exists a sequence {an} of positive integers such that an ¬ Ln,

an →∞ and
sup
|τ |¬an

|Kn(τ)− 1| → 0.

The following theorem concerns consistency (in mean square sense) of the
estimator (4.2) for APC case and for any (ν, ω) ∈ (0, 2π]2.

THEOREM 4.2. Let {X1, X2, . . . , Xn} be a sample from zero-mean, APC and
α-mixing time series {Xt : t ∈ Z}. Assume that there exists a real number δ > 0
such that:
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(i) supt∈Z ‖Xt‖4+2δ¬ ∆1 <∞;
(ii)

∑∞
k=0 α(k)δ/(2+δ) ¬ K1 <∞.

Let Kn(·) be a lag window such that Assumption 4.1 holds. Assume that the se-
quence Ln, corresponding to the lag window Kn(·), has the property L3

n/n→ 0,
where Ln → ∞ and n → ∞. Then for any point (ν, ω) ∈ (0, 2π]2 the estima-
tor (4.2) is consistent for P (ν, ω) in mean square sense, which means that
E|Ĝn(ν, ω)− P (ν, ω)|2 −→ 0 for n→∞.

REMARK 4.1. Notice that in Theorem 4.1 it is sufficient to assume that the
limit limn→∞ Pn(ν, ω) exists for any (ν, ω) ∈ (0, 2π]2, instead of the assumption
that we have in the APC case (see the proof of this theorem). Corollary 4.1 is
also true under this weaker assumption. We need only write P (ν, ν) instead of
g0(ν). Therefore, these results can be used for the class of time series which are
not APC. One of the examples of such time series is the class of time series which
are harmonizable but not APC.

REMARK 4.2. Notice that Assumptions 4.1 (A1) and (A2) hold for the fol-
lowing windows:

– Bartlett’s window

Kn(τ) = (1− |τ |/Ln)I(|τ | ¬ Ln),

– “truncated periodogram” window

Kn(τ) = I(|τ | ¬ Ln),

– rectangular window

Kn(τ) =

{ sin(πτ/Ln)
πτ/Ln

I(|τ | ¬ Ln), τ 6= 0,

1, τ = 0,

– general Tukey window

Kn(τ) =
(
1− 2a + 2a cos(πτ/Ln)

)
I(|τ | ¬ Ln), a ∈ R,

and other windows which are presented in [24] for stationary time series. Easy
calculations show that for the above lag window functions Kn(·) the condition
(A1) holds for M = 1 and the condition (A2) holds for an = [

√
Ln], where [x]

denotes the integer part of a real number x.

5. CONCLUSIONS

In this work we were focused on consistency of the periodogram and its mod-
ification in mean square sense. The theorems contained in Section 3 state about the
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rate of convergence of the bias of a periodogram in two cases. First we concentrate
attention on convergence beyond the support S and then we supplement consider-
ations to the case of points from the support S. Section 4 presents inconsistency
of the periodogram in mean square sense for all points from bifrequency square
(0, 2π]2. We show that this result holds for a more general class of time series
than APC case. Finally, the consistent form of the estimator is considered for an
α-mixing APC time series. Notice that the problem of consistency of resampling
methods is not applied yet for PC and APC time series in frequency domain. If
we use bifrequency square for testing if time series is stationary, then we need to
know the properties of periodogram on the whole square (0, 2π]2. Therefore, the
results from Sections 3 and 4 play an important role for considering theoretical
background of these graphical tests.

6. APPENDIX

LEMMA 6.1 (Politis et al. [23]). Let {Xt : t ∈ Z} be a random sequence with
corresponding α-mixing sequence α(·). Let the random variables ξ and ζ beFn−∞-
and F∞n+k-measurable, respectively, with ‖ξ‖p < ∞ and ‖ζ‖q < ∞ for some
p, q > 1 such that 1/p + 1/q < 1. Then

| cov(ξ, ζ)| ¬ 8‖ξ‖p‖ζ‖qα1−1/p−1/q(k).

