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Abstract. Let X(δ) be a Wishart process of dimension δ, with values
in the set of positive matrices of size m. We are interested in the large devi-
ations for a family of matrix-valued processes {δ−1X

(δ)
t , t ¬ 1} as δ tends

to infinity. The process X(δ) is a solution of a stochastic differential equa-
tion with a degenerate diffusion coefficient. Our approach is based upon the
introduction of exponential martingales. We give some applications to large
deviations for functionals of the Wishart processes, for example the set of
eigenvalues.
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1. INTRODUCTION

Let Zt be a Brownian matrix of size n × m (with i.i.d. real Brownian en-
tries). The m×m positive matrix Xt = Z ′tZt is called a Wishart process of dimen-
sion n. Here, the superscript ′ denotes the transpose of the matrix. In [1], Bru
began the study of Wishart processes and extended the definition of such processes
for non-integer dimension δ, by the solution of an SDE

(1.1) dXt =
√

Xt dBt + dB′t
√

Xt + δIm dt, X0 = x,

where B is an m×m matrix-valued Brownian motion, x ∈ S+
m the set of m×m

real symmetric non-negative matrices.
We recall a part of an existence theorem obtained in [1], Theorem 2:
If δ  m + 1, and x ∈ S̃+

m (the set of positive definite symmetric matrices),
then (1.1) has a unique strong solution in S̃+

m.
In fact, Bru (see [1], p. 739) proved that we can define a Wishart process of di-

mension δ  m + 1, starting from a degenerate condition x. This process satisfies
P [Xt ∈ S̃+

m] = 1 for all t > 0 and is the unique solution (in law) of (1.1). We also
refer to [4] where we undertook a deepest study of this matrix-valued diffusion, re-
lated to well-known properties of squared Bessel processes (i.e. Wishart processes
of size m = 1). Therefore, in the following, we shall allow x = 0.
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We shall look for a Large Deviation Principle (LDP) for the S̃+
m valued diffu-

sion with small diffusion coefficient:

(1.2) dXε
t = ε(

√
Xε

t dBt + dB′t
√

Xε
t ) + δIm dt, t ¬ T,

Xε
0 = x,

with δ > 0. By a scale change, Xε
t /ε2 is a solution of (1.1) for the dimension δ/ε2

and the initial condition x/ε2. According to the above existence theorem, for δ > 0
and ε small enough (ε ¬ ε0), (1.2) has a unique solution Xε

t ∈ S̃+
m for t > 0.

Note that this problem is equivalent to an LDP for the family of processes
(n−1X

(nδ)
t ; t ¬ T ), where X

(nδ)
t denotes a Wishart process of dimension nδ, start-

ing from nx as n→∞.
We stress that the size m is fixed and only the dimension n tends to∞; this is

outside the scope of the random matrix theory where, in general, both parameters
m, n tend to∞ so that m/n converges to a strictly positive constant. When m = 1,
(1.1) is the equation for the squared Bessel process (BESQ) of dimension δ. In that
case, it is well known that the equation (1.1) has a unique strong solution for x  0,
δ  0.

In a companion paper [5], we studied large deviations for BESQ and squared
Ornstein–Uhlenbeck processes, that is, for the scalar Wishart processes (m = 1).
Note that the diffusion coefficient in the BESQ equation is not Lipschitz and the
Freidlin–Wentzell theory does not apply directly (in the degenerate cases: x = 0
or δ = 0). We gave three approaches; the first one was based upon exponential
martingales, the second one uses the infinite divisibility of the law of BESQ pro-
cesses (and thus a Cramer theorem), and the third method is a consequence of
continuity of the Itô map for the Bessel equation (not square), a property proved
by McKean [9]. We also refer to Feng [6] for the study of an LDP for squares of
Ornstein–Uhlenbeck processes.

In the matrix case, due to the restriction on the dimension δ, the laws Qδ
x

of the Wishart processes are no more infinitely divisible. Moreover, we have no
analogue of the Bessel equation for the square root of a Wishart process. Thus, we
shall focus on the exponential martingale approach to extend the LDP in the matrix
case. Since the delicate point is for a degenerate initial condition, we shall assume
in the following that the initial condition is x = 0.

We denote by C0([0, T ]; S̃+
m) the space of continuous paths ϕt from [0, T ] to

S+
m such that ϕ0 = 0 and ϕt ∈ S̃+

m for t > 0, endowed with the supremum norm

‖ϕ‖ = sup
t∈[0,T ]

‖ϕt‖Sm ,

where ‖ · ‖Sm denotes any equivalent norm on the space of symmetric matrices of
size m. We also define

H0 = {ϕ ∈ C0([0, T ]; S̃+
m);

ϕ is absolutely continuous with respect to Lebesgue measure}.
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The main result of the paper is

THEOREM 1.1. Let δ > 0 and ε ¬ ε0. Then the family P ε of distributions
of (Xε

t ; t ∈ [0, T ]), a solution of (1.2), satisfies an LDP in C0([0, T ]; S̃+
m) with

speed ε2 and good rate function

(1.3) I(ϕ) =
1
8

T∫
0

Tr
(
kϕ(s)ϕ(s)kϕ(s)

)
ds, ϕ ∈ H0,

where kϕ(s) is the unique symmetric matrix, solution of the equation

(1.4) kϕ(s)ϕ(s) + ϕ(s)kϕ(s) = 2
(
ϕ̇(s)− δIm

)
for a.e. s > 0,

and I(ϕ) =∞ for ϕ /∈ H0.

