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Abstract. We introduce a new variant of the tempered stable distribu-
tion, named the modified tempered stable (MTS) distribution and we de-
velop a GARCH option pricing model with MTS innovations. This model
allows the description of some stylized empirical facts observed in financial
markets, such as volatility clustering, skewness, and heavy tails of stock
returns. To demonstrate the advantages of the MTS-GARCH model, we
present the results of the parameter estimation.
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1. INTRODUCTION

Since Black and Scholes [2] introduced the pricing and hedging theory for the
option market, their model has been the most popular model for option pricing.
However, the model which assumes homoskedasticity and lognormality, cannot
explain stylized empirical facts such as skewness, heavy tails, and volatility clus-
tering of stock returns.

To explain these empirical facts, Mandelbrot [12], [13] was the first to use a
non-normal Lévy process as an asset price process. Hurst et al. [9] used a model
based on stable processes to price options. However, stable distributions have in-
finite moments of the second or higher order because of the heavy distributional
tails. To have more adaptability, the class of tempered stable processes has been
introduced under different names including: “truncated Lévy flight” (Koponen
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[11]), “KoBoL” process (Boyarchenko and Levendorskiĭ [3]), and “CGMY” pro-
cess (Carr et al. [4]). Rosiński [17] generalized the notion of tempered stable pro-
cesses. In his extension, tempered stable processes are characterized by the spec-
tral (Rosiński) measure. Moreover, several concrete subclasses of the generalized
tempered stable distributions and related Ornstein–Uhlenbeck processes have been
presented in [20]. Assuming a Markovian stock return process and considering
the generalized Fourier transform, Carr et al. [4] obtained a close form solution to
price European options. However, the Markov property is often rejected by the em-
pirical evidence as in the case in which stock returns exhibit volatility clustering.

The GARCH option pricing models have been developed to price options un-
der the assumption of volatility clustering. GARCH models of Duan [6], Hes-
ton and Nandi [8] are remarkable works on the non-Markovian structure of asset
returns even though they did not take into account conditional leptokurtosis and
skewness. Duan et al. [7] modified the classical GARCH model by adding jumps
to the innovation processes. Furthermore, Menn and Rachev [15], [16] introduced
an enhanced GARCH model with innovations which follow the smoothly truncated
stable (STS) distribution; it also has a finite variance and at the same time allows
for conditional leptokurtosis and skewness.

In this paper, we introduce a variant of the tempered stable distributions, called
a modified tempered stable (MTS) distribution, and apply it to the GARCH option
pricing model.

The MTS distribution is obtained by taking an α-stable law and multiplying
the Lévy measure by a modified Bessel function of the second kind onto each half
of the real axis. It is infinitely divisible, has a closed form characteristic function,
finite moments of all orders. Its Lévy measure behaves asymptotically like the α-
stable distribution near zero and has exponential decay of the tails. We can show
that MTS distribution is not included in the class of Rosiński’s tempered stable
distributions, but has properties similar to the tempered stable distributions.

The GARCH option pricing model presented in this paper follows the method
introduced by Menn and Rachev [15], [16]. However, instead of STS innovations,
we assume that the innovations of the classical GARCH model follow the MTS
distribution with zero mean and unit variance, and we are able to describe both
leptokurtosis and skewness. In contrast to the STS distribution, the Laplace trans-
form of an MTS distribution is analytic, therefore it is more tractable. Moreover,
it is infinitely divisible and its characteristic function provides a concrete method
to find an equivalent martingale measure by applying a general result on density
transformations for Lévy processes, presented by Sato [19].

The remainder of this paper is organized as follows: Section 2 introduces the
MTS distribution. The characteristic function, the cumulant, and asymptotic be-
havior of the MTS distribution are presented in the first subsection, followed by
measure changes of the MTS distributions. The GARCH model with MTS innova-
tions and its empirical investigations are reported in the third section. Section 4 is
a summary of our conclusions. Proofs are presented in the Appendix.
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2. THE MODEL

2.1. Tempered stable distributions. Before introducing the MTS distribution
and the MTS-GARCH model, let us review the tempered stable distribution. It is
well known that α-stable distributions have infinite p-th moments for all p  α.
This is due to the fact that its Lévy density decays polynomially. Tempering of the
tails with the exponential rate is one choice to ensure finite moments. The tempered
stable (TS) distribution is obtained by taking a symmetric α-stable distribution and
multiplying the Lévy measure with exponential functions on each half of the real
axis. Indeed, it is defined in the following:

DEFINITION 2.1. An infinitely divisible distribution is called a tempered sta-
ble (TS) distribution with parameter (C1, C2, λ+, λ−, α) if its Lévy triplet (σ2, ν, γ)
is given by σ = 0, γ ∈ R, and

(2.1) ν(dx) =
(

C1e
−λ+x

x1+α
1x>0 +

C2e
−λ−|x|

|x|1+α
1x<0

)
dx,

where C1, C2, λ+, λ− > 0 and α < 2.

This process was first introduced by Koponen [11] under the name of trun-
cated Lévy flights. In particular, if C1 = C2 = C > 0, then this distribution is
called the CGMY distribution which has been used in Carr et al. [4] for financial
modeling. In the above definition, λ+ and λ− give the tail decay rates, α describes
the jumps near zero, and C1 and C2 determine the arrival rate of jumps for a given
size.

The characteristic function φTS for a tempered stable distribution is given by

(2.2) φTS(u) = exp
(
iuµ + C1Γ(−α)

(
(λ+ − iu)α − λα

+

)

+ C2Γ(−α)
(
(λ− + iu)α − λα

−
))

for some µ ∈ R. Moreover, φTS can be extended to the region {z ∈ C : Im(z) ∈
(−λ−, λ+)}. The proof can be found in [4], [5] and [10]. Using the characteristic
function, we obtain cumulants

cm(X) =
dm

dum
log φTS(u)

∣∣
u=0

of all orders.

PROPOSITION 2.1. Let X be a tempered stable distributed random variable
whose characteristic function is given by (2.2). The cumulant cn(X) of X is deter-
mined by

cn(X) = Γ(n− α)C1λ
α−n
+ + (−1)nΓ(n− α)C2λ

α−n
− for n ∈ N, n  2,

and c1(X) = µ + Γ(1− α)C1λ
α−1
+ − Γ(1− α)C2λ

α−1
− .
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2.2. Rosiński’s generalization of tempered stable distributions. In this sec-
tion we will review the definition of the generalized tempered stable distributions
introduced by Rosiński [17]. Let the Lévy measure M0 of an α-stable distribution
on Rd in polar coordinates be of the form

(2.3) M0(dr, du) = r−α−1dr σ(du),

where α ∈ (0, 2) and σ is a finite measure on Sd−1. A (generalized) tempered
α-stable distribution is defined by tempering the radial term of M0 as follows:

DEFINITION 2.2 (Definition 2.1 in [17]). Let α ∈ (0, 2) and σ be a finite mea-
sure on Sd−1. A probability measure on Rd is called tempered α-stable (denoted
by TαS) if it is infinitely divisible without Gaussian part and whose Lévy measure
M can be written in polar coordinates as

(2.4) M(dr, du) = r−α−1q(r, u)dr σ(du),

where q : (0,∞) × Sd−1 7→ (0,∞) is a Borel function such that q(·, u) is com-
pletely monotone with q(∞, u) = 0 for each u ∈ Sd−1. A TαS distribution is
called a proper TαS distribution if limr→0+ q(r, u) = 1 for each u ∈ Sd−1.

