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Abstract. Maximal inequalities for U-processes are required in order
to achieve a reduction to the first nonvanishing term in their Hoeffding’s
decomposition, which is the relevant quantity for statistical inference. This
paper proves new maximal inequalities under strong mixing for U-processes
in some function spaces. As an application we derive a uniform central limit
theorem.
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1. INTRODUCTION

This paper establishes maximal inequalities for U-processes of arbitrary fi-
nite order. A U-process is a U-statistic whose U-kernel belongs to some class of
functions. The simplest example is an empirical process, which corresponds to a
first order U-process. Many statistical estimators can be written as U-statistics (e.g.
quadratic forms) and the extension to a U-process is often considered, especially
for nonparametric estimation (e.g. Han [13], Honore and Powell [14], Cavanagh
and Sherman [7], Ghosal et al. [12]). Unfortunately, for technical reasons, inde-
pendent observations are usually assumed, some exceptions being Fan and Li [10],
Fan and Ullah [11] and Denker and Keller [8].

We derive uniform bounds for U-processes when the underlying observations
are strongly mixing. Because of dependence, well-known results in the literature
for U-processes (i.e. Arcones and Giné [3]) do not apply. Some maximal inequali-
ties for U-processes under β mixing have been established by Arcones and Yu [4]
using Berbee’s coupling method for β mixing sequences, but this approach requires
some lengthy technical details and is not applicable in the strong mixing case (see
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also Borovkova et al. [6]). Recall that strong mixing is a weaker condition than β
mixing (see Rio [16] for details). The goal of the paper is to establish some familiar
results of U-processes in the unfamiliar context of strongly mixing random vari-
ables. As in Rio [16] we use a representation of functions in some space by means
of wavelets (see also Birgé and Massart [5]).

The result of this paper only applies to U-processes indexed by classes of
functions in some Besov space, hence in this respect it is less general than the result
derived in Arcones and Yu [4]. The main motivation of the paper is the reduction
to the first nonvanishing term in Hoeffding’s decomposition of a U-process. The
first nonvanishing term in a U-process is the one that determines the asymptotic
distribution of the process. Hence, for statistical inference it is required that we
find such a reduction. To this end, maximal inequalities for U-processes are the
necessary technical tool. An example of such application will be given. Since in
practice observations might not be independent, the extension to dependent random
variables should be pursued. The results are stated in such a way that we can easily
bound the reminder terms in a U-process and obtain explicit rates of convergence.

The proof of the result makes use of wavelets representation of functions in
some Besov spaces and the idea of Arcones and Giné [3] to rewrite U-statistics
in terms of powers of partial sums. Moment inequalities for powers of strongly
mixing partial sums can then be applied (see Rio [16]).

The plan for the paper is as follows. Section 2 provides some background
definitions and states the result of the paper. Section 3 contains further notation
and proves the result.

2. MAXIMAL INEQUALITIES FOR U-PROCESSES UNDER STRONG MIXING

We will use ‖. . .‖p,P and ‖. . .‖p,λ to denote, respectively, the Lp norm with
respect to the underlying probability measure P and the Lebesgue measure λ, while
|. . .| is the Euclidean norm. The symbols . and�mean inequality and equality up
to some finite absolute constant of proportionality. We now turn to the definition of
U-processes.

2.1. Definition and notation for U-processes. Consider a stationary sequence
of random variables (Xi)i∈Z with values in R. Let δx be the point measure at x,
i.e. δx (A) = 1 if x ∈ A ⊂ R and δx (A) = 0 otherwise. Suppose f : Rm → R is
a symmetric function of its arguments. Let P := law (Xi) for all i. Borrowing the
notation from Arcones and Giné [3] and Arcones and Yu [4], define πP

k,m as an
operator on f such that

(2.1) πP
k,mf (x1, . . . , xk) = (δx1 −P) . . . (δxk

−P)Pm−kf (X1, . . . , Xm),

where Q1 . . .Qmf =
∫

.. .
∫

f (x1, . . . , xm) dQ1 (x1) . . . dQm (xm) for any mar-
ginal measure Qk (= δxk

,P, above) and Pm−k = P . . .P is the m− k product of
the marginals. Given a function g : Rm → R, we call g a P-canonical function if it
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is symmetric and Eg (x1, . . . , xm−1, Xm) = 0 for any x1, . . . , xm−1. Then πP
k,mf

is a P-canonical function in k variables (k = 1, . . . , m). If f is not symmetric, we
may write

Sf =
1
m!