REMARK 1.1. In the real case (m = 1), we obtain (see [5]),

I(ϕ) =
1
8

T∫
0

(
ϕ̇(s)− δ

)2

ϕ(s)
ds.

The outline of the paper is the following. In Section 2, we prove an expo-
nential tightness result for the distribution P ε of Xε. In Section 3, we prove Theo-
rem 1.1 using the approach of exponential martingales. In Section 4, we discuss the
Cramer’s approach, using the additivity of Wishart processes, when we put some
restriction on the parameter δ. In Section 5, we give some applications of the con-
traction principle to obtain an LDP for some functionals of the Wishart process.

2. EXPONENTIAL TIGHTNESS

We follow the same lines as in [5], Section 2. Since the paths of the Wishart
process are a.s. α-Hölderian for α < 1/2, we prove exponential tightness in the
space Cα

0 ([0, T ], S̃+
m) of α-Hölder continuous functions in C0([0, T ]; S̃+

m) endowed
with the norm

‖ϕ‖α = sup
0¬s 6=t¬T

‖ϕt − ϕs‖
|t− s|α ,

where ‖ · ‖ is a norm on S+
m. Since all the norms are equivalent, we shall choose a

suitable norm and we consider in this section ‖M‖ =
∑

1¬i,j¬m |Mij |.
PROPOSITION 2.1. Let α < 1/2. The family of distributions Pε of Xε is expo-

nentially tight in Cα
0 ([0, T ], S̃+

m), in scale ε2, i.e., for L > 0 there exists a compact
set KL in Cα such that

(2.1) lim sup
ε→0

ε2 ln P (Xε 6∈ KL) ¬ −L.
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P r o o f. Let us fix α′ ∈ (α, 1/2) and R > 0. The closed Hölder ball Bα′(0, R)
is a compact set of Cα

0 ([0, T ], S̃+
m). Thus it is enough to estimate P (‖Xε‖α′  R).

For simplicity, we assume T = 1. Then

‖Xε‖α′ ¬ ‖M ε‖α′ + δm,

where M ε is a martingale defined by

M ε
t = ε(

√
Xε

t dBt + dB′t
√

Xε
t ).

Bounds for ‖M ε‖α′ . We shall use the Garsia–Rodemich–Rumsey lemma
(see [12], p. 47) with Ψ(x) = exp(cε−2x)− 1 for some 0 < c < 1/2 and p(x) =
x1/2. Then

Ψ−1(y) =
ε2

c
log(1 + y).

The lemma asserts that if

1∫
0

1∫
0

Ψ
(‖M ε

t −M ε
s‖

p(|t− s|)
)

dsdt ¬ K,

then

‖M ε
t −M ε

s‖ ¬ 8
|t−s|∫

0

Ψ−1(4K/u2)dp(u).

This yields (see the same computations in [5]):

(2.2) P (‖M ε‖α′  R) ¬ P

( 1∫
0

1∫
0

exp
(

cε−2 ‖M ε
t −M ε

s‖
|t− s|1/2

)
dsdt  K + 1

)

with

K =
1
4

[
exp

((
cε−2R

8
−K2

)
− 4

)
− 1

]
and K2 = 2 sup

u∈[0,1]
u1/2−α′ log

1
u

.

Now, by Markov’s inequality,

(2.3) P (‖M ε‖α′  R) ¬ 1
K + 1

1∫
0

1∫
0

E

[
exp

(
cε−2 ‖M ε

t −M ε
s‖

|t− s|1/2

)]
dsdt.

Consequently, for a matrix M ,

exp(λ‖M‖) =
∏
i,j

exp(λ|Mij |) ¬
∏
i,j

[exp(λMij) + exp(−λMij)]

¬ m2 max[exp(λMij) + exp(−λMij)]

¬ m2 ∑

i,j

[exp(λMij) + exp(−λMij)].
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Thus,

E[exp(λ‖M ε
t −M ε

s‖)]
¬ m2∑

i,j

(
E

[
exp

(
λ
(
M ε

i,j(t)−M ε
i,j(s)

))]
+E

[
exp

(
−λ

(
M ε

i,j(t)−M ε
i,j(s)

))])

¬ 2m4 max
i,j

E[exp(2λ2〈M ε
i,j〉ts)],

where in the last inequality we use the exponential inequality for continuous mar-
tingales

E[exp(λZt)] ¬ E[exp(2λ2〈Z〉t)].
Now,

〈M ε
i,j〉ts = ε2

t∫
s

(
Xε

ii(u) + Xε
jj(u)

)
du

¬ ε2
t∫
s

Tr(Xε
u)du.