LEMMA 6.2. Let {Xt : t ∈ Z} be a zero-mean, APC time series such that
Assumptions 2.1 (a) and (b) hold. Then for any m ∈ N and τ, q ∈ Z we have the
following inequalities:

(i)
∣∣

q+m∑

j=q+1

B(j, τ)e−iαj
∣∣ ¬ D(α)

∑

λ∈Λ
|a(λ, τ)| ¬ D(α)C0|Λ| <∞,

where α 6∈ Λ and D(α) = maxλ∈Λ{2/
√

2− 2 cos(λ− α)};

(ii)
∣∣∣∣a(α, τ)− 1

m

q+m∑

j=q+1

B(j, τ)e−iαj

∣∣∣∣ ¬ B
1
m

∑

λ∈Λ
λ6=α

|a(λ, τ)| ¬ B

m
C0|Λ| <∞,

where α ∈ Λ and

B = max
λ1 6=λ2

(λ1,λ2)∈Λ×Λ

{2/
√

2− 2 cos(λ1 − λ2)}.
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P r o o f o f L e m m a 6.2. For α 6∈ Λ easy calculations give

∣∣
q+m∑

j=q+1

B(j, τ)e−iαj
∣∣ =

∣∣
q+m∑

j=q+1

∑

λ∈Λ
a(λ, τ)eiλje−iαj

∣∣ =
∣∣ ∑

λ∈Λ
a(λ, τ)

q+m∑

j=q+1

ei(λ−α)j
∣∣

=
∣∣∣∣

∑

λ∈Λ
a(λ, τ)

ei(λ−α)(q+1)(1− ei(λ−α)m)
1− ei(λ−α)

∣∣∣∣ ¬
∑

λ∈Λ

|a(λ, τ)|Cm(λ− α),

where Cm(λ− α) = |(1− ei(λ−α)m)/(1− ei(λ−α))|. The sequence Cm(λ− α) is
bounded by

Cm(λ− α) =
∣∣∣∣
1− ei(λ−α)m

1− ei(λ−α)

∣∣∣∣ ¬
2√

2− 2 cos(λ− α)
¬ D(α)

for any λ ∈ Λ. This completes the proof of the inequalities (i).
If we assume that α ∈ Λ, then similar steps as before give

∣∣∣∣a(α, τ)− 1
m

m+q∑

j=q+1

B(j, τ)e−iαj

∣∣∣∣ =
∣∣∣∣
1
m

m+q∑

j=q+1

∑

λ∈Λ
λ 6=α

a(λ, τ)eiλje−iαj

∣∣∣∣

=
∣∣∣∣

∑

λ∈Λ
λ 6=α

a(λ, τ)
1
m

q+m∑

j=q+1

ei(λ−α)j

∣∣∣∣ ¬
1
m

∑

λ∈Λ
λ6=α

|a(λ, τ)|Cm(λ−α) ¬ B

m

∑

λ∈Λ
λ 6=α

|a(λ, τ)|,

where
B = max

λ1 6=λ2
(λ1,λ2)∈Λ×Λ

{2/
√

2− 2 cos(λ1 − λ2)}.

This completes the proof. ¥

LEMMA 6.3 (presented without proof in Kunsch [18] for stationary case). Let
{Xt : t ∈ Z} be a zero-mean and α-mixing time series. Assume that there exists
a real number δ > 0 such that

(i) supt∈Z ‖Xt‖6+3δ ¬ ∆ <∞;

(ii)
∑∞

k=0 k2αδ/(2+δ)(k) ¬ K <∞.
Then for any s ¬ t ¬ u ¬ v

|E(XsXtXuXv)− E(XsXt)E(XuXv)−E(XsXu)E(XtXv)

− E(XsXv)E(XtXu)| ¬ 32∆4αδ/(2+δ)(k),

where k = max{t− s, u− t, v − u}.
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P r o o f o f L e m m a 6.3. Notice that using repeatedly the Hölder inequal-
ity we get

‖XsXtXu‖2+δ =
(
E(|Xs|2+δ|XtXu|2+δ)

)1/(2+δ)

¬ ‖Xs‖6+3δ

(
E|XtXu|3(2+δ)/2

)2/(3(2+δ))

¬ ‖Xs‖6+3δ‖Xt‖6+3δ‖Xu‖6+3δ ¬ ∆3,

(6.1)

and

‖XsXt‖2+δ =
(
E(|Xs|2+δ|Xt|2+δ)