∑

1¬i1,...,im¬n

f (xi1 , . . . , xim)

for its symmetric version. To ease notation assume f is symmetric.
Let F be a class of symmetric measurable real functions on Rm. A U-process

of order m with U-kernel in F is defined as

(U (m)
n (f)

)
f∈F

:=
(

(n−m)!
n!

∑

(i1,...,im)∈In
m

f (Xi1 , . . . , Xim), f ∈ F

)
,

where In
m := {(i1, . . . , im) : 1 ¬ ij ¬ n, ij 6= ik if j 6= k} (see Serfling [17] and

Arcones and Giné [3] for details on U-statistics and U-processes, respectively).
Hence,

(U (m)
n (f)

)
f∈F

is a collection of U-statistics. Then
(U (m)

n (f)
)
f∈F

has the
following Hoeffding’s decomposition:

(2.2) U (m)
n (f) =

m∑

k=0

(
m

k

)
U (k)

n (πP
k,mf) = Pmf +

m∑

k=1

(
m

k

)
U (k)

n (πP
k,mf),

where πP
k,mf (k = 1, . . . ,m) are P-canonical functions.

2.2. U-kernels in Besov spaces. The U-kernel f ∈ F of the process will be
restricted to the Besov space Bs,∞

p (Rm), a smoothness subspace of Lp (Rm). To
define this space, let us define the rth difference in the direction of h ∈ Rm:

4r
h (f, x) :=

r∑

j=0

(−1)r+j

(
r

j

)
f (x + jh),

so that 41
h (f, x) = f (x + h) − f (x) and higher differences are obtained by in-

duction. The modulus of smoothness of order r of f is given by

ωr (f, t)p := sup
|h|¬t

( ∫
Rm

|4r
h (f, x)|p dx

)1/p
, t > 0.

Let s > 0 and r = bsc + 1, where bsc is the integer part of s. The Besov space
Bs,∞

p (Rm) is defined as the set of all functions in Lp (Rm) such that

(2.3)
( ∫
Rm

|4r
h (f, x)|p dx

)1/p ¬M |h|s

for all h ∈ Rm and some finite M. This space is equipped with the seminorm
|f |Bs,∞

p
:= supt>0 t−sωr (f, t)p and the norm ‖f‖Bs,∞

p
:= |f |Bs,∞

p
+ ‖f‖p,λ. Note

that |. . .|Bs,∞
p

is a seminorm because if f is a polynomial of degree less than r,
then4r

h (f, x) = 0, implying |f |Bs,∞
p

= 0. A discussion of Besov spaces and their
relation to Sobolev spaces can be found in Adams and Fournier [1].
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2.3. Dependence condition. We introduce notation for the weak dependence
condition satisfied by the stationary sequence (Xi)i¬k∈Z . Let Fk := σ (Xi, i ¬ k)
andFk := σ (Xi, i  k) be the sub-σ-algebras generated by (Xi)i¬k and (Xi)ik,
respectively. We say that (Xi)i∈Z is α mixing if limn α (F0,Fn) = 0, where

α (F0,Fn) := sup
A,B
|Pr (A ∩B)− Pr (A) Pr (B)|

= sup
A,B
|Cov(IA, IB)|,

(2.4)

and A ∈ F0, B ∈ Fn (IA and IB are indicator functions of A and B, respectively).
We call αn := α (F0,Fn) the strong mixing coefficient of (Xi)i∈Z.

2.4. Statement of the result. We have the following equicontinuity inequality
for U-processes.

THEOREM 2.1. Suppose that (Xi)i∈Z has strong mixing coefficients satisfying
supj>0 jmαj <∞. Let F be a class of symmetric functions such that

F ⊂ Bs,∞
p (Rm) ∩ L2 (Rm),

where s ∈ (m/p,∞) and p ∈ [1, 2]. Then, for all J ∈ N and γ > 0,

‖ sup
f,g∈F

‖f−g‖2,λ¬γ

|U (m)
n (f)− U (m)

n (g)|‖2,P

. n−1/2(sup
f∈F
‖f‖Bs,∞

p
2J(m/p−s) + γ2Jm/2)

and

‖ sup
f,g∈F

‖f−g‖2,λ¬γ

|U (k)
n (πP

k,mf)− U (k)
n (πP

k,mg)|‖2,P

. n−k/2(sup
f∈F
‖f‖Bs,∞

p
2J(m/p−s) + γ2Jm/2).