Let us set Y ε
u := Tr(Xε

u). Then Y ε
u is a squared Bessel process, a solution of the

following SDE:

(2.4)
dY ε

u = 2ε
√

Y ε
udβu + δm dt,

Y ε
0 = 0,

with β a real Brownian motion. Thus, we obtain

(2.5) E

[
exp

(
cε−2 ‖M ε

t −M ε
s‖

|t− s|1/2

)]
¬ 2m4

{
E

[
exp

(
2c2ε−2

t− s

t∫
s

Y ε
udu

)]}1/2

¬ 2m4

{
1

t− s

t∫
s

E[exp(2c2ε−2Y ε
u )] du

}1/2

(by Jensen’s inequality). Consequently, we get

(2.6) P (‖M ε‖α  R) ¬ 2m4

K + 1
{ sup

u∈[0,1]
E[exp(2c2ε−2Y ε

u )]}1/2,

where K + 1 = C exp(cRε−2/8), and C is a constant. Now,

E[exp(2c2ε−2Y ε
u )] = Qmδε−2

0 [exp(2c2Xu)],

where Qρ
x denotes the distribution of a squared Bessel process, starting from x,

of dimension ρ. The Laplace transform of the BESQ is known (see [11]) and for
c < 1/2 we obtain

Qmδε−2

0 [exp(2c2Xu)] = (1− 4c2u)−(mδε−2)/2,
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which implies

(2.7) P (‖M ε‖α′  R) ¬ CmAmδε−2
exp(−cRε−2/8)

for a positive constant A. Thus,

lim
R→+∞

lim sup
ε→0

ε2 lnP (‖M ε‖α′  R) = −∞. ¥

3. PROOF OF THEOREM 1.1

From the previous section it follows that the distribution P ε of Xε is expo-
nentially tight in C0([0, 1]; S̃+

m). Then we need to prove a weak LDP, that is, to
prove the upper bound for compact sets. We assume that T = 1. According to [3],
Exercise 2.1.14 (v) (or [2], Theorem 4.1.11), it is enough to show that

−I(ϕ) = lim
r→0

lim sup
ε→0

ε2 ln P
(
Xε ∈ Br(ϕ)

)
= lim

r→0
lim inf

ε→0
ε2 lnP

(
Xε ∈ Br(ϕ)

)
,

where Br(ϕ) denotes the open ball with center ϕ ∈ C0([0, 1]; S̃+
m) and radius r,

and I is a lower-semicontinuous function.

3.1. The upper bound. First we show the following bound:

(3.1) lim
r→0

lim sup
ε→0

ε2 lnP
(
Xε ∈ Br(ϕ)

) ¬ −I(ϕ).

We denote by Mm, respectively Sm, the space of m ×m matrices, respectively
symmetric matrices, endowed with the scalar product:

〈A,B〉 = Tr(AB′).

The corresponding norm is denoted by ‖A‖2. Set

H = {h ∈ C([0, 1];Sm) : ḣ ∈ L2([0, 1];Sm)}.

For h ∈ H let

M ε,h
t = exp

(
1
ε2

{ t∫
0

Tr
(
h(s)(dXε

s − δIm ds)
) − 1

2
〈Zε, Zε〉t

})
, t ¬ 1,

where

Zε
t =

t∫
0

Tr
(
h(s)

√
Xε

sdBs + h(s)dB′s
√

Xε
s

)
,

〈Zε, Zε〉t = 4
t∫
0

Tr
(
h(s)Xε

s h(s)
)
ds.
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M ε,h is a positive, local martingale. In fact, using a Novikov’s type criterion
(see [11], Exercise VIII.1.40, and [5]), the condition

E
[
exp

(
aTr

(
h(s)Xε

sh(s)
))]

< c

for every s  1 and two constants a and c ensures that M ε,h is a martingale. Now,

Tr
(
h(s)Xε

sh(s)
) ¬ C(h) sup

s∈[0,1]
‖Xε

s‖.

With the notation of Section 2, for any α′ < 1/2 we have

sup
s
‖Xε

s‖ ¬ ‖M ε
s‖α′ + δm

and from (2.7) it follows that sups∈[0,1] ‖Xε
s‖ has some exponential moments.

Therefore, M ε,h is a martingale, and so E(M ε,h
t ) = 1. Integrating by parts, we

obtain

M ε,h
1 = exp

(
1
ε2

Φ(Xε;h)
)

with

Φ(ϕ; h) = G(ϕ; h)− 2
1∫
0

Tr
(
h(s)ϕ(s)h(s)

)
ds

and

G(ϕ; h) = Tr
(
h1(ϕ1 − δIm)

)−
1∫
0

Tr
(
(ϕs − δsIm)ḣs

)
ds

for ϕ ∈ C0([0, 1]; S̃+
m). Note that if ϕ is absolutely continuous, then

G(ϕ;h) =
1∫
0

Tr
(
h(s)(ϕ̇s − δIm ds)

)
.

For ϕ ∈ C0([0, 1]; S̃+
m), h ∈ H , we get

P
(
Xε ∈ Br(ϕ)

)
= P

(
Xε ∈ Br(ϕ);

M ε,h
1

M ε,h
1

)

¬ exp
(
− 1

ε2
inf

ψ∈Br(ϕ)
Φ(ψ; h)

)
E(M ε,h

1 )

¬ exp
(
− 1

ε2
inf

ψ∈Br(ϕ)
Φ(ψ; h)

)
,

which yields

lim sup
ε→0

ε2 ln P
(
Xε ∈ Br(ϕ)

) ¬ − inf
ψ∈Br(ϕ)

Φ(ψ; h).
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For h ∈ H , the map ϕ→ Φ(ϕ; h) is continuous on C0([0, 1],S+
m), so that

lim
r→0

lim sup
ε→0

ε2 lnP
(
Xε ∈ Br(ϕ)

) ¬ −Φ(ϕ;h).