The complete monotonicity of q(·, u) means that

(−1)n dn

drn
q(r, u) > 0

for all r > 0, u ∈ Sd−1, and n = 0, 1, 2, . . .
TαS distributions are characterized by the spectral measure or Rosiński mea-

sure defined in Definition 2.4 in [17]. Moreover, Rosiński [17] presents the charac-
teristic function, short and long time behavior, absolute continuity, and shot-noise-
type series representation for TαS distributions and Lévy processes induced by the
TαS distributions.

2.3. The modified tempered stable distributions. In this section, we intro-
duce a variant of the tempered stable distribution named Modified Tempered Stable
(MTS) distribution. The MTS distribution is defined as follows:

DEFINITION 2.3. An infinitely divisible distribution is said to be a modified
tempered stable (MTS) distribution if its Lévy triplet is given by

σ2 = 0,

ν(dx) = C

(
λ

(α+1)/2
+ K(α+1)/2 (λ+x)

x(α+1)/2
1x>0

+
λ

(α+1)/2
− K(α+1)/2 (λ−|x|)

|x|(α+1)/2
1x<0

)
dx,

γ = µ + C

(
Γ

(
1−α

2

)

2(α+1)/2
(λα−1

+ − λα−1
− )

− λ
(α−1)/2
+ K(α−1)/2(λ+) + λ

(α−1)/2
− K(α−1)/2(λ−)

)
,
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where C > 0, λ+, λ− > 0, µ ∈ R, α ∈ (−∞, 2) \ {1} and Kp(x) is the modified
Bessel function of the second kind (see [1], p. 290). We denote an MTS distributed
random variable X by X ∼ MTS(α,C, λ+, λ−, µ). The Lévy measure ν(dx) is
called the MTS Lévy measure with parameter (α, C, λ+, λ−).

The MTS distribution is obtained by taking a symmetric α-stable distribution
with α ∈ (0, 2) and multiplying the Lévy measure by (λ|x|)(α+1)/2K(α+1)/2(λ|x|)
on each half of the real axis. The measure can be extended to the case of α ¬ 0.
If α = 1, then γ may not be defined. Hence, we remove it. The following result
shows that ν(dx) is a Lévy measure.

PROPOSITION 2.2. Let ν be a Borel measure on R such that ν(0) = 0 and

(2.5) ν(dx) = C

(
λ

(α+1)/2
+ K(α+1)/2 (λ+x)

x(α+1)/2
1x>0

+
λ

(α+1)/2
− K(α+1)/2 (λ−|x|)

|x|(α+1)/2
1x<0

)
dx,

where C > 0, λ+, λ− > 0, and α < 2. Then the measure ν is a Lévy measure
on R.

The next result follows from (5.2) and (5.3) in the Appendix.

PROPOSITION 2.3. Let

f(x) = C

(
λ

(α+1)/2
+ K(α+1)/2 (λ+x)

x(α+1)/2
1x>0 +

λ
(α+1)/2
− K(α+1)/2 (λ−|x|)

|x|(α+1)/2
1x<0

)
,

where C > 0, λ+, λ− > 0, and α ∈ (0, 2) \ {1}. Then

f(x) ∼ 2(α−1)/2C Γ
(

α + 1
2

)
1

xα+1
as x→ 0,(2.6)

f(x) ∼
√

π

2
Cλ

α/2
+

e−λ+x

xα/2+1
as x→∞,(2.7)

f(x) ∼
√

π

2
Cλ

α/2
−

e−λ−|x|

|x|α/2+1
as x→ −∞.(2.8)

REMARK 2.1. The Lévy measure of MTS distribution behaves like α-stable
distribution near zero and decreases exponentially with rates λ+ and λ− at the tails.

The Lévy measure ν of the MTS distribution can be reformed in polar coordi-
nates as

ν(dx) = MMTS(dr, du) = r−α−1qMTS(r, u)dr σ(du),

where σ is a finite measure on S0 = {−1, 1} such that

σ({1}) = σ({−1}) = 2(α−1)/2CΓ
(

α + 1
2

)
,



96 Y. S. Kim et al.

and the polar coordinate function qMTS : (0,∞)× S0 7→ (0,∞) is given by
(2.9)

qMTS(r, u) =





2(1−α)/2

(
Γ

(
α + 1

2

))−1

(λ+r)(α+1)/2K(α+1)/2(λ+r), u = 1,

2(1−α)/2

(
Γ

(
α + 1

2

))−1

(λ−r)(α+1)/2K(α+1)/2(λ−r), u = −1.

The MTS distribution is not in the class of the tempered α-stable distribution
generalized by Rosiński, while MMTS(dr, du) looks like equation (2.4). Indeed,
qMTS(∞, u) = 0 and limr→0+ qMTS(r, u) = 1, but (∂2/∂r2)qMTS(r, u) is not always
positive. Figure 1 shows the graph of y = (∂2/∂r2)qMTS(r, 1) provided that λ+ = 1
and α = 1.5. We can show that (∂2/∂r2)qMTS(r, 1) < 0 if 0 < r < 1. It means,
qMTS(·, u) is not completely monotone, and hence the MTS distribution does not
satisfy the condition of complete monotonicity in Definition 2.2.

The characteristic function of the MTS distribution is given in the following:

THEOREM 2.1. Let X ∼ MTS(α, C, λ+, λ−, µ). Then the characteristic func-
tion of X is given by

φX(u;α,C, λ+, λ−, µ)

= exp
(
iuµ + GR(u; α, C, λ+, λ−) + GI(u; α, C, λ+, λ−)

)
,

where for u ∈ R
GR(u; α, C, λ+, λ−)

=





√
π2−α/2−3/2CΓ(−α/2)

(
(λ2

+ + u2)α/2 − λα
+ + (λ2− + u2)α/2 − λα−

)
if α 6= 0,√

π2−3/2C
(

log
(
λ2

+/(λ2
+ + u2)

)
+ log

(
λ2−/(λ2− + u2)

))

if α = 0,

and

GI(u; α, C, λ+, λ−)

=
iuCΓ

(
1−α

2

)

2(α+1)/2

(
λα−1

+ F

(
1,

1− α

2
;
3
2
;− u2

λ2
+

)
− λα−1

− F

(
1,

1− α

2
;
3
2
;− u2

λ2−

))
,

where F is the hypergeometric function (see [1], p. 361). Moreover, φX can be
extended to the region {z ∈ C : |Im(z)| < λ+ ∧ λ−}.

COROLLARY 2.1. Let X ∼ MTS(α, C, λ+, λ−, µ). Then the Laplace trans-
form of X is given by

(2.10) E[exp(uX)]

= exp
(
uµ + GR(−iu; α,C, λ+, λ−) + GI(−iu; α, C, λ+, λ−)

)

for u ∈ C with |Re(u)| < λ+ ∧ λ−.
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Figure 1. Graph of y = (∂2/∂r2)qMTS(r, 1), where λ+ = 1 and α = 1.5

Using the characteristic function, we obtain the cumulants of all orders.