REMARK 2.1. Clearly, Theorem 2.1 implies

‖ sup
f∈F
|U (m)

n (f)|‖2,P . n−1/2(sup
f∈F
‖f‖Bs,∞

p
2J(m/p−s) + ‖f‖2,λ 2Jm/2).

REMARK 2.2. Note that Bs,∞
p can be embedded into Bs′,∞

p′ as long as p < p′

and s −m/p = s′ −m/p′ > 0 (see, e.g., Theorem 2.7.1 in Triebel [18]). Given
that the statement of Theorem 2.1 depends on s−m/p > 0 only, we could choose
p = 2 with no loss of generality. To simplify reference to some results to be used,
we do not make use of this embedding.
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2.5. Application: Donsker theorem for U-processes. As an application of The-
orem 2.1 consider a U-process with non-degenerate first term in its Hoeffding’s
decomposition. Then

√
n
(U (m)

n (f)−Pmf
)
f∈F

=
(

m
√

n U (1)
n (πP

1,mf) +
√

n
m∑

k=2

(
m

k

)
U (k)

n (πP
k,mf)

)

f∈F

.

Under the conditions of Theorem 2.1, for F ⊂Bs,∞
p (Rm) ∩ L2 (Rm) the U-

process is stochastically equicontinuous (setting γ � 2J(m/p−m/2−s)) and has the
same limiting distribution as

(
m
√

n U (1)
n (πP

1,mf)
)
f∈F

because

√
n

m∑

k=2

(
m

k

)∥∥ sup
f∈F
|U (k)

n (πP
k,mf)|∥∥

2,P . n−1/2

by Theorem 2.1. By Theorem 2.1 we also know that
(
m
√

nU (1)
n (πP

1,mf)
)
f∈F

is
stochastically equicontinuous. Then, if F is totally bounded with respect to (the
metric induced by) ‖. . .‖2,λ , to show that

√
n
(U (m)

n (f)−Pmf
)
f∈F

converges to
a Gaussian process with ‖. . .‖2,λ continuous sample paths, we only need finite-
dimensional convergence of m

√
n U (1)

n (πP
1,mf) (see, e.g., Van der Vaart and Well-

ner [19], Theorems 1.5.4 and 1.5.7). This follows by an application of the central
limit theorem for strongly mixing sequences (e.g., Rio [16], Theorem 4.2). Hence
we have easily proved the following

COROLLARY 2.1. Suppose F is a symmetric totally bounded (with respect
to ‖. . .‖2,λ) class of functions in Bs,∞

p (Rm) ∩ L2 (Rm) , where s ∈ (m/p,∞)
and p ∈ [1, 2]. Suppose the strong mixing coefficients satisfy supj>0 jmαj < ∞.
Then

√
n
(U (m)

n (f) − Pmf
)
f∈F

converges weakly to a mean zero Gaussian pro-
cess

(
G (f)

)
f∈F

with a.s. continuous sample paths and covariance function

EG (f)G (g) = m2Cov
(
πP

1,mf(X1), πP
1,mg (X1)

)

+ m2
∞∑

i=1

[
Cov

(
πP

1,mf(X1), πP
1,mg (X1+i)

)

+ Cov
(
πP

1,mf(X1+i), πP
1,mg (X1)

)]
.

3. PROOF

The proof of Theorem 2.1 relies on multidimensional wavelet representation
for functions in Bs,∞

p . Details on this can be found in the book of Meyer [15]
and the review article of DeVore and Lucier [9]. Since ‖f‖2,λ <∞, f : Rm → R
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admits the following multiresolution representation via wavelet expansion:

(3.1) f =
∑

θ∈Zm

bf
θϕθ +

∞∑

j=0

∑

θ∈Θj

af
θψθ,

where Θj := 2−j−1Zm\2−jZm and {ϕθ : θ ∈ Zm}, {ψθ : θ ∈ Θj , j ∈ N} are
functions which can be chosen to have a compact support in Rm. In particular,
{ϕθ : θ ∈ Zm} is a father wavelet, while {ψθ : θ ∈ Θj , j  0} are mother wavelets
(see, e.g., Meyer [15], Chapter 3.1). The multidimensional wavelets can be con-
structed from wavelets on R by the tensor product method (Meyer [15], Chap-
ter 3.3). Let ϕ and ψ be wavelets on R at a resolution level j = 0. To ease notation
define ψ0 := ϕ and ψ1 := ψ. Hence,