Minimizing in h ∈ H , we obtain

lim
r→0

lim sup
ε→0

ε2 ln P
(
Xε ∈ Br(ϕ)

) ¬ − sup
h∈H

Φ(ϕ; h).

PROPOSITION 3.1. For ϕ ∈ C0([0, 1]; S̃+
m),

sup
h∈H

Φ(ϕ; h) = I(ϕ),

where I(ϕ) is defined by (1.3). As a consequence, I is lower-semicontinuous.

P r o o f. Since ϕ ∈ C0([0, 1]; S̃+
m),

∫ 1

0
Tr(hsϕshs)ds > 0 for h 6≡ 0. Replac-

ing h by λh for λ ∈ R, we can see that

J(ϕ) := sup
h∈H

Φ(ϕ;h) =
1
8

sup
h∈H

G2(ϕ;h)∫ 1

0
Tr(hsϕshs)ds

.

1. We assume that J(ϕ) <∞. Let us denote by ‖h‖L2(ϕ) the Hilbert norm on
C0([0, 1];Sm) given by

‖h‖2L2(ϕ) =
1∫
0

Tr(hsϕshs)ds.

The linear form Gϕ : h→ G(ϕ; h) can be extended to the space L2(ϕ) and, by the
Riesz theorem, there exists a function kϕ ∈ L2(ϕ) such that

(3.2) G(ϕ; h) =
1∫
0

Tr
(
hsϕskϕ(s)

)
ds.

Thus, ϕ is absolutely continuous and we have

(3.3)
1∫
0

Tr
(
hs(ϕ̇s − δIm)

)
ds =

1∫
0

Tr
(
hsϕskϕ(s)

)
ds

for all symmetric matrices h(s). Let kϕ be given by (1.4). We refer to the Appendix
for the existence of a unique solution of (1.4) (kϕ is unique in L0, i.e., as a class
of equivalent functions a.e. equal, since ϕ̇ is also defined a.e.). Then, it is easy to
see that (3.3) is satisfied for all h symmetric. Moreover, by the Cauchy–Schwarz
inequality,

(3.4)
1∫
0

Tr
(
hsϕskϕ(s)

)
ds ¬

1∫
0

Tr(hsϕshs)1/2 Tr
(
kϕ(s)ϕskϕ(s)

)1/2
ds

¬ ( 1∫
0

Tr(hsϕshs)ds
)1/2

( 1∫
0

Tr
(
kϕ(s)ϕskϕ(s)

)
ds

)1/2



Large deviations for Wishart processes 333

with equality for h = kϕ. Thus,

1
8

sup
h∈L2(ϕ)

G2(ϕ;h)
‖h‖2

L2(ϕ)

= I(ϕ).

Now, the equality between I(ϕ) and J(ϕ) follows by density of H in L2(ϕ).
2. We assume now that I(ϕ) < ∞. Then ϕ is absolutely continuous and we

define kϕ by (1.4). Consequently, (3.2) holds and from (3.4) we obtain J(ϕ) <
I(ϕ) <∞. Thus, I(ϕ) = J(ϕ) in all cases. Since I is a supremum of continuous
functions, I is lower-semicontinuous. ¥

3.2. The lower bound. In order to obtain the lower bound, we first prove

lim inf
ε→0

ε2 ln P
(
Xε ∈ Br(ϕ)

)  −I(ϕ)

for all r > 0 and for ϕ in a subclass K of C0([0, 1]; S̃+
m). Then we shall show that

this subclass is rich enough.
Let K be the set of functions ϕ such that I(ϕ) <∞ and such that kϕ defined

by (1.4) belongs to H . For ϕ ∈ K, set hϕ = 1
4kϕ. As in the previous subsection,

we introduce the new probability measure

P̂ := M
ε,hϕ

1 P,

where P is the Wiener measure on C([0, 1];Mm,m). Under P̂ , we get

Bt = B̂t +
2
ε

t∫
0

(√
Xε

s hϕ(s)
)

ds,

where B̂ is a Brownian matrix on P̂ . Thus, under P̂ , Xε solves the SDE

dXε
t = ε(

√
Xε

t dB̂t + dB̂′t
√

Xε
t ) +

(
2
(
Xε

t hϕ(t) + hϕ(t)Xε
t

)
+ δIm

)
dt.

Under P̂ , Xε
t −→

ε→0
Ψt a.s. solution of

dΨt =
[
2
(
Ψthϕ(t) + hϕ(t)Ψt

)
+ δIm

]
dt,

i.e.,

Ψ̇t − δIm = 2
(
Ψthϕ(t) + hϕ(t)Ψt

)
=

1
2
(
Ψtkϕ(t) + kϕ(t)Ψt

)
.