)1/(2+δ)

¬ ‖Xs‖4+2δ‖Xt‖4+2δ ¬ ‖Xs‖6+3δ‖Xt‖6+3δ ¬ ∆2

(6.2)

for any s, t, u ∈ Z. Moreover,

|cov(Xs, Xt)| = |E(XsXt)| ¬ E|XsXt| ¬ ‖Xs‖2‖Xt‖2
¬ ‖Xs‖6+3δ‖Xt‖6+3δ ¬ ∆2

(6.3)

for any s, t ∈ Z, which follows from the Jensen and Hölder inequalities. From the
definition of α-mixing sequence we get

(6.4) α(k1) ¬ α(k2) ¬ 1

for any integers k1, k2 such that 0 ¬ k2 ¬ k1. Let us consider the following cases:

Case 1. Assume that k = |t− s|. Then using Lemma 6.1 and the inequalities
(6.1), (6.3), (6.4) we get

|E(XsXtXuXv)−E(XsXt)E(XuXv)− E(XsXu)E(XtXv)
− E(XsXv)E(XtXu)|

= |cov(Xs, XtXuXv)− E(XsXt)E(XuXv)−E(XsXu)E(XtXv)
− E(XsXv)E(XtXu)|
¬ |cov(Xs, XtXuXv)|+ |cov(Xs, Xt)| |cov(Xu, Xv)|

+ |cov(Xs, Xu)| |cov(Xt, Xv)|+ |cov(Xs, Xv)| |cov(Xt, Xu)|
¬ 8‖Xs‖2+δ‖XtXuXv‖2+δ αδ/(2+δ)(k) +

(
8‖Xs‖2+δ‖Xt‖2+δ αδ/(2+δ)(k)

)
∆2

+
(
8‖Xs‖2+δ‖Xu‖2+δ αδ/(2+δ)(k)

)
∆2

+
(
8‖Xs‖2+δ‖Xv‖2+δ αδ/(2+δ)(k)

)
∆2

¬ 32∆4αδ/(2+δ)(k).
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Case 2. Assume that k = |u − t|. Then using Lemma 6.1 and inequal-
ities (6.2)–(6.4) we get

|E(XsXtXuXv)− E(XsXt)E(XuXv)− E(XsXu)E(XtXv)
− E(XsXv)E(XtXu)|

= |cov(XsXt, XuXv)−E(XsXu)E(XtXv)−E(XsXv)E(XtXu)|
¬ |cov(XsXt, XuXv)|+ |cov(Xs, Xu)| |cov(Xt, Xv)|

+ |cov(Xs, Xv)| |cov(Xt, Xu)|
¬ 8‖XsXt‖2+δ‖XuXv‖2+δ αδ/(2+δ)(k)+

(
8‖Xs‖2+δ‖Xu‖2+δ αδ/(2+δ)(k)

)
∆2

+
(
8‖Xs‖2+δ‖Xv‖2+δ αδ/(2+δ)(k)

)
∆2 ¬ 24∆4αδ/(2+δ)(k).

Case 3. Assume that k = |v − u|. Using analogous steps to those in Case 1
we obtain

|E(XsXtXuXv)− E(XsXt)E(XuXv)−E(XsXu)E(XtXv)

−E(XsXv)E(XtXu)| ¬ 32∆4αδ/(2+δ)(k).

This completes the proof of lemma. ¥

P r o o f o f T h e o r e m 3.1. Changing the variables and using a simple de-
composition we get

|2πnPn(ν, ω)| = ∣∣ n∑

s=1

n∑

t=1

E(XsXt)e−iνseiωt
∣∣

=
∣∣ −1∑

u=−(n−1)

n∑

v=−(u−1)

B(v, u)e−iνuei(ω−ν)v +
n−1∑

u=1

n−u∑

v=1

B(v, u)e−iνuei(ω−ν)v

+
n∑

v=1

B(v, 0)ei(ω−ν)v
∣∣

¬ ∣∣ −1∑

u=−(n−1)

e−iνu
n∑

v=−(u−1)