ψθ (x1, . . . , xm) =
∑

(ε1,...,εm)∈{0,1}m\{0}m

m∏
k=1

2j/2ψεk(2jxk − qk)

=
∑

(ε1,...,εm)∈{0,1}m\{0}m

m∏
k=1

2j/2ψεk
jqk

(xk)

(3.2)

when θ = 2−j (q1 − ε1, . . . , qm − εm) ∈ Θj , εk ∈ {0, 1} with
∑m

k=1 εk  1, and
qk ∈ Z. (Recall that Θj := 2−j−1Zm\2−jZm, so the point θ = 2−j (q1, . . . , qm)
must be excluded.) On the other hand,

(3.3) ϕθ (x1, . . . , xm) =
m∏

k=1

2j/2ϕ(2jxk − qk)

when θ = 2−j (q1, . . . , qm) ∈ 2−jZm. The functions ϕ and ψ are bounded and
have compact support. While in (3.1) the father wavelet is computed at a resolution
level j = 0, in the proof we will need to consider the father wavelet at the resolution
level J > 0, where J is as in Theorem 2.1. In fact, we recall the following identity:

(3.4)
∑

θ∈Zm

bf
θϕθ +

J∑

j=0

∑

θ∈Θj

af
θψθ =

∑

θ∈2−JZm

bf
θϕθ.

When f ∈ Bs,∞
p , the wavelets coefficients can be related to ‖f‖Bs,∞

p
by appropri-

ate choice of the father and mother wavelets ϕ and ψ. In this case, the wavelets
are chosen to be r = bsc + 1 regular (an index of smoothness for the wavelets;
Meyer [15], Chapter 2.2) so that there exists an integer M < ∞ (growing lin-
early in r) such that the support of ϕ and ψ is in [(1−M) /2, (1 + M) /2], im-
plying that the support of ϕ(2jx − qk) and ψ(2jx − qk) (in terms of x) is in
2−j [qk + (1−M) /2, qk + (1 + M) /2], qk ∈ Z. Then, it follows (see Meyer [15],
Chapter 6.10, with the aid of Lemma 8.1 in Rio [16]) that if f ∈ Bs,∞

p (Rm) and
p ∈ [1, 2], then ( ∑

θ∈Zd

|bf
θ |2

)1/2 . ‖f‖Bs,∞
p
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and

(3.5)
( ∑

θ∈Θj

|af
θ |2

)1/2 . ‖f‖Bs,∞
p

2j(m/p−s−m/2).

The goal is to substitute the kernel f with its wavelet representation essentially
given by the sum of (3.2), where (3.2) is the sum of products of univariate func-
tions. Hence, the most right-hand side in (3.2) will be used as kernel in the proof.
Then, as in Arcones and Giné [2], we will represent the U-process as the product
of powers of partial sums. To control these powers of partial sums, we will then
use moment inequalities for powers of strongly mixing partial sums (Rio [16]). The
proof of Theorem 2.1 relies on a sequence of lemmata that formalize the mentioned
ideas.

LEMMA 3.1. Let F be a class of symmetric functions such that

F ⊂ Bs,∞
p (Rm) ∩ L2 (Rm),

where s > m/p and p ∈ [1, 2]. Then, for all J ∈ N, and γ > 0,

∥∥ sup
f,g∈F

‖f−g‖2,λ¬γ

|U (m)
n (f)− U (m)

n (g)|∥∥
2,P

¬ sup
f∈F
‖f‖Bs,∞

p
2J(m/p−s) (2m − 1)

×max
j>J

max
ε∈{0,1}m\{0}m

∥∥U (m)
n

( m∏
k=1

∑

qk∈Z
eqk

ψεk
jqk

)∥∥
2,P

+ γ2Jm/2
∥∥U (m)

n

( m∏
k=1

∑

qk∈Z
eqk

ψ0
Jqk

)∥∥
2,P,

where ψεk
jqk

is as in (3.2), ε := (ε1, . . . , εm), and {(e(k)
qk )qk∈Z; k = 1, . . . , m} are

i.i.d. sequences of Rademacher random variables (i.e. e
(k)
qk ∈ {−1, 1} such that

Pr(e(k)
qk = 1) = 1/2) independent of each other and independent of (Xi)i∈Z.