Since kϕ is continuous, this equation has ϕ as a unique solution; thus

Xε
t −→

ε→0
ϕt P̂ a.s.
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and limε→0 P̂
(
Xε ∈ Br(ϕ)

)
= 1 for every r > 0. Now,

P
(
Xε ∈ Br(ϕ)

)
= P̂

(
Xε ∈ Br(ϕ)

1

M
ε,hϕ

1

)

 exp
(
− 1

ε2
sup

ψ∈Br(ϕ)
F (ψ; hϕ)

)
P̂

(
Xε ∈ Br(ϕ)

)
,

which yields

lim inf
ε→0

ε2 lnP
(
Xε ∈ Br(ϕ)

)  − sup
ψ∈Br(ϕ)

F (ψ; hϕ)

and, by continuity of F (·, h),

lim
r→0

lim inf
ε→0

ε2 lnP
(
Xε ∈ Br(ϕ)

)  F (ϕ;hϕ) = I(ϕ).

We now prove the following

PROPOSITION 3.2. For any ϕ ∈ C0([0, 1]; S̃+
m) such that I(ϕ) < ∞, there

exists a sequence ϕn of elements of K such that ϕn → ϕ in C0([0, 1]; S̃+
m) and

I(ϕn)→ I(ϕ).

P r o o f. We follow the same lines as in the proof of the corresponding result
for the scalar case in [5].

(a) First, let us show that the condition I(ϕ) <∞ implies that

lim
t→0

ϕt

t
= δIm.

From the scalar case we know that

(3.5) lim
t→0

Tr(ϕt)
t

= δm.

Indeed, Tr(Xε
t ) satisfies an LDP (see (2.4)) with rate function given by

J(g) =
1
8

1∫
0

(
ġ(s)− δm

)2

g(s)
ds,

and J(g) < ∞ implies that limt→0 g(t)/t = δm (see [5], [6]). From the upper
bound, the condition I(ϕ) < ∞ implies J

(
Tr(ϕ)

)
< ∞, and thus the condition

(3.5) is satisfied.
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Let us put ‖A‖1 = Tr(|A|) and ‖A‖2 =
(
Tr(|A|2))1/2 for a matrix A. Then

‖ϕt − δtIm‖1 =
∥∥ t∫

0

(ϕ̇s − δIm)ds
∥∥

1
=

1
2

∥∥ t∫
0

(
ϕskϕ(s) + kϕ(s)ϕs

)
ds

∥∥
1

¬ 1
2
( t∫

0

‖ϕskϕ(s)‖1ds +
t∫
0

‖kϕ(s)ϕs‖1ds
)

¬
t∫
0

‖√ϕs‖2 ‖√ϕskϕ(s)‖2ds

=
t∫
0

(
Tr(ϕs)

)1/2
(

Tr
(
kϕ(s)ϕskϕ(s)

))1/2
ds

¬ ( t∫
0

Tr(ϕs)ds
)1/2

( t∫
0

Tr
(
kϕ(s)ϕskϕ(s)

)
ds

)1/2
.

Thus,
∥∥∥∥
ϕt

t
− δIm

∥∥∥∥
1

¬
(

1
t

t∫
0

Tr(ϕs)
s

ds

)1/2( t∫
0

Tr
(
kϕ(s)ϕskϕ(s)

)
ds

)1/2
.

According to (3.5), the first term on the right-hand side is bounded and the second
tends to 0 as t tends to 0 since I(ϕ) <∞.

(b) As a second step, we approximate ϕ by ψ such that kψ ∈ L2([0, 1];Sm).
Let us set

ψr(t) =





δtIm, t ¬ r/2,
(δr/2)Im + (t− r/2)ar, r/2 ¬ t ¬ r,
ϕ(t), t  r,

where the matrix ar is chosen such that ψ is continuous in r. Let kψ be the solution
of (1.4) associated with ψ. Since kψ(s) = 0 for s ∈ [0, r/2], and ψ(s) is invertible
for s > 0, we have kψ ∈ L2([0, 1];Sm). Obviously, ψr −→

r→0
ϕ in C0([0, 1]; S̃+

m).

It remains to prove the convergence of I(ψr) to I(ϕ), or that
r∫

r/2

Tr
(
kψ(s)ψ(s)kψ(s)

)
ds−→

r→0
0.

We have
r∫

r/2

Tr
(
kψ(s)ψ(s)kψ(s)

)
ds =

r∫
r/2

Tr
(
kψ(s)

(
ψ̇(s)− δIm

))
ds

=
r∫

r/2

Tr
(
kψ(s)(ar − δIm)

)
ds.



336 C. Donat i -Mart in

Note that ar and kψr(s) for s ∈ [r/2, r] are diagonalisable in the same basis with
respective eigenvalues (a(r)

i )i and ki(s), where

ki(s) =
a

(r)
i − δ

δr/2 + (s− r/2)a(r)
i

,

and that, according to step (a), limr→0 a
(r)
i = δ. Thus, for r small enough,

r∫
r/2

Tr
(
kψ(s)ψ(s)kψ(s)

)
ds =

r∫
r/2

∑

i

(a(r)
i − δ)2

δr/2 + (s− r/2)a(r)
i

ds ¬ 1
δ

m∑

i=1

(a(r)
i − δ)2,

and the last quantity tends to 0 as r tends to 0.

(c) By (b), we must find an approximating sequence ϕ(n) of ϕ in K for ϕ
satisfying kϕ ∈ L2.