PROPOSITION 2.4. Let X ∼ MTS(α, C, λ+, λ−, µ) with α ∈ (−∞, 2) \ {1}.
The cumulants cm(X) of X are given as follows:
(2.11)

cm(X) =





µ + 2−(α+1)/2CΓ
(
(1− α)/2

)
(λα−1

+ − λα−1
− ) if m = 1,

2m−(α+3)/2
(
(m− 1)/2

)
! CΓ

(
(m− α)/2

)
(λα−m

+ − λα−m
− )

if m = 3, 5, 7, . . . ,

2−(α+3)/2√π
m!

(m/2)!
CΓ

(
(m− α)/2

)
(λα−m

+ + λα−m
− )

if m = 2, 4, 6, . . .

REMARK 2.2. Let X ∼ MTS(α, C, λ+, λ−, µ).
1. By Proposition 2.4, we obtain the mean, variance, skewness and excess

kurtosis of X which are given as follows:

E[X] = c1(X) = µ + 2−(α+1)/2CΓ
(

1− α

2

)
(λα−1

+ − λα−1
− ),

Var(X) = c2(X) = 2−(α+1)/2√πCΓ
(

1− α

2

)
(λα−2

+ + λα−2
− ),

s(X) =
c3(X)

c2(X)3/2
=

2(α+9)/4Γ
(

3−α
2

)
(λα−3

+ − λα−3
− )

π3/4C1/2
(
Γ

(
1− α

2

)
(λα−2

+ + λα−2
− )

)3/2
,

k(X) =
c4(X)
c2(X)2

=
3 · 2(α+3)/2Γ

(
2− α

2

)
(λα−4

+ + λα−4
− )

√
πC

(
Γ

(
1− α

2

)
(λα−2

+ + λα−2
− )

)2 .

2. Figure 2 illustrates the dependence of skewness s(X) and excess kurtosis
k(X) on λ+ and λ− when α and C are fixed.
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3. λ+ and λ− control the rate of decay on the positive and negative part,
respectively. If λ+ > λ− (λ+ < λ−), then the distribution is skewed to the left
(right). Moreover, if λ+ = λ−, then it is symmetric. Figure 3 illustrates this fact.
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Figure 2. Skewness and excess kurtosis of MTS distributions: dependence on λ+ and λ−. Param-
eters: α = 1.4, C = 0.02, µ = 0, t = 1

Figure 3. Probability density of the MTS distributions: dependence on λ+ and λ−. Parameters:
λ+, λ− ∈ {30, 40, 50}, α = 1.58, C = 0.014, µ = 0

4. C controls the kurtosis of the distribution. If C increases, then the peakness
of the distribution decreases. Figure 4 shows the effect of C.

5. Figure 5 shows that as α decreases, the distribution has fatter tails and in-
creased peakness. Indeed, we can show that the Lévy process corresponding to the
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MTS distribution has finite activity if α < 0 and infinite activity if α  0. More-
over, it has finite variation if α < 1 and infinite variation if α  1 (see Proposi-
tion 3.5.4 of [10]).

Figure 4. Probability density of the MTS distributions: dependence on C. Parameters: α = 1.4,
λ+ = 50, λ− = 50, µ = 0, C ∈ {0.0025, 0.005, 0.01, 0.02}

Figure 5. Fat tail probability density of the MTS distributions: dependence on α. Parameters:
α ∈ {0.8, 0.9, 1.1, 1.2, 1.4}, C = 0.02, λ+ = 50, λ− = 50, µ = 0

If we put

C = 2(α+1)/2

(√
π Γ

(
1− α

2

)
(λα−2

+ + λα−2
− )

)−1
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and

µ = −2−(α+1)/2CΓ
(

1− α

2

)
(λα−1

+ − λα−1
− ),

then X ∼ MTS(α, C, λ+, λ−, µ) has zero mean and unit variance. In this case,
we say that the random variable X has the standard MTS distribution, and write
X ∼ stdMTS(α, λ+, λ−).

2.4. Measure change on modified tempered stable distributions. To apply the
MTS distributions to no-arbitrage option pricing, we would need to determine an
equivalent martingale measure (EMM). In this section, we review a general re-
sult of equivalence of measures presented by Sato [19] and apply it to the MTS
distribution. The following theorem is a particular case of Theorem 33.1 in [19]:

THEOREM 2.2. Let (X, P) and (X, Q) be two infinitely divisible random vari-
ables on R with Lévy triplet (σ2, ν, γ) and (σ̃2, ν̃, γ̃), respectively. Then P and Q
are equivalent if and only if the Lévy triplet satisfies

(2.12) σ2 = σ̃2,

(2.13)
∞∫
−∞

(eψ(x)/2 − 1)2ν(dx) <∞,

where ψ(x) = log
(
ν̃(dx)/ν(dx)

)
. If σ2 = 0, then

(2.14) γ̃ − γ =
∫
|x|¬1

x(ν̃ − ν)(dx).

Since MTS distributions are infinitely divisible, we can apply Theorem 2.2 to
obtain the change of measure.

PROPOSITION 2.5. Let (X, P) and (X, Q) be two MTS distributed random
variables on R with parameters (α, C, λ+, λ−, µ) and (α̃, C̃, λ̃+, λ̃−, µ̃), respec-
tively. Then P and Q are equivalent if and only if C = C̃, α = α̃ and µ = µ̃.

3. THE MTS-GARCH OPTION PRICING MODEL

The MTS-GARCH stock price model is defined over a filtered probability
space

(
Ω,F, (Ft)t∈N,P

)
constructed as follows: Consider a sequence (εt)t∈N of

i.i.d. real random variables on a sequence of probability spaces (Ωt, Pt)t∈N such
that εt ∼ stdMTS(α, λ+, λ−) on the space (Ωt, Pt). Next, we define Ω :=∏

t∈NΩt, Ft := ⊗t
k=1σ(εk)⊗ F0 ⊗ F0 . . ., F := σ

(⋃
t∈N Ft

)
, and P := ⊗t∈NPt,

where F0 = {∅,Ω} and σ(εk) means the σ-algebra generated by εk on Ωk.
We propose the following model for the stock price dynamics:

(3.1) log
(

St

St−1

)
= rt − dt + λtσt − g(σt; α, λ+, λ−) + σtεt, t ∈ N,
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where St denotes the price of the underlying asset at time t, rt and dt denote the
risk free rate and dividend rate for the period [t − 1, t], respectively, and λt is
an Ft−1-measurable random variable. S0 is the present observed price. The func-
tion g(x;α, λ+, λ−) is the characteristic exponent of the Laplace transform for
the distribution stdMTS(α, λ+, λ−), i.e. g(x; α, λ+, λ−) = log

(
EPt [exp(xεt)]

)
.

The function g(x; α, λ+, λ−) is defined if x ∈ (−λ−, λ+) and its value can be
obtained from (2.1) if |x| < λ+ ∧ λ−, and by numerical calculation if x ∈ {x ∈
(−λ−, λ+) | |x|  λ+ ∧ λ−}. The one period ahead forecast variance σ2

t at time
t− 1 follows a GARCH(1,1) process with a restriction 0 < σt < λ+, i.e.