P r o o f o f L e m m a 3.1. Using the notation above, define

ΠJf :=
∑

θ∈Zm

bf
θϕθ +

J∑

j=0

∑

θ∈Θj

af
θψθ.

Clearly,

|U (m)
n (f)− U (m)

n (g)|
¬ |U (m)

n (f)− U (m)
n (ΠJf)|+ |U (m)

n (g)− U (m)
n (ΠJg)|

+ |U (m)
n (ΠJf)− U (m)

n (ΠJg)|.
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Then

∥∥ sup
f,g∈F

‖f−g‖2,λ¬γ

|U (m)
n (f)− U (m)

n (g)|∥∥
2,P

¬ 2
∥∥ sup

f∈F
|U (m)

n (f)− U (m)
n (ΠJf)|∥∥

2,P + 2
∥∥ sup
‖f‖2,λ¬γ

|U (m)
n (ΠJf)|∥∥

2,P

= I + II.

C o n t r o l o v e r I . By the Cauchy–Schwarz inequality,

|U (m)
n (f)− U (m)

n (ΠJf)| = ∣∣ ∑

j>J

∑

θ∈Θj

af
θU (m)

n (ψθ)
∣∣

¬ ∑

j>J

( ∑

θ∈Θj

|af
θ |2

)1/2( ∑

θ∈Θj

|U (m)
n (ψθ)|2

)1/2
.

Therefore, from (3.5), we have

(3.6)
∥∥ sup

f∈F
|U (m)

n (f)− U (m)
n (ΠMf)|∥∥

2,P

¬ sup
f∈F
‖f‖Bs,∞

p

∑

j>J

2j(m/p−s)
( ∑

θ∈Θj

2−jmE|U (m)
n (ψθ)|2

)1/2
.

Let (eqk
)qk∈Z (k = 1, . . . , m) be as in the statement of the lemma. Then, from (3.2),

we get

∑

θ∈Θj

2−jmE|U (m)
n (ψθ)|2

=
( ∑

(q1,...,qm)∈Zm

)( ∑

(ε1,...,εm)∈{0,1}m\{0}m

)
2−jmE

∣∣U (m)
n

( m∏
k=1

2j/2ψεk
jqk

)∣∣2,

which (by using (3.2), the sum over θ is equal to the sum over (q1, . . . , qm)) is
equal to

∑

(ε1,...,εm)∈{0,1}m\{0}m
E

∣∣U (m)
n

( m∏
k=1

∑

qk∈Z
e(k)
qk

ψεk
jqk

)∣∣2,

by Lemma 3.2 (stated at the end of the proof) and noting that the 2−jm simpli-
fies with the 2jm/2 inside the squared absolute value. Hence, substituting the last
display in (3.6), we obtain
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I ¬ sup
f∈F
‖f‖Bs,∞

p

∑

j>J

2j(m/p−s)

× ∑

(ε1,...,εm)∈{0,1}m\{0}m

∥∥U (m)
n

( m∏
k=1

∑

qk∈Z
e(k)
qk

ψεk
jqk

)∥∥
2,P

. sup
f∈F
‖f‖Bs,∞

p
2J(m/p−s) (2m − 1)

×max
j>J

max
ε∈{0,1}m\{0}m

∥∥U (m)
n

( m∏
k=1

∑

qk∈Z
e(k)
qk

ψεk
jqk

)∥∥
2,P

because
∑

j>J 2j(m/p−s) � 2J(m/p−s) when m/p − s < 0, and there are 2m − 1
elements in the sum over (ε1, . . . , εm).

C o n t r o l o v e r I I . Note that ΠJf is the projection of f onto the space
spanned by the father wavelet ϕθ at the J th resolution level, i.e.

ΠJf =
∑

θ∈2−JZm

bf
θϕθ,

so that, by the Cauchy–Schwarz inequality,

|U (m)
n (ΠJf)| = ∣∣ ∑

θ∈2−JZm

bf
θU (m)

n (ϕθ)
∣∣

¬ ( ∑

θ∈2−JZm

|bf
θ |2

)1/2( ∑

θ∈2−JZm

|U (m)
n (ϕθ)|2

)1/2
.