Let k(n) be a sequence of smooth functions with values in Sm such that k(n)

converges to kϕ in L2([0, 1],Sm). Let ϕ(n) be the unique solution of the equation

ϕ̇
(n)
t − δIm = k

(n)
t ϕ

(n)
t + ϕ

(n)
t k

(n)
t ,

ϕ
(n)
0 = 0.

Since

‖ϕ(n)
t ‖ ¬

t∫
0

‖ϕ̇(n)
s ‖ds ¬ 2

t∫
0

‖ϕ(n)
s ‖ ‖k(n)

s ‖ds + δ,

the Gronwall inequality shows that

sup
n

sup
t∈[0,1]

‖ϕ(n)
t ‖ <∞,

where we have chosen the operator norm on the set of matrices in the previous
inequality. Another application of Gronwall’s inequality entails that

sup
t∈[0,1]

‖ϕt − ϕ
(n)
t ‖ −→n→∞ 0.

Now, the convergence of I(ϕ(n)) to I(ϕ) follows from the convergence in L2 of
k(n) to kϕ and the convergence in L∞([0, 1]) of ϕ(n) to ϕ. ¥

4. THE CRAMER THEOREM

Let Qδ
x denote the distribution on C(R,S+

m) of the Wishart process of dimen-
sion δ  m + 1, starting from x ∈ S+

m. We recall the following additivity property
(see [1]):

Qδ
x ⊕Qδ′

y = Qδ+δ′
x+y .
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Let δ  m + 1 and take ε = 1/
√

n. Then Xε, a solution of (1.2), is distributed as
n−1

∑n
i=1 Xi, where Xi are independent copies of Qδ

x. From Cramer’s theorem
([2], Chapter 6), we obtain

THEOREM 4.1. Assume that δ  m + 1. The family P ε of distributions of
(Xε

t ; t ∈ [0, T ]), solution of (1.2), satisfies an LDP in C0([0, T ]; S̃+
m) with speed

ε2 and good rate function

(4.1) Λ∗(ϕ) = sup
µ∈M([0,T ],Sm)

( T∫
0

Tr(ϕtdµt) − Λ(µ)
)
,

where

(4.2) Λ(µ) = ln
[
Qδ

x

(
exp

( T∫
0

Tr(Xsdµs)
))]

.

The Laplace transform of the Qδ
x distribution can be computed explicitly in

terms of the Ricatti equation, extending to the matrix case the well-known result
for the squared Bessel processes (see [10] and [11], Chapter XI).

LEMMA 4.1. Let µ be a positive S+
m-valued measure on [0, T ]. Then

(4.3) Qδ
x

(
exp

(
− 1

2

T∫
0

Tr(Xsdµs)
))

= exp
(

1
2

Tr
(
Fµ(0)x

))
exp

(
δ

2

T∫
0

Tr
(
Fµ(s)

)
ds

)
,

where Fµ(s) is the Sm-valued, right continuous solution of the Riccati equation

(4.4) Ḟ + F 2 = µ, F (T ) = 0.

P r o o f. From Itô’s formula we obtain

Fµ(t)Xt = Fµ(0)x +
t∫
0

Fµ(s)dXs +
t∫
0

dFµ(s)Xs

= Fµ(0)x +
t∫
0

Fµ(s)dXs +
t∫
0

dµ(s)Xs −
t∫
0

F 2
µ(s)Xs ds.

Consider the exponential local martingale

Zt = exp
(

1
2

t∫
0

Tr
(
Fµ(s)dMs

)− 1
2

t∫
0

Tr
(
Fµ(s)XsFµ(s)

)
ds

)
,
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where Ms = Xs − δIm s. Then

Zt =

exp
(

1
2

(
Tr

(
Fµ(t)Xt

)−Tr
(
Fµ(0)x

)− δ
t∫
0

Tr
(
Fµ(s)

)
ds−

t∫
0

Tr
(
Xsdµ(s)

)))
.

Now, Xt is positive and Fµ(t) is negative (see Appendix A.2). Thus, Tr
(
XtFµ(t)

)
¬ 0 and Zt is a bounded martingale. The lemma follows from the equality E(Z0) =
E(ZT ). ¥

REMARK 4.1. 1. The condition F (T ) = 0 in (4.4) is equivalent to F (T−) =
−µ({T}).

2. Taking dµs = 2Θδ1(ds), where Θ is a symmetric positive matrix, we find
that Fµ(t) = −2Θ

(
Im + 2(1− t)Θ

)−1
, t < 1, from which we obtain (see [1])

(4.5) Qδ
x

(
exp

(− Tr(X1Θ)
))

= det(Im + 2Θ)−δ/2 exp
(
− Tr

(
x(Im + 2Θ)−1Θ

))
.

For m = 1, this example is given in [5], Subsection 8.3.

Let us try to determine the correspondence between ϕ and µ in (4.1). If µ is
a negative measure, then from (4.3) we get

T∫
0

Tr(ϕtdµt) −Λ(µ) =
T∫
0

Tr(ϕtdµt) − 1
2

Tr
(
F−2µ(0)x

)− δ

2

T∫
0

Tr
(
F−2µ(s)

)
ds.

Since dµ(t) = −1
2(Ḟt + F 2

t ), an integration by parts gives

(4.6)
T∫
0

Tr(ϕtdµt) − Λ(µ)

=
1
2

T∫
0

Tr
(
F−2µ(s)(ϕ̇s − δIm)

)
ds− 1

2

T∫
0

Tr
(
F 2
−2µ(s)ϕs

)
ds.