σ2
t = (α0 + α1σ

2
t−1ε

2
t−1 + β1σ

2
t−1) ∧ ρ, t ∈ N, ε0 = 0,(3.2)

where the coefficients α0, α1, and β1 are non-negative, α1 + β1 < 1, α0 > 0,
and 0 < ρ < λ2

+. Clearly, σt is Ft−1-measurable, and hence the process (σt)t∈N
is predictable. Moreover, the conditional expectation E[Ŝt/Ŝt−1|Ft−1] is equal to
exp(rt + λtσt), where Ŝt = St exp

(∑t
k=1 dk

)
is the stock price considering re-

investment of the dividends; thus λt can be interpreted as the market price of risk.

REMARK 3.1. If εt equals the standard normal distributed random variable for
all t ∈ N, g is to be the Laplace transform of εt, and we ignore the restriction σt <
λ+, then the model becomes ‘the normal GARCH model’ introduced by Duan [6].

PROPOSITION 3.1. Assume that t ∈ N is fixed and εt ∼ stdMTS(α, λ+, λ−)
under Pt. Suppose that positive real numbers λ̃+ and λ̃− satisfy the equation

(3.3) λα−2
+ + λα−2

− = λ̃α−2
+ + λ̃α−2

− .

Let

(3.4) k = 2−(α+1)/2CΓ
(

1− α

2

)
(λα−1

+ − λα−1
− − λ̃α−1

+ + λ̃α−1
− ),

where

C = 2(α+1)/2

(√
π Γ

(
1− α

2

)
(λα−2

+ + λα−2
− )

)−1

.

Then there is a probability measure Qt equivalent to Pt such that

(εt + k) ∼ stdMTS(α, λ̃+, λ̃−).

ASSUMPTION A. (i) There exist λ̃+ and λ̃− satisfying equations (3.3) and
λ̃+  λ+.

(ii) The market price of risk λt is given by

λt = k − (
g(σt; α, λ̃+, λ̃−)− g(σt; α, λ+, λ−)

)
/σt for each 0 ¬ t ¬ T,

where k is defined in (3.4).
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Under Assumption A, let Qt be the measure described in Proposition 3.1.

DEFINITION 3.1. Let T ∈ N be the time horizon. Define a new measure Q
on FT equivalent to measure P, with a Radon–Nikodym derivative dQ/dP = ZT ,
where the density process (Zt)0¬t¬T is defined according to

Z0 ≡ 1,

Zt :=
d(P1 ⊗ . . .⊗ Pt−1 ⊗Qt ⊗ Pt+1 ⊗ . . .⊗ PT )

dP
Zt−1, t = 1, 2, . . . , T.

LEMMA 3.1. The measure Q satisfies the following requirements:
(a) The discount asset price process (e−rtŜt)1¬t¬T is a Q-martingale with

respect to the filtration (Ft)1¬t¬T .

(b) We have

VarQ

(
log

(
St

St−1

) ∣∣Ft−1

)
a.s.= VarP

(
log

(
St

St−1

) ∣∣Ft−1

)
, 1 ¬ t ¬ T.

(c) The stock price dynamics under Q can be written as

log
(

St

St−1

)
= rt − dt − g(σt;α, λ̃+, λ̃−) + σtξt, 1 ¬ t ¬ T,

where (ξt)1¬t¬T is a sequence of real random variables on Ωt satisfying ξt ∼
stdMTS(α, λ̃+, λ̃−) under Qt for 1 ¬ t ¬ T . The variance process under Q has
the form

σ2
t =

(
α0 + α1σ

2
t−1(ξt−1 − k)2 + β1σ

2
t−1

) ∧ (
λ2

+(1− ε)
)
, t ∈ N, ξ0 = 0.

The stock price dynamics under Q which is stated in Lemma 3.1 (c) is called
the MTS-GARCH risk neutral price process. The arbitrage free price of a call op-
tion with strike price K and maturity T is given by

(3.5) Ct = exp
(−

T∑

k=t+1

rk

)
EQ[(ST −K)+|Ft],

where the stock price ST at time T is given by

ST = St exp
( T∑

k=t+1

(
(rk − dk)− g(σt; α, λ̃+, λ̃−) + σkξk

))
.
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3.1. Estimation of the parameters for the GARCH models. In this section,
we report on the maximum likelihood estimation (MLE) of both normal-GARCH
and MTS-GARCH models. In our empirical study, we use a data set including
the S&P 500 index (SPX), International Business Machines (IBM), Johnson and
Johnson (JNJ), and 3M (MMM) from April 1, 1996, to March 31, 2006. Data are
supplied by Yahoo! Finance. For the daily risk-free rate, we pick the yields of the
3-month T-bills and change them to the continuous compound rate. To simplify
the estimation, we impose a constant market price of risk λ. For IBM, JNJ, and
MMM, we use the adjusted-closing prices to estimate the market parameters with
the MLE. The adjusted-closing prices adjust to all applicable stock splits and stock
dividend distributions.

Our estimation procedure is as follows: First, we estimate the parameters α0,
α1, β1, and the constant market price of risk λ from the normal-GARCH model.
Second, we fix α0, α1, β1, and λ, and then estimate α, λ+, and λ− from the MTS-
GARCH model. Here we assume that σ2

0 = α0/(1− α1 − β1) and ρ = max{σ2
t :

t is the observed date}. We list the estimated GARCH parameters and the parame-
ters for the standard MTS distribution in Table 1.

For the assessment of the goodness-of-fit, we use the Kolmogrov–Smirnov
(KS) test. Moreover, we calculate the Anderson–Darling (AD) statistic to better
evaluate the tail fit. The KS statistic is defined as

KS = sup
xi

|F (xi)− F̂ (xi)|,

and the AD statistic is defined as

AD = sup
xi

|F (xi)− F̂ (xi)|√
F (xi)

(
1− F (xi)

) ,

where F is the cumulative distribution function and F̂ is the empirical cumula-
tive distribution function for a given observation {xi}. Table 2 provides the KS
statistic and their p-values. The p-values of the KS statistic are calculated using
the calculator designed by Marsaglia et al. [14]. According to this table, p-values
of the MTS-GARCH model are larger than those of the normal-GARCH model.
Moreover, we can see that the values of the AD statistic for the standard MTS

Table 1. Estimated parameters

GARCH parameters Standard MTS
β1 α1 α0 λ α λ+ λ−

SPX 0.9138 0.0767 1.2762E−6 0.0653 1.5479 2.0152 1.0091
IBM 0.9067 0.0904 3.5746E−6 0.0621 1.6705 0.3623 0.4803
JNJ 0.9179 0.0756 2.1964E−5 0.0523 1.4832 0.8032 1.0797

MMM 0.8496 0.1042 1.3184E−6 0.0524 1.4768 0.6163 0.8969
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Table 2. Statistic of the goodness of fit tests

Standard normal Standard MTS
KS(p-value) AD KS(p-value) AD

SPX 0.0307 (0.0180) 435.19 0.0273 (0.0482) 0.6982
IBM 0.0539 (0.0000) 33665 0.0245 (0.0985) 0.4716
JNJ 0.0395 (0.0008) 3656.0 0.0194 (0.3058) 1.2341

MMM 0.0473 (0.0000) 59987 0.0188 (0.3423) 1.2136

Figure 6. QQ-plots of the MLE fit for the residual distribution of IBM return process. The left
graph is the QQ-plot of the standard normal and empirical distribution of the innovation processes,
and the right graph is the QQ-plot of the standard MTS and empirical distribution of the innovation

processes

case are significantly smaller than those of the standard normal case. That means
the MTS-GARCH model explains the extreme event of the real innovation process
better than the normal-GARCH model does. We give an example of QQ-plots for
the IBM in Figure 6. The empirical density more or less deviates from the normal
distribution and this deviation almost disappears when we use the MTS distributed
innovation process.