Hence, using the same notation and argument as in the control over I, together with
the last display and (3.3), we have

II ¬ γ
( ∑

θ∈2−JZm

E|U (m)
n (ϕθ)|2

)1/2

= γ
∥∥U (m)

n

( m∏
k=1

∑

qk∈Z
e(k)
qk

2J/2ψ0
Jqk

)∥∥
2,P,

because
(∑

θ∈2−JZm |bf
θ |2

)1/2 ¬ γ if ‖f‖2,λ ¬ γ, by (3.1) and (3.4) (recall that
the wavelets are orthonormal functions with respect to the Lebesgue measure λ). ¥

The following is used in the previous proof.

LEMMA 3.2. Suppose that {(e(k)
qk )qk∈Z; k = 1, . . . , m} are i.i.d. sequences of

Rademacher random variables (see Lemma 3.1) independent of each other and
independent of (Xi)i∈Z. Then

∑

(q1,...,qm)∈Zm

E
∣∣U (m)

n

( m∏
k=1

ψεk
jqk

)∣∣2 = E
∣∣U (m)

n

( m∏
k=1

∑

qk∈Z
e(k)
qk

ψεk
jqk

)∣∣2.
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P r o o f o f L e m m a 3.2. By the definition of the U-process we have

E
∣∣∣∣

n!
(n−m)!

U (m)
n

( m∏
k=1

∑

qk∈Z
e(k)
qk

ψεk
jqk

)∣∣∣∣
2

= E
∣∣ ∑

(i1,...,im)∈In
m

m∏
k=1

∑

qk∈Z
e(k)
qk

ψεk
jqk

(Xik)
∣∣2.

Hence,

E
∣∣ ∑

(i1,...,im)∈In
m

m∏
k=1

∑

qk∈Z
e(k)
qk

ψεk
jqk

(Xik)
∣∣2

= E
∣∣ ∑

(q1,...,qm)∈Zm

e(1)
q1

. . . e(m)
qm

∑

(i1,...,im)∈In
m

m∏
k=1

ψεk
jqk

(Xik)
∣∣2

=
∑

(q1,...,qm,q′1,...,q′m)∈Z2m

E
[
e(1)
q1

e
(1)
q′1

. . . e(m)
qm

e
(m)
q′m

× ( ∑

(i1,...,im)∈In
m

m∏
k=1

ψεk

jq′k
(Xik)

∑

(i1,...,im)∈In
m

m∏
k=1

ψεk

jq′k
(Xik)

)]

=
∑

(q1,...,qm,q′1,...,q′m)∈Z2m

Ee(1)
q1

e
(1)
q′1

. . . e(m)
qm

e
(m)
q′m

× E( ∑

(i1,...,im)∈In
m

m∏
k=1

ψεk

jq′k
(Xik)

∑

(i1,...,im)∈In
m

m∏
k=1

ψεk

jq′k
(Xik)

)
,

which (by independence of the Rademacher r.v.’s and the X’s) is equal to

∑

(q1,...,qm)∈Zm

E
∣∣ ∑

(i1,...,im)∈In
m

m∏
k=1

ψεk

jq′k
(Xik)

∣∣2,

because the Rademacher variables are independent of each other and have variance
one. The term on the right-hand side of the last equality is, by definition, equal to

∑

(q1,...,qm)∈Zm

E
∣∣∣∣

n!
(n−m)!

U (m)
n (

m∏
k=1

ψεk
jqk

)
∣∣∣∣
2

. ¥

The U-statistics on the right-hand side of the bound of Lemma 3.1 can be
bounded using the fact that the U-kernel is the product of functions on R.

LEMMA 3.3. Define

(3.7) φk (xk) :=
∑

qk∈Z
e(k)
qk

ψεk
jqk

(xk), k = 1, . . . , m,

where ψεk
jqk

and (e(k)
qk )qk∈Z are as in Lemma 3.1. Then
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∥∥U (k)
n

(
πP

k,m

m∏
k=1

φk

)∥∥
2,P

� (Pφ1)
m−k

[ ∑

1¬i1,...,i2k¬n

E
∣∣∣∣

2k∏
s=1

(1−P) φis (Xis)
n

∣∣∣∣
]1/2

.