B(v, u)ei(ω−ν)v
∣∣ +

∣∣ n−1∑

u=1

e−iνu
n−u∑

v=1

B(v, u)ei(ω−ν)v
∣∣

+
∣∣ n∑

v=1

B(v, 0)ei(ω−ν)v
∣∣

¬
−1∑

u=−(n−1)

∣∣ n∑

v=−(u−1)

B(v, u)ei(ω−ν)v
∣∣ +

n−1∑

u=1

∣∣ n−u∑

v=1

B(v, u)ei(ω−ν)v
∣∣

+
∣∣ n∑

v=1

B(v, 0)ei(ω−ν)v
∣∣.
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Hence, using Assumptions 2.1 (a), (b) and Lemma 6.2 (i) we get

|2πnPn(ν, ω)| ¬ D(ω − ν)
−1∑

u=−(n−1)

∑

λ∈Λ
|a(λ, u)|+ D(ω − ν)

n−1∑

u=1

∑

λ∈Λ
|a(λ, u)|

+ D(ω − ν)
∑

λ∈Λ

|a(λ, 0)| = D(ω − ν)
n−1∑

u=−(n−1)

∑

λ∈Λ

|a(λ, u)| < D(ω − ν)C0|Λ|,

which completes the proof. ¥

P r o o f o f T h e o r e m 3.2. Notice that

Pn(ν, ν − λ) =
1

2πn

n∑

s=1

n∑

t=1

E(XsXt)e−iλte−iν(s−t)

=
1

2πn

n∑

j=1

n−j∑

τ=1−j

B(j, τ)e−iλje−iντ

=
1

2πn

n∑

j=1

n−j∑

τ=1−j

∑

γ∈Λ
a(γ, τ)ei(γ−λ)je−iντ

=
1

2πn

n∑

j=1

n−j∑

τ=1−j

a(λ, τ)e−iντ +
1

2πn

∑

γ 6=λ

n∑

j=1

n−j∑

τ=1−j

a(γ, τ)ei(γ−λ)je−iντ

=
1
2π

∑

|τ |<n

(
1− |τ |

n

)
a(λ, τ)e−iντ +

1
2πn

∑

γ 6=λ

n∑

j=1

n−j∑

τ=1−j

a(γ, τ)ei(γ−λ)je−iντ .

Denote the first and the second term of the last equality by cn and εn, respectively.
Notice that cn is a Cesáro means for the patrial sum sn =

∑
|τ |<n a(λ, τ)e−iντ .

Therefore, under Assumption 2.1 (b), cn goes to gλ(ν). If we assume in addition
that Assumption 2.1 (b′) holds then the term cn goes to gλ(ν) with the rate O(n−1),
which follows immediately from the decomposition

cn =
∑

|τ |<n

a(λ, τ)e−iντ − 1
n

∑

|τ |<n

|τ |a(λ, τ)e−iντ

= gλ(ν)− ∑

|τ |n

a(λ, τ)e−iντ − 1
n

∑

|τ |<n

|τ |a(λ, τ)e−iντ

and the inequalities

∣∣ ∑

|τ |n

a(λ, τ)e−iντ
∣∣ ¬ 1

n

∑

|τ |n

n|a(λ, τ)| ¬ 1
n

∑

|τ |n

|τ ||a(λ, τ)| ¬ C1

n
,
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∣∣∣∣
1
n

∑

|τ |<n

|τ |a(λ, τ)e−iντ

∣∣∣∣ ¬
1
n

∑

|τ |<n

|τ ||a(λ, τ)| ¬ C1

n
.

The second term εn is equal to O(n−1), which follows immediately from Assump-
tions 2.1 (a), (b) and the same steps as in the proof of Lemma 6.2 (i). This remark
completes the proof. ¥

P r o o f o f T h e o r e m 4.1. Notice that

(2πn)2
∣∣cov (

P̂n(ν1, ω1), P̂n(ν2, ω2)
)− Pn(ν1, ν2)Pn(ω1, ω2)

− Pn(ν1, 2π − ω2)Pn(ν2, 2π − ω1)
∣∣

=
∣∣ n∑

s=1

n∑

t=1

n∑

u=1

n∑

v=1

cov(XsXt, XuXv)e−i(ν1s−ω1t−ν2u+ω2v)