3.2. Implied volatility for the GARCH option price models. In this section,
we discuss the property of the implied volatility for the MTS-GARCH option price
model. To determine the risk-neutral parameters, it is necessary to find λ̃+, λ̃−, and
k satisfying the Assumption A (i) and (ii), which is impossible if the market price
of risk λt is a constant. For this reason, the market parameters λ+, λ−, α, and the
risk-neutral parameters λ̃+, λ̃−, k have to be estimated simultaneously, in order to
obtain the non-constant market price of risk λt. Instead of estimating risk-neutral
parameters, we provide an example of the risk-neutral parameters in this paper, and
give the implied volatility curve for the call option price given by (3.5).

Since we do not have an efficient analytical form of the option price (3.5),
the call option prices are determined by the Monte Carlo simulation with 50,000
sample paths. We let β1 = 0.90, α1 = 0.09, and α0 = 3.5E − 5. Since the con-
stant market price of risk λ for the normal-GARCH option pricing model plays the
same role as the parameter k does for the MTS-GARCH option pricing model, we
let λ = k = 0.05. The daily risk-free rate of return is assumed to be constant: rt ≡
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Figure 7. The left picture shows volatility curves for 7 days of the time to maturity, and the right
picture shows the curves for 14 days of the time to maturity. The dashed line and solid line indicate
the implied volatility curve of the normal-GARCH model and of the MTS-GARCH model, respec-
tively. The x-axis is the strike price and the y-axis is the implied volatility. We assume that S0 = 100

r = 1.6E − 4. The risk-neutral parameters of the standard MTS innovation are:
α = 1.60, λ̃1 = 0.30, and λ̃2 = 0.10, and we assume that ρ = (0.09)2 = 0.0081
and σ0 = 0.0075. Figure 7 shows the calculated implied volatilities of the MTS-
GARCH and the normal-GARCH model prices of call options for given parame-
ters. The curves indicate that the volatility curve for the MTS-GARCH model has
larger convexity than the curve of the normal-GARCH model. The skewness of the
curve for the MTS-GARCH model is also larger than that of the normal-GARCH
model. In the end, we can obtain a more flexible implied volatility curve using the
parameters (α, λ̃1, λ̃2) of the MTS innovation distribution.

4. CONCLUSION

This paper introduces an alternative class of tempered stable distributions
which we call the Modified Tempered Stable distribution. It has similar proper-
ties as the TS distribution, but it is not fully included in the generalized class of
the tempered stable distributions by Rosiński. It can properly describe skewness
and kurtosis of asset returns. Next, we introduced an enhanced GARCH-model,
namely the MTS-GARCH model, by applying MTS innovations to the classical
GARCH model. As a result, the MTS-GARCH time series model for stock returns
explains the volatility clustering phenomenon, the leverage effect, and both condi-
tional skewness and leptokurtosis. The risk neutral measure is obtained by applying
a change of measure to the MTS distribution.

We obtained encouraging results from the empirical study. The empirical anal-
ysis on the S&P 500 index and three different stocks (IBM, JNJ, and MMM) shows
that the values of the goodness-of-fit statistics decrease under the GARCH model
with MTS innovations. By modeling the innovations with the MTS law, we im-
proved goodness-of-fit statistics for the GARCH model on the S&P 500 index and
the data of four different stock prices. Furthermore, the Kolmogrov–Smirnov p-
values for the MTS-GARCH model are larger than those for the normal-GARCH



106 Y. S. Kim et al.

model and the Anderson–Darling statistic of the MTS-GARCH model is signifi-
cantly smaller than that of the normal-GARCH model. In the risk-neutral return
process, the MTS-GARCH option pricing model offers a more flexible implied
volatility curve than the normal-GARCH model. The skewness and fat tails of
the MTS innovations seem to generate the difference. Consequently, the MTS-
GARCH model can be a more realistic model than the normal-GARCH model.
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5. APPENDIX

5.1. Special functions. The modified Bessel function of the second kind (see
[1], p. 290) is defined as

Kp(x) =
π

2 sin pπ

( ∞∑

k=0

(x/2)2k−p

k!Γ(k − p + 1)
−
∞∑

k=0

(x/2)2k+p

k!Γ(k + p + 1)

)
.(5.1)

Its asymptotic behavior can be described as follows:

(5.2) Kp(x) ∼ e−x

√
π

2x
, p  0, x→∞,

and

(5.3) Kp(x) ∼ Γ(p)
2

(
2
x

)p

, p > 0, x→ 0+.

The integral representation of Kp(x) is

Kp(x) =
1
2

(x

2

)p∞∫
0

exp
(
−t− x2

4t

)
t−p−1 dt

and the recurrence formula is given by

(5.4)
d

dx

(
xpKp(x)

)
= −xpKp−1(x).

The following lemma is useful.

LEMMA 5.1. If µ− p > −1 and a > 0, then
∞∫
0

xµKp(ax)dx =
2µ−1

aµ+1
Γ

(
1 + µ + p

2

)
Γ

(
1 + µ− p

2

)
.
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P r o o f. See [1], p. 299. ¥

Now define the hypergeometric function. Before doing it, let us introduce a
useful notation

(5.5) (a)0 = 1, (a)n = a(a + 1) . . . (a + n− 1), n = 1, 2, 3, . . . , a ∈ R,

called the Pochhammer symbol (see [1], p. 358). This symbol can also be defined
as follows:

(5.6) (a)n =
Γ(a + n)

Γ(a)
, n = 0, 1, 2, 3, . . .

The function

(5.7) F (a, b; c; x) =
∞∑

n=0

(a)n(b)n

(c)n

xn

n!
, |x| < 1,

is called the hypergeometric function (see [1], p. 361).

LEMMA 5.2. For k = 1, 2, 3, . . .

(5.8)
dk

dxk
F (a, b; c; x) =

(a)k(b)k

(c)k
F (a + k, b + k; c + k; x).

P r o o f. See [1], p. 367. ¥

5.2. Proof of Proposition 2.2

P r o o f. It suffices to show that
∞∫
0

(x2 ∧ 1)
K(α+1)/2(λx)

x(α+1)/2
dx <∞.

We first note that
∞∫
0

x2 exp
(
−(λx)2

4t

)
dx =

4t3/2

λ3

∞∫
0

y1/2e−ydy =
4
λ3

t3/2Γ
(

3
2

)
=

2
√

π

λ3
t3/2.

Hence we have
∞∫
0

x2 K(α+1)/2(λx)
x(α+1)/2

dx

=
1
2

(
λ

2

)(α+1)/2∞∫
0

∞∫
0

x2 exp
(
−(λx)2

4t

)
dx e−tt−(α+3)/2dt

=
1
2

(
λ

2

)(α+1)/2 2
√

π

λ3

∞∫
0

e−tt−α/2dt =
λ(α−5)/2√π

2(α+1)/2
Γ

(
1− α

2

)
.

Therefore, we have
∞∫
0

(x2 ∧ 1)
K(α+1)/2(λx)

x(α+1)/2
dx ¬

∞∫
0

x2 K(α+1)/2(λx)
x(α+1)/2

dx <∞. ¥



108 Y. S. Kim et al.

5.3. Proofs of Theorem 2.1 and Proposition 2.4

LEMMA 5.3. Let λ > 0. Then

λ(α+1)/2
1∫
0

K(α+1)/2(λx)
x(α−1)/2

dx

=





λα−1

2(α+1)/2
Γ
(

1− α

2

)
− λ(α−1)/2K(α−1)/2(λ) if α < 1,

∞ if α  1.

P r o o f. See Lemma 3.3.1 in [10]. ¥

LEMMA 5.4. Let u2 < λ2.
1. If α < 1, then

(5.9)
∞∑

n=1

(iu)n

n!
λα/2+1/2

∞∫
0

xn−α/2−1/2K(α+1)/2(λx)dx

=





2−α/2−3/2√π Γ(−α/2)
(
(λ2 + u2)α/2 − λα

)
+iu2−α/2−1/2λα−1Γ(1/2− α/2)F (1, 1/2− α/2; 3/2;−u2/λ2) if α 6= 0,√

π 2−3/2 log
(
λ2/(λ2 + u2)

)
+iu2−1/2λ−1Γ(1/2)F (1, 1/2; 3/2;−u2/λ2) if α = 0.

2. If α ∈ (1, 2), then

(5.10)
∞∑

n=2

(iu)n

n!
λα/2+1/2

∞∫
0

xn−α/2−1/2K(α+1)/2(λx)dx

=
√

π

2α/2+3/2
Γ
(
− α

2

)(
(λ2 + u2)α/2 − λα

)

+
iuλα−1Γ

(
1
2 − α

2

)

2α/2+1/2

(
F

(
1,

1
2
− α

2
;
3
2
;−u2

λ2

)
− 1

)
.

P r o o f. See Lemma 3.3.2 in [10]. ¥

P r o o f o f T h e o r e m 2.1. Let

H(α, λ, u) =
∞∫
0

(eiux − 1− iux1|x|¬1)λ
α/2+1/2 K(α+1)/2(λx)

xα/2+1/2
dx,

where λ > 0 and |iu| < λ. Let α < 1. Then we have

H(α, λ, u)

= λα/2+1/2
∞∫
0

(eiux − 1)
K(α+1)/2(λx)

xα/2+1/2
dx− iuλα/2+1/2

1∫
0

K(α+1)/2(λx)
xα/2−1/2

dx.
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By Lemma 5.3 and the series expansion of the exponential function, we have

H(α, λ, u) =
∞∑

n=1

(iu)n

n!
λα/2+1/2

∞∫
0

xn−α/2−1/2K(α+1)/2(λx)dx

− iu

(
λα−1

2α/2+1/2
Γ

(
1
2
− α

2

)
− λα/2−1/2K(α−1)/2(λ)

)
.

By Lemma 5.4, we obtain

H(α, λ, u) =
√

π 2−α/2−3/2Γ
(
− α

2

)(
(λ2 + u2)α/2 − λα

)
1α6=0

+
√

π 2−3/2 log
(

λ2

λ2 + u2

)
1α=0 +

iuλα−1Γ
(

1
2 − α

2

)

2α/2+1/2
F

(
1,

1
2
− α

2
;
3
2
;−u2

λ2

)

− iu

(
λα−1

2α/2+1/2
Γ

(
1
2
− α

2

)
− λα/2−1/2K(α−1)/2(λ)

)
.

Let α ∈ (1, 2). Then we have

H(α, λ, u) = λα/2+1/2
∞∫
0

(eiux − 1− iux)
K(α+1)/2(λx)

xα/2+1/2
dx

+ iuλα/2+1/2
∞∫
1

K(α+1)/2(λx)
xα/2−1/2

dx.

Since we can show that

λα/2+1/2
∞∫
1

x−α/2+1/2K(α+1)/2(λx)dx = λα/2−1/2K(α−1)/2(λ) for α ∈ (1, 2),

we have

H(α, λ, u)

= λα/2+1/2
∞∫
0

(eiux − 1− iux)
K(α+1)/2(λx)

xα/2+1/2
dx + iuλα/2−1/2K(α−1)/2(λ).

By the series expansion of the exponential function, we obtain
H(α, λ, u)

=
∞∑

n=2

(iu)n

n!
λα/2+1/2

∞∫
0

xn−α/2−1/2K(α+1)/2(λx)dx+ iuλα/2−1/2K(α−1)/2(λ).

By Lemma 5.4, we have

H(α, λ, u) =
√

π

2α/2+3/2
Γ

(
−α

2

) (
(λ2 + u2)α/2 − λα

)

+
iuλα−1Γ

(
1
2 − α

2

)

2α/2+1/2
F

(
1,

1
2
− α

2
;
3
2
;−u2

λ2

)

− iu

(
Γ
(

1
2 − α

2

)

2α/2+1/2
λα−1 − λα/2−1/2K(α−1)/2(λ)

)
.
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So, for α ∈ (−∞, 1) ∪ (1, 2) and |iu| < λ+ ∧ λ−, we have

iuγ +
∞∫
−∞

(eiux − 1− iux1|x|¬1)ν(dx) = iuγ + CH(α, λ+, u) + CH(α, λ−, u)

= iuµ + GR(u;α,C, λ+, λ−) + GI(u; α, C, λ+, λ−).

By the Lévy–Kintchine formula, we obtain the desired characteristic function in
the theorem. The characteristic function φX(u) can be extended via analytic con-
tinuation to the region {z ∈ C : |Im(z)| < λ+ ∧ λ−}. ¥

P r o o f o f P r o p o s i t i o n 2.4. We first note that if h is an infinitely dif-
ferentiable function, then we have, for n ∈ N and k ∈ R,

d2n+1

du2n+1

(
uh(ku2)

)∣∣
u=0

= 2n · 1 · 3 · . . . · (2n + 1)knh(n)(0),

and
d2n

du2n

(
uh(ku2)

)∣∣
u=0

= 0.

By this note and (5.8), we obtain

d2n+1

du2n+1

(
uF

(
1,

1
2
− α

2
;
3
2
;
u2

λ2

))∣∣∣∣
u=0

= 2n · 1 · 3 · . . . · (2n + 1)λ−2n
(1)n

(
1
2 − α

2

)
n(

3
2

)
n

F

(
1 + n,

1
2
− α

2
+ n;

3
2

+ n; 0
)

=
(2n + 1)!

(
1
2 − α

2

)
n(

3
2

)
n
λ2n

=
(

2
λ

)2n

n!
Γ

(
n + 1

2 − α
2

)

Γ
(

1
2 − α

2

)

and
d2n

du2n

(
uF

(
1,

1
2
− α

2
;
3
2
;
u2

λ2

))∣∣∣∣
u=0

= 0.

Hence we have, for m ∈ N,

(5.11)
dm

dum

(
uF

(
1,

1
2
− α

2
;
3
2
;
u2

λ2

))∣∣∣∣
u=0

=





(
2
λ

)m−1(m− 1
2

)
!
Γ

(
m
2 − α

2

)

Γ
(

1
2 − α

2

) if m = 1, 3, 5, . . .

0 if m = 2, 4, 6, . . .

On the other hand, if α 6= 0, we have

d2n

du2n

(
(λ2 − u2)α/2 − λα

)∣∣
u=0

=
(2n)!
n!

(
− α

2

)

n

λ2(α/2−n) =
(2n)!
n!

Γ
(
n− α

2

)

Γ
(− α

2

) λ2(α/2−n)
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and
d2n+1

du2n+1

(
(λ2 − u2)α/2 − λα

)∣∣
u=0

= 0,

so we obtain

(5.12)
dm

dum

(
(λ2 − u2)α/2 − λα

)∣∣
u=0

=





0 if m = 1, 3, 5, . . . ,

m!(
m
2

)
!
Γ

(
m
2 − α

2

)

Γ(−α
2 )

λα−m if m = 2, 4, 6, . . .

For m ∈ N and α 6= 0, the cumulant cm(X) is given by

(5.13) cm(X) =
dm

dum
(log E[euX ])

∣∣
u=0

=
dm

dum
(µu) +

√
πCΓ

(− α
2

)

2α/2+3/2

2∑

j=1

[
dm

dum

(
(λ2

j − u2)α/2 − λ
α/2
j

)]

u=0

− CΓ
(

1
2 − α

2

)

2α/2+1/2

2∑

j=1

[
(−1)jλα−1

j

dm

dum

(
uF

(
1,

1
2
− α

2
;
3
2
;
u2

λ2
j

))]

u=0

.

Substituting (5.11) and (5.12) into (5.13), we obtain (2.11).
Moreover, since we have

dm

dum
log

(
λ2

λ2 + u2

)∣∣∣∣
u=0

=





0 if m = 1, 3, 5, . . . ,
m!(
m
2

)
!
Γ
(

m

2

)
λ−m if m = 2, 4, 6, . . . ,

we obtain (2.11) by the similar arguments given above. ¥

5.4. Proof of Proposition 2.5

LEMMA 5.5. Let λ > 0 and α ∈ (0, 2). Then we have

(1) (λx)α/2+1/2K(α+1)/2(λx) = 2α/2−1/2Γ
(

α

2
+

1
2

)

+
2α/2−1/2π

cos
(

α
2 π

)
( ∞∑

k=1

(λx/2)2k

k! Γ
(
k − (

α
2 + 1

2

)
+ 1

) −
∞∑

k=0

(λx/2)2k+α+1

k! Γ
(
k + α

2 + 1
2 + 1

)
)
,

(2)
1∫
0

x−α

( ∞∑

k=1

(λx/2)2k

k! Γ
(
k − (

α
2 + 1

2

)
+ 1

) −
∞∑

k=0

(λx/2)2k+α+1

k! Γ
(
k + α

2 + 1
2 + 1

)
)

dx

=
− cos

(
α
2 π

)

2α/2−1/2π
λα/2−1/2K(α−1)/2(λ)− 1

2 Γ
(

3
2 − α

2

) +
λα−1

2α Γ
(

α
2 + 1

2

) .
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P r o o f. (1) The series form of the modified Bessel function of the second
kind is given by (5.1). Hence we have

(λx)α/2+1/2K(α+1)/2(λx)

= (λx)α/2+1/2 π

2 sin
(

α
2 + 1

2

)
π

( ∞∑

k=0

(λx/2)2k−α/2+1/2

k! Γ
(
k − (

α
2 + 1

2

)
+ 1

)

−
∞∑

k=0

(λx/2)2k+α/2+1/2

k! Γ
(
k +

(
α
2 + 1

2

)
+ 1

)
)

=
2α/2−1/2π

sin
(

α
2 + 1

2

)
π

(
1

Γ
(
1− α

2 − 1
2

) +
∞∑

k=1

(λx/2)2k

k! Γ
(
k − (

α
2 + 1

2

)
+ 1

)

−
∞∑

k=0

(λx/2)2k+α+1

k! Γ
(
k +

(
α
2 + 1

2

)
+ 1

)
)

.

Since Γ(x)Γ(1− x) = π
sin πx and sin

(
α
2 + 1

2

)
π = cos

(
α
2 π

)
, we obtain the result.

(2) We can solve the following equation:

1∫
0

x−α

( ∞∑

k=1

(λx/2)2k

k! Γ
(
k − (

α
2 + 1

2

)
+ 1

) −
∞∑

k=0

(λx/2)2k+α+1

k! Γ
(
k + α

2 + 1
2 + 1

)
)

dx

=
λα/2−1/2

2α/2+1/2

( ∞∑

k=1

(λ/2)2k−(α/2−1/2)

k! Γ
(
k − (

α
2 − 1

2

)
+ 1

) −
∞∑

k=1

(λ/2)2k+(α/2−1/2)

k! Γ
(
k +

(
α
2 − 1

2

)
+ 1

)
)

.

By the series form of K(α−1)/2(λ), we can obtain the result. ¥

P r o o f o f P r o p o s i t i o n 2.5. Let (σ, ν, γ) and (σ̃, ν̃, γ̃) be Lévy triplets
of XP and XQ, respectively. Since σ = σ̃ = 0, (2.12) is satisfied. Let

k(α, λ, x) =
λα/2+1/2K(α+1)/2(λx)

xα/2+1/2
.

Then the function ψ(x) = ln
(
dν̃(x)/dν(x)

)
is given by

ψ(x) = ln
(

C̃k(α̃, λ̃+, x)
Ck(α, λ+, x)

)
1x>0 + ln

(
C̃k(α̃, λ̃−, x)
Ck(α, λ−, x)

)
1x<0,

and so
∞∫
−∞

(eψ(x)/2 − 1)2ν(dx) =
∞∫
0

(√
C̃k(α̃, λ̃+, x)1/2 −

√
Ck(α, λ+, x)1/2

)2
dx

+
0∫
−∞

(√
C̃k(α̃, λ̃−, x)1/2 −

√
Ck(α, λ−, x)1/2

)2
dx.
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If α < α̃, then for j = 1, 2 we have

lim
x→0

√
C̃k(α̃, λ̃j , x)1/2 −√Ck(α, λj , x)1/2

x−α̃/2−1/2
=

√
C̃2α̃/2−1/2 Γ

(
α̃

2
+

1
2

)
.

If α = α̃ but C < C̃, then for j = 1, 2 we have

lim
x→0

√
C̃k(α̃, λ̃j , x)1/2 −√Ck(α, λj , x)1/2

x−α̃/2−1/2

= (
√

C̃ −
√

C)

√
2α̃/2−1/2 Γ

(
α̃

2
+

1
2

)
.

Hence if α < α̃ or α = α̃ and C < C̃, then (eψ(x)/2 − 1)2 is equivalent to x−α̃−1

near zero, so it is not integrable.
Suppose α = α̃ and C = C̃. Then we have

ψ(x) = ln
(

k(α, λ̃+, x)
k(α, λ+, x)

)
1x>0 + ln

(
k(α, λ̃−, x)
k(α, λ−, x)

)
1x<0.

We can show that limx→0 ψ(x) = 0 and limx→0 ψ′(x) = 0. Hence, there is a θ
such that ψ(x) < θ|x| for x ∈ [−1, 1]. Thus

∫
|x|¬1

(eψ(x)/2 − 1)2ν(dx) ¬
∫
|x|¬1

(eθ|x|/2 − 1)2ν(dx) <∞,

and ∞∫
1

(eψ(x)/2 − 1)2ν(dx) ¬
∞∫
1

ν̃(dx) +
∞∫
1

ν(dx) <∞,

and, similarly, we can show that

−1∫
−∞

(eψ(x)/2 − 1)2ν(dx) <∞.

Therefore, the condition (2.13) holds if and only if α = α̃ and C = C̃.
We have, by Lemma 5.5 (1),

1∫
0

x−α
(
(λ̃±x)α/2+1/2K(α+1)/2(λ̃±x)− (λ±x)α/2+1/2K(α+1)/2(λ±x)

)
dx

=
2α/2−1/2π

cos
(

α
2 π

)
1∫
0

( ∞∑

k=1

(λ̃±x/2)2k

k! Γ
(
k − (

α
2 + 1

2

)
+ 1

) −
∞∑

k=0

(λ̃±x/2)2k+α+1

k! Γ
(
k + α

2 + 1
2 + 1

)
)

x−αdx

− 2α/2−1/2π

cos
(

α
2 π

)
1∫
0

( ∞∑

k=1

(λ±x/2)2k

k! Γ
(
k − (

α
2 + 1

2

)
+ 1

) −
∞∑

k=0

(λ±x/2)2k+α+1

k! Γ
(
k + α

2 + 1
2 + 1

)
)

x−αdx.
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By Lemma 5.5 (2) and the fact that

π

cos
(

α
2 π

) =
π

sin
(

α
2 + 1

2

)
π

= Γ
(

α

2
+

1
2

)
Γ
(

1
2
− α

2

)
,

we obtain

(5.14)
1∫
0

x−α
(
(λ̃±x)α/2+1/2K(α+1)/2(λ̃±x)− (λ±x)α/2+1/2K(α+1)/2(λ±x)

)
dx

=
2α/2−1/2π

cos
(

α
2 π

)
[− cos

(
α
2 π

)

2α/2−1/2π
λ

α/2−1/2
± K(α−1)/2(λ̃±) +

λ̃α−1
±

2α Γ
(

α
2 + 1

2

)

+
cos

(
α
2 π

)

2α/2−1/2π
λ

α/2−1/2
± K(α−1)/2(λ±)− λα−1

±
2α Γ

(
α
2 + 1

2

)
]

= −(
λ̃

α/2−1/2
± K(α−1)/2(λ̃±)− λ

α/2−1/2
± K(α−1)/2(λ±)

)

+
Γ

(
1
2 − α

2

)

2α/2+1/2
(λ̃α−1
± − λα−1

± ).

Providing that α = α̃ and C = C̃, the condition (2.14) is equal to

µ̃ + C

(
Γ

(
1
2 − α

2

)

2α/2+1/2
(λ̃α−1

+ − λ̃α−1
− )− λ̃

α/2−1/2
+ K(α−1)/2(λ̃+)

+ λ̃
α/2−1/2
− K(α−1)/2(λ̃−)

)

− µ− C

(
Γ

(
1
2 − α

2

)

2α/2+1/2
(λα−1

+ − λα−1
− )− λ

α/2−1/2
+ K(α−1)/2(λ+)

+ λ
α/2−1/2
− K(α−1)/2(λ−)

)

= C
1∫
0

x−α
(
(λ̃+x)α/2+1/2K(α+1)/2(λ̃+x)− (λ+x)α/2+1/2K(α+1)/2(λ+x)

)
dx

− C
1∫
0

x−α
(
(λ̃−x)α/2+1/2K(α+1)/2(λ̃−x)− (λ−x)α/2+1/2K(α+1)/2(λ−x)

)
dx.

Hence, by equation (5.14), the condition holds if and only if µ̃ = µ. ¥

5.5. Proofs of Proposition 3.1 and Lemma 3.1

P r o o f o f P r o p o s i t i o n 3.1. Let t ∈ N be fixed, λ̃+ and λ̃− satisfy equa-
tions (3.3) and ξt = εt + k, where k is defined in (3.4). Then

ξt ∼ MTS(α, C, λ+, λ−, µ + k),
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where

C = 2α/2+1/2

(√
π Γ

(
1− α

2

)
(λα−2

+ + λα−2
− )

)−1

and

µ = −2−α/2−1/2C Γ
(

1
2
− α

2

)
(λα−1

+ − λα−1
− ).

For any λ+, λ− > 0, put
µ̃λ̃+,λ̃− = µ + k.

Then ξt ∼ MTS(α, C, λ̃+, λ̃−, µ̃λ̃+,λ̃−) under the probability measure Qλ̃+,λ̃− .
Under Qλ̃+,λ̃− , the variance equals

VarQλ̃+,λ̃−
(ξt) =

√
π Γ

(
1− α

2

)

2α/2+1/2
C(λ̃α−2

+ + λ̃α−2
− )

=
λ̃α−2

+ + λ̃α−2
−

λα−2
+ + λα−2

−

and the mean equals

EQλ̃+,λ̃−
(ξt) = µ̃λ̃+,λ̃− + 2−α/2−1/2CΓ

(
1
2
− α

2

)
(λ̃α−1

+ − λ̃α−1
− )

= k − 2−α/2−1/2CΓ
(

1
2
− α

2

)
(λα−1

+ − λα−1
− − λ̃α−1

+ + λ̃α−1
− ).

By (3.3) and (3.4), we have EQλ̃+,λ̃−
(ξt) = 0 and VarQλ̃+,λ̃−

(ξt) = 1. Hence, let

Qt = Qλ̃+,λ̃− . Then Qt and Pt are equivalent and ξt ∼ stdMTS(α, λ̃+, λ̃−). ¥

P r o o f o f L e m m a 3.1. Let εt ∼ stdMTS(α, λ+, λ−), t ∈ N.
(a) Using Definition 3.1, the Laplace transform of the MTS distribution and

the measurability of σt with respect to Ft−1, we obtain

EQ[Ŝt|Ft−1] = EQ
[
Ŝt−1 exp

(
rt + λtσt − g(σt;α, λ+, λ−) + σtεt

)|Ft−1

]

= EQ
[
Ŝt−1 exp

(
rt − g(σt; α, λ̃+, λ̃−) + σt(k + εt)

)|Ft−1

]

= Ŝt−1 exp
(
rt − g(σt; α, λ̃+, λ̃−)

)
EQ

[
exp

(
σt(εt + k)

)|Ft−1

]

= Ŝt−1 exp
(
rt − g(σt; α, λ̃+, λ̃−)

)
EQ

[
EQt

[
exp

(
σt(εt + k)

)|σt

]|Ft−1

]

= Ŝt−1 exp
(
rt − g(σt; α, λ̃+, λ̃−)

)
EQ

[
exp

(
g(σt;α, λ̃+, λ̃−)

)|Ft−1

]

= Ŝt−1 exp(rt).

(b) Since VarQ(εt + k|Ft−1)
a.s.= 1 a.s.= VarP(εt|Ft−1), we can prove the re-

quired equality.
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(c) Let ξt = εt + k. Then ξt ∼ stdMTS(α, λ̃+, λ̃−) under Qt for 1 ¬ t ¬ T ,
and the following equality holds :

log
(

St

St−1

)
= rt − dt − g(σt; α, λ̃+, λ̃−) + σt(εt + k)

= rt − dt − g(σt; α, λ̃+, λ̃−) + σtξt.

In the variance process, εt−1 has to be replaced by ξt−1 − k in order to achieve the
desired result. ¥
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