The optimal function F (s) giving the supremum in (4.6) solves the equation

ϕ̇s − δIm = ϕsF (s) + F (s)ϕs,

that is, F (s) = kϕ(s)/2, where kϕ is the solution of (1.4), and for this F the right-
hand side of (4.6) is exactly I(ϕ).

5. SOME APPLICATIONS

From the contraction principle we can obtain an LDP for some continuous
functionals of the Wishart process Xε.
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5.1. The eigenvalues process. Let
(
λε(t) =

(
λε

1(t), . . . , λ
ε
m(t)

)
; t ∈ [0, T ]

)

denote the process of eigenvalues of the process Xε, ordered decreasingly.

PROPOSITION 5.1. The process λε satisfies an LDP in C0([0, T ],Rm
+ ), in

scale ε2, with rate function

(5.1) J(x) =
1
8

m∑

i=1

T∫
0

(
ẋi(t)− δ

)2

xi(t)
dt.

REMARK 5.1.
(
λε(t)

)
t

is a solution of the SDE (see [1])

dλε
i(t) = 2ε

√
λε

i(t)dβi(t) +
{

δ + ε2
∑

k 6=i

λε
i(t) + λε

k(t)
λε

i(t)− λε
k(t)

}
dt

from which we can guess the form of the rate function J in (5.1) since the drift
bε in the above equation satisfies bε(λ)−→

ε→0
δ. Nevertheless, since the drift bε(λ)

explodes on the hyperplanes {λi = λj} and the diffusion coefficient is degenerate,
the classical results (see [7], Theorem V.3.1) do not apply.

P r o o f o f P r o p o s i t i o n 5.1. According to the contraction principle,

J(x) = inf{I(ϕ); e.v.(ϕ) = x}.
Write ϕt = P−1

t ΛtPt, where Λt is the diagonal matrix of eigenvalues of ϕt, and
Pt is an orthogonal matrix. Then

ϕ̇t = P−1
t Λ̇tPt + Ṗt

−1
ΛtPt + P−1

t ΛtṖt.

We denote by k̃t the matrix Ptkϕ(t)P−1
t , where kϕ solves (1.4). Then

Tr
(
kϕ(t)ϕ(t)kϕ(t)

)
= Tr

(
k̃tΛ(t)k̃t

)

and
k̃ij(t)λi(t) + k̃ij(t)λj(t) = 2

(
λ̇i(t)− δ

)
δij + Rij(t),

where the matrix R is defined by

R(t) = PtṖt
−1

Λt + ΛtṖtP
−1
t .

Now, it is easy to verify that Rii(t) = 0. Thus

Tr
(
k̃tΛ(t)k̃t

)
=

∑

i

(
λ̇i(t)− δ

)2

λi(t)
+

∑

i6=j

R2
ij(t)λj(t)

λi(t) + λj(t)
,

and the infimum of the above quantity is obtained for R ≡ 0, corresponding to Pt

independent of t. For this choice, I(ϕ) = J(λ), where λ is the set of eigenvalues
of ϕ. ¥
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5.2. An LDP for the random vector Xε
1

PROPOSITION 5.2. The random vector Xε
1 satisfies an LDP, in scale ε2, with

rate function

(5.2) K(M) =
1
2

Tr(M)− δ

2
ln

(
det(M)

)− mδ

2
+

mδ

2
ln(δ), M ∈ S+

m.

REMARK 5.2. For m = 1,

K(a) =
1
2
[(a− δ)− ln(a/δ)], a > 0,

which corresponds (for δ = 1) to the rate function obtained in the study of an LDP
for a χ2(n) distribution as n→∞.

P r o o f (sketch).
(i) Since the application ϕ → ϕ(1) is continuous, we must minimize I(ϕ)

under the constraint ϕ(1) = M . The optimal path ϕ solves the Euler–Lagrange
equation (see [8], Chapter 7), given in terms of kϕ by

2k̇ϕ(s) + k2
ϕ(s) = 0, s ∈ (0, 1).

This leads to k−1
ϕ (t) = (t/2)Im + C and ϕ(t) = δtIm + t2A with matrix A de-

termined by ϕ(1) = M . Note that this is the same path as in Remark 4.1. Now,
it is easy to verify that for ϕ(t) = δtIm + t2(M − δIm) we have I(ϕ) = K(M),
where K is given by (5.2).

(ii) Of course, we can compute K directly, using the Laplace transform (4.5)
(with x = 0), and then

K(M) = sup
Θ

{
Tr(ΘM) +

δ

2
ln

(
det(Im − 2Θ)

)}
.

The optimal Θ0 is given by M = δ(Im − 2Θ0)−1. ¥

5.3. An LDP for the largest eigenvalue. Let us denote by λε
max = λε

1 the
largest eigenvalue of the Wishart process Xε.