−
n∑

s=1

n∑

u=1

E(XsXu)e−i(ν1s−ν2u)
n∑

t=1

n∑

v=1

E(XtXv)e−i(−ω1t+ω2v)

−
n∑

s=1

n∑

v=1

E(XsXv)e−i(ν1s+ω2v)
n∑

t=1

n∑

u=1

E(XtXu)e−i(−ω1t−ν2u)
∣∣

=
∣∣ n∑

s=1

n∑

t=1

n∑

u=1

n∑

v=1

(
E(XsXtXuXv)− E(XsXt)E(XuXv)

)
e−i(ν1s−ω1t−ν2u+ω2v)

−
n∑

s=1

n∑

t=1

n∑

u=1

n∑

v=1

E(XsXu)E(XtXv)e−i(ν1s−ω1t−ν2u+ω2v)

−
n∑

s=1

n∑

t=1

n∑

u=1

n∑

v=1

E(XsXv)E(XtXu)e−i(ν1s−ω1t−ν2u+ω2v)
∣∣

¬
n∑

s=1

n∑

t=1

n∑

u=1

n∑

v=1

|E(XsXtXuXv)−E(XsXt)E(XuXv)−E(XsXu)E(XtXv)

−E(XsXv)E(XtXu)|
¬ 4!

∑

1¬s¬t¬u¬v¬n

|E(XsXtXuXv)−E(XsXt)E(XuXv)−E(XsXu)E(XtXv)

−E(XsXv)E(XtXu)|.

Using now Lemma 6.3 we get

Un(ν, ω) = (2πn)2
∣∣cov (

P̂n(ν1, ω1), P̂n(ν2, ω2)
)− Pn(ν1, ν2)Pn(ω1, ω2)

− Pn(ν1, 2π − ω2)Pn(ν2, 2π − ω1)
∣∣

¬ 4! 32∆4 ∑

1¬s¬t¬u¬v¬n

αδ/(2+δ)(max{t− s, u− t, v − u})

¬ 4! 32∆4
n−1∑

k=0

|an,k|αδ/(2+δ)(k),
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where |an,k| is a power of the set an,k and

an,k =
{
(s, t, u, v) ∈ N4 : 1¬s¬ t¬u¬v¬n, max{t− s, u− t, v − u} = k

}
.

It can be shown that |an,k| ¬ 3(n − k)4k4k for k > 0 and |an,k| = n for k = 0.
Therefore,

Un(ν, ω) ¬ 4! 32∆4
n−1∑

k=1

3(n− k)4k4k αδ/(2+δ)(k) + 4! 32∆4n

¬ 4! 1536∆4n
n−1∑

k=1

k2 αδ/(2+δ)(k) + 4! 32∆4n ¬ 4! 32∆4n(48K + 1).

Hence,

(6.5) lim
n→∞

∣∣ cov
(
P̂n(ν1, ω1), P̂n(ν2, ω2)

)− Pn(ν1, ν2)Pn(ω1, ω2)

− Pn(ν1, 2π − ω2)Pn(ν2, 2π − ω1)
∣∣ = 0.

Notice that, by Remark 2.1, all the assumptions of Theorems 3.1 and 3.2 hold. So,
the limit of the sequence Pn(ν1, ν2)Pn(ω1, ω2)−Pn(ν1, 2π−ω2)Pn(ν2, 2π − ω1)
exists. Therefore, we may conclude that

(6.6) lim
n→∞ cov

(
P̂n(ν1, ω1), P̂n(ν2, ω2)

)

= P (ν1, ν2)P (ω1, ω2) + P (ν1, 2π − ω2)P (ν2, 2π − ω1).

This completes the proof. ¥

P r o o f o f C o r o l l a r y 4.1. The corollary follows immediately from The-
orem 4.1. ¥

P r o o f o f T h e o r e m 4.2. Let us consider the following decomposition:

(6.7) Ĝn(ν, ω) = Ĝ∗n(ν, ω)− R̂n(ν, ω),

where

(6.8) Ĝ∗n(ν, ω) =
1

2πn

Ln∑

τ=−Ln

n∑

j=1

Kn(τ)XjXj+τe
−i(ν−ω)je−iντ

and

R̂n(ν, ω) =
1

2πn

−1∑

τ=−Ln

−τ∑

j=1

Kn(τ)XjXj+τe
−i(ν−ω)je−iντ

+
1

2πn

Ln∑

τ=1

n∑

j=n−τ+1

Kn(τ)XjXj+τe
−i(ν−ω)je−iντ .

(6.9)
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By the inequality |z1 + z2|2 ¬ 2(|z1|2 + |z2|2), which is true for any complex-
valued numbers z1, z2, we get

E|Ĝn(ν, ω)− P (ν, ω)|2 = E|Ĝ∗n(ν, ω)− P (ν, ω)− R̂n(ν, ω)|2
¬ 2

(
E|Ĝ∗n(ν, ω)− P (ν, ω)|2 + E|R̂n(ν, ω)|2).

(6.10)

Therefore, to show the convergence Ĝn(ν, ω) L2−→ P (ν, ω) it is sufficient to prove

that Ĝ∗n(ν, ω) L2−→ P (ν, ω) and R̂n(ν, ω) L2−→ 0. We split the proof into two steps.

Step 1. In the first step we show that R̂n(ν, ω) L2−→ 0. Notice that from the
Minkowski inequality, the equation |z|2 = |zz|, which is true for any complex
number z, and from Assumption 4.1 (A1) we have

√
E|R̂n(ν, ω)|2 ¬

∥∥∥∥
1

2πn

−1∑

τ=−Ln

Kn(τ)
−τ∑

j=1

XjXj+τe
−i(ν−ω)je−iντ

∥∥∥∥
2

+
∥∥∥∥

1
2πn

Ln∑

τ=1

Kn(τ)
n∑

j=n−τ+1

XjXj+τe
−i(ν−ω)je−iντ

∥∥∥∥
2

¬ M

2πn

( −1∑

τ1=−Ln

−τ1∑

j1=1

−1∑

τ2=−Ln

−τ2∑

j2=1

E|Xj1Xj1+τ1Xj2Xj2+τ2 |
)1/2

+
M

2πn

( Ln∑

τ1=1

n∑

j1=n−τ1+1

Ln∑

τ2=1

n∑

j2=n−τ2+1

E|Xj1Xj1+τ1Xj2Xj2+τ2 |
)1/2

.

In the next step we use the inequality

E|Xj1Xj1+τ1Xj2Xj2+τ2 | ¬ ‖Xj1‖4‖Xj1+τ1‖4‖Xj2‖4‖Xj2+τ2‖4 ¬ ∆4,

which is true for any j1, j2, τ1, τ2 ∈ Z and follows from the Hölder inequality.
We get

√
E|R̂n(ν, ω)|2 ¬ M∆2

2πn

(( −1∑

τ1=−Ln

−1∑

τ2=−Ln

|τ1τ2|
)1/2 +

( Ln∑

τ1=1

Ln∑

τ2=1

|τ1τ2|
)1/2

)

¬ M∆2

2πn
2

Ln∑

τ=1

|τ | = M∆2Ln(Ln + 1)
2πn

→ 0 as n→∞.

Consequently, R̂n(ν, ω) L2−→ 0.

Step 2. In this step we show that Ĝ∗n(ν, ω) L2−→ P (ν, ω). To see this we prove
that the absolute value of the bias term and the variance of the estimator Ĝ∗n(ν, ω)
tends to zero as n→∞. This follows from the equation

(6.11) E|Zn − z|2 = var(Zn) + |E(Zn)− z|2,
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which is true for any complex-valued random sequence Zn and a complex num-
ber z. Let us consider two cases for the bias term.

Case 1. Take any (ν, ω) ∈ (0, 2π]2 such that ν − ω = λ and λ ∈ Λ. Then we
obtain

2π
∣∣E(

Ĝ∗n(ν, ω)
)− gλ(ν)

∣∣

=
∣∣∣∣

Ln∑

τ=−Ln

Kn(τ)
(

1
n

n∑

j=1

B(j, τ)e−iλj

)
e−iντ −

∞∑

τ=−∞
a(λ, τ)e−iντ

∣∣∣∣

¬
∣∣∣∣

Ln∑

τ=−Ln

(
Kn(τ)

1
n

n∑

j=1

B(j, τ)e−iλj

)
e−iντ−

Ln∑

τ=−Ln

a(λ, τ)e−iντ

∣∣∣∣ +
∑

|τ |>Ln

|a(λ, τ)|

¬
∣∣∣∣

Ln∑

τ=−Ln

((
Kn(τ)

1
n

n∑

j=1

B(j, τ)e−iλj

)
− a(λ, τ)

)
e−iντ

∣∣∣∣ +
∑

|τ |>Ln

|a(λ, τ)|

¬
Ln∑

τ=−Ln

|Kn(τ)|
∣∣∣∣
(

1
n

n∑

j=1

B(j, τ)e−iλj

)
− a(λ, τ)

∣∣∣∣

+
Ln∑

τ=−Ln

∣∣(Kn(τ)− 1
)
a(λ, τ)

∣∣ +
∑

|τ |>Ln

|a(λ, τ)|.

Using Lemma 6.2 (ii) and (2.4) for the first term of the last inequality and (2.4) for
the second and third term we get

2π
∣∣E(

Ĝ∗n(ν, ω)
)−gλ(ν)

∣∣

¬ 8∆2
1B(|Λ| − 1)

n

Ln∑

τ=−Ln

|Kn(τ)|αδ/(2+δ)(|τ |)

+ 8∆2
1

Ln∑

τ=−Ln

|Kn(τ)− 1|αδ/(2+δ)(|τ |) + 16∆2
1

∞∑

τ=Ln+1

αδ/(2+δ)(τ)

¬ 8∆2
1B (|Λ| − 1)M 2K1

n
+ 8∆2

1

Ln∑

τ=−Ln

|Kn(τ)− 1|αδ/(2+δ)(|τ |) + 16∆2
1o(1)

= o(1) + 8∆2
1

Ln∑

τ=−Ln

|Kn(τ)− 1|αδ/(2+δ)(|τ |)

= o(1) + 8∆2
1

an∑

τ=−an

|Kn(τ)− 1|αδ/(2+δ)(|τ |)

+ 8∆2
1

∑

an<|τ |¬Ln

|Kn(τ)− 1|αδ/(2+δ)(|τ |)
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¬ o(1) + 8∆2
1 sup
|τ |¬an

|Kn(τ)− 1|
an∑

τ=−an

αδ/(2+δ)(|τ |)

+ 8∆2
1(M + 1)

∑

an<|τ |¬Ln

αδ/(2+δ)(|τ |)

¬ o(1) + 8∆2
1 sup
|τ |¬an

|Kn(τ)− 1| 2K1 + 8∆2
1(M + 1) o(1)→ 0 as n→∞,

where the last convergence follows from Assumption 4.1 (A2).

Case 2. Take any (ν, ω) ∈ (0, 2π]2 such that (ν, ω) 6∈ S. Then using Lem-
ma 6.2 (i) and inequality (2.4) we have

∣∣E(
Ĝ∗n(ν, ω)

)∣∣ ¬
Ln∑

τ=−Ln

|Kn(τ)|
∣∣∣∣

1
2πn

n∑

j=1

B(j, τ)e−i(ω−ν)j

∣∣∣∣

¬M
Ln∑

τ=−Ln

(
1

2πn
D(ν − ω)

∑

λ∈Λ

|a(λ, τ)|
)

¬ 8M∆2
1D(ν − ω)|Λ|

2πn

Ln∑

τ=−Ln

αδ/(2+δ)(|τ |) ¬ 8M∆2
1D(ν − ω)|Λ|

2πn
2K1 → 0

as n→∞. This completes the proof that the bias term tends to zero. Therefore, to
prove consistency in mean square sense for the estimator Ĝ∗n(ν, ω) it is sufficient
to show that variance of this estimator vanishes when n→∞. Notice that

∣∣var
(
Ĝ∗n(ν, ω)

)∣∣ ¬ M2

4π2n2

Ln∑

τ1=−Ln

Ln∑

τ2=−Ln

n∑

j1=1

n∑

j2=1

|cov(Xj1Xj1+τ1 , Xj2Xj2+τ2)|.

Define the following sets:

An = {(j1, j2) ∈ N2 : |j1 − j2| ¬ 2Ln, 1 ¬ j1 ¬ n, 1 ¬ j2 ¬ n},
A
′
n = {(j1, j2) ∈ N2 : |j1 − j2| > 2Ln, 1 ¬ j1 ¬ n, 1 ¬ j2 ¬ n},

and write c(τ1, τ2, j1, j2) = |cov(Xj1Xj1+τ1 , Xj2Xj2+τ2)|. Notice that using re-
peatedly the Jensen and Hölder inequalities we get

c(τ1,τ2, j1, j2)
¬ E|Xj1Xj1+τ1Xj2Xj2+τ2 |+ E|Xj1Xj1+τ1 |E|Xj2Xj2+τ2 |
¬ ‖Xj1‖4‖Xj1+τ1‖4‖Xj2‖4‖Xj2+τ2‖4

+ ‖Xj1‖2‖Xj1+τ1‖2‖Xj2‖2‖Xj2+τ2‖2 ¬ 2∆4
1

(6.12)

for any integers j1, τ1, j2, τ2. If we assume that |τ1| ¬ Ln, |τ2| ¬ Ln and (j1, j2) ∈
A
′
n, then using successively (2.4), the Hölder inequality and properties of α-mixing

sequence we get

(6.13) c(τ1, τ2, j1, j2) ¬ 8∆4
1α

δ/(2+δ)(|j1 − j2| − |τ1| − |τ2|).
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Simple decompositions and the inequalities (6.12) and (6.13) give

∣∣var
(
Ĝ∗n(ν, ω)

)∣∣ ¬ M2

4π2n2

Ln∑

τ1=−Ln

Ln∑

τ2=−Ln

( ∑

(j1,j2)∈An

+
∑

(j1,j2)∈A′n

)
c(τ1, τ2, j1, j2)

¬ M2

4π2n2

Ln∑

τ1=−Ln

Ln∑

τ2=−Ln

∑

(j1,j2)∈An

2∆4
1

+
M2

4π2n2

Ln∑

τ1=−Ln

Ln∑

τ2=−Ln

∑

(j1,j2)∈A′n

8∆4
1α

δ/(2+δ)(|j1 − j2| − |τ1| − |τ2|)

¬ M22∆4
1

4π2n2

Ln∑

τ1=−Ln

Ln∑

τ2=−Ln

(2Ln + 1)n

+
M28∆4

1

4π2n2

Ln∑

τ1=−Ln

Ln∑

τ2=−Ln

n−1∑

k=2Ln+1

∑

|j1−j2|=k

αδ/(2+δ)(|j1 − j2| − |τ1| − |τ2|)

¬ M22∆4
1(2Ln + 1)3n
4π2n2

+
M28∆4

1

4π2n2

Ln∑

τ1=−Ln

Ln∑

τ2=−Ln

n−1∑

k=2Ln+1

∑

|j1−j2|=k

αδ/(2+δ)(|j1 − j2| − 2Ln)

¬ o(1) +
M28∆4

1

4π2n2

Ln∑

τ1=−Ln

Ln∑

τ2=−Ln

n−2Ln−1∑

k=1

∑

|j1−j2|−2Ln=k

αδ/(2+δ)(k)

¬ o(1) +
M28∆4

1

4π2n2

Ln∑

τ1=−Ln

Ln∑

τ2=−Ln

n−2Ln−1∑

k=1

nαδ/(2+δ)(k)

¬ o(1) +
M28∆4

1

4π2n2
(2Ln + 1)2n

n−2Ln−1∑

k=1

αδ/(2+δ)(k)

¬ o(1) +
M28∆4

1

4π2n
(2Ln + 1)2K1 → 0 as n→∞.

This completes the proof of Step 2. ¥
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tecting and modeling periodic correlation in financial data, Phys. A 336 (2003), pp. 196–205.

[3] C. Corduneanu, Almost Periodic Functions, Interscience Publishers, Wiley, New York 1968.



324 Ł . Lenart
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