P r o o f o f L e m m a 3.3. Let κφ
m (x1, . . . , xm) := φ (x1) . . . φ (xm) for

some bounded function φ. Then

πP
k,mκφ

m (x1, . . . , xk) = (δx1 −P) . . . (δxk
−P)Pm−kκφ

m (X1, . . . , Xm)

= (δx1 −P) φ (X1) . . . (δxk
−P) φ (Xk)

(
Pφ (X1)

)m−k

and

(3.8) πP
k,mκφ

m (X1, . . . , Xk) = κ
(1−P)φ
k (X1, . . . , Xk)

(
Pφ (X1)

)m−k
.

Define

Ũ (k)
n :=

(
n

k

)
U (k)

n ,

noting that n−kŨ (k)
n � U (k)

n . Then

E|Ũ (k)
n (κ(1−P)φ

k )|2 = E
∣∣ ∑

(i1,...,ik)∈In
k

[ k∏
s=1

(1−P) φ (Xis)
]∣∣2

¬ ∑

(i1,...,i2k)∈{1,...,n}2k

E
∣∣ 2k∏
s=1

(1−P) φ (Xis)
∣∣,

where we have expanded the square and taken absolute values so that the terms
in the summation are positive allowing us to change the indices of summation
from In

2k (recall we are taking squares) to {1, . . . , n}2k (In
2k ⊂ {1, . . . , n}2k). This

inequality together with (3.8) gives the result. ¥

The last final step is to bound the kth power of the partial sum of the function
in (3.7).

LEMMA 3.4. Suppose that the strong mixing coefficients of (Xi)i∈Z satisfy
supj>0 jkαj <∞. Then

∑

1¬i1,...,i2k¬n

E
∣∣∣∣

2k∏
s=1

(1−P) φis (Xis)
n

∣∣∣∣ . n−k,

where φi is as in Lemma 3.3.
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P r o o f o f L e m m a 3.4. At first we show that

sup
x∈R
|φi (x)| = sup

x∈R

∣∣ ∑

qi∈Z
e(i)
qi

ψεi(2jx− qi)
∣∣ . 1,

recalling the definition of φi (x) in Lemma 3.3 and using the notation in (3.2). In
the remarks about wavelets we mentioned that there is a positive integer M <∞
(depending linearly on the index of regularity r) such that

ψεi(2jx− qi) . 1 if x ∈ 2−j [qi + (1−M) /2, qi + (1 + M) /2] ,

ψεi(2jx− qi) = 0 otherwise.

Hence,

|φi (x)| = ∣∣ ∑

qi∈Z
e(i)
qi

ψεi(2jx− qi)
∣∣ ¬ ∑

qi∈Z
|ψεi(2jx− qi)| ¬M sup

x∈R
|ψεi (x)| . 1,

because the wavelets are bounded and, for arbitrary but fixed x, there are at most
M non-zero elements in the summation of the above display. Clearly,

∑

1¬i1,...,i2k¬n

E
∣∣∣∣

2k∏
s=1

(1−P) φis (Xis)
n

∣∣∣∣ �
∑

1¬i1¬...¬i2k¬n

E
∣∣∣∣

2k∏
s=1

(1−P)φis (Xis)
n

∣∣∣∣

(e.g. eq. (2.16) in Rio [16]). Then, for bounded φi, the right-hand side of the above
display is of order n−k if supj>0 jkαj <∞ (see Rio [16], eq. (2.16), (2.23) and
Lemma 2.2). ¥

Since πP
k,m does not affect the wavelets coefficients, Lemmata 3.1, 3.3 and 3.4

imply the lemma from which Theorem 2.1 follows as a corollary.

LEMMA 3.5. Under the conditions of Theorem 2.1,
∥∥ sup

f,g∈F
‖f−g‖2,λ¬γ

∣∣U (k)
n

(
πP

k,m (f − g)
)∣∣∥∥

2,P

. n−k/2(sup
f∈F
‖f‖Bs,∞

p
2J(m/p−s) + γ2Jm/2).

We can prove Theorem 2.1.

P r o o f o f T h e o r e m 2.1. From (2.2) we deduce
∥∥ sup

f,g∈F
‖f−g‖2,λ¬γ

|(1−Pm)U (m)
n (f − g)|∥∥

2,P

¬
m