PROPOSITION 5.3. The process {λε
max(t), t ∈ [0, T ]} satisfies an LDP in the

space C0

(
[0, T );R+

)
, in scale ε2, with rate function given by

Imax(f) = inf{J(x), x = (f, x2, . . . , xm), xi(t) ¬ f(t) for i = 2, . . . , m},
where J is given by (5.1). For f belonging to a class of functions F to be defined
in the proof,

(5.3) Imax(f) =
1
8

[ T∫
0

(ḟt − δ)2

ft
dt + (m− 1)

T∫
0

(ḟ
t
− δ)2

f
t

]
,

where f(t) = δt + infs¬t

(
f(s)− δs

)
.
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P r o o f. According to the contraction principle, Imax is given by the mini-
mum of the rate function

J(x) =
1
8

m∑

i=1

T∫
0

(
ẋi(t)− δ

)2

xi(t)
dt

under the constraint {xi(t) ¬ f(t), i = 2, . . . , m} with x1 = f fixed. Let us set

F (y) =
1
8

T∫
0

(
ẏ(t)− δ

)2

y(t)
dt;

F is a convex function on C0

(
[0, T );R+

)
and let us introduce the convex function

Gf (y) = y − f ∈ C
(
[0, T );R

)
. The problem is to minimize F (y) under the con-

straint Gf (y) ¬ 0. We associate with f the measure µf from the Ricatti equation

2µf = Ḣ + H2 on (0, T ), H(T ) = −2µf (T )

with Ht =
(
(ḟ(t)− δ)

)
/2f(t). Then we define the measure

dµ̃f (t) = dµf (t)1(f(t)=f(t)).

Let F = {f ; dµ̃f is a positive measure on [0, T ]}. For f ∈ F , let us show that
the Lagrangian

L(y, µ) = F (y) + 〈Gf (y), µ〉
has a saddle point at (f, µ̃f ), i.e.,

(5.4) L(f, µ) ¬ L(f, µ̃f ) ¬ L(y, µ̃f )

for all y ∈ C0

(
[0, T );R+

)
and all positive measures µ.

The first inequality follows from

〈Gf (f), µ〉 ¬ 0 = 〈Gf (f), µ̃f 〉

since supp(µ̃f ) ⊂ {t, f(t) = f(t)}.
For the second inequality, we must show that f minimize F (y) + 〈Gf (y), µ̃f 〉.

The optimal path of this problem of minimization solves the Euler–Lagrange equa-
tion (see [5])

(5.5)
d

dt

(
∂g

∂b
(y, ẏ)

)
=

∂g

∂a
(y, ẏ) + µ̃f on (0, T ),

(
∂g

∂b
(y, ẏ)

)

t=T

= −µ̃f (T )

with g(a, b) = (b− δ)2/8a. The auxiliary function Ht =
(
ẏ(t)− δ

)
/2y(t) asso-

ciated with the optimal path y satisfies the Ricatti equation

2µ̃f = Ḣ + H2, H(T ) = −2µ̃f (T ).
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By the choice of µ̃f , it is easy to see that f solves the Euler–Lagrange equation
(5.5) (or the associated Ricatti equation). According to Luenberger [8] (Theo-
rem 2, Section 8.4), the existence of this saddle point implies that f minimize
F (y) under the constraint Gf (y) ¬ 0. ¥

For a fixed time, we have the following result:

PROPOSITION 5.4. The random vector λε
max(1) satisfies an LDP in R+ with

rate function given by

(5.6) Kmax(a) =
a

2
− δ

2
ln(a)− δ

2
+

δ

2
ln(δ) if a > δ,

(5.7) Kmax(a) = m

(
a

2
− δ

2
ln(a)− δ

2
+

δ

2
ln(δ)

)
if a ¬ δ.

The proof is immediate from (5.2). We minimize K(M) under the constraint
‖M‖ = a, where ‖ · ‖ denotes the operator norm.

6. APPENDIX

A.1. On the equation AX + XA = B. Let A and B be two symmetric ma-
trices, where A is strictly positive. We are looking for a symmetric matrix X ,
a solution of the equation (see (1.4))

(6.1) AX + XA = B.

Since A is symmetric, let P and D be orthogonal and positive diagonal matri-
ces such that A = P−1DP . Then, by (6.1), the symmetric matrix X̃ = PXP−1

satisfies
DX̃ + X̃D = PBP−1 := B̃,

that is,
diX̃ij + X̃ijdj = B̃ij ,

and consequently X̃ij = B̃ij/(di + dj). Thus, X is uniquely determined.

A.2. On the Riccati equation. We consider the Ricatti equation (see (4.4))

(6.2) Ḟ + F 2 = µ, F (T ) = 0,

or

F (t) = C + µ(]0, t])−
t∫
0

F 2(s)ds,
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where C is chosen such that F (T ) = 0. We diagonalize F (t): Ft = P−1
t DtPt with

Dt the matrix of eigenvalues of Ft and Pt orthogonal. Then the Ricatti equation
can be written as

Ḋ(t) + D2(t) = P (t)µtP
−1(t) + Rt,

where R is a matrix whose diagonal entries are zeroes. Set ν = PµP−1; then ν is
a positive S+

m-valued measure and the eigenvalues of F satisfy the scalar Riccati
equation:

ḋi(t) + d2
i (t) = νii(t), di(T ) = 0,

where νii is a positive measure on [0, T ]. We know (see [11], Chapter XI) that
di(t) ¬ 0 (di is related to the decreasing solution of the Sturm–Liouville equation
φ′′i = φiνii). It follows that the matrix F (t) is symmetric negative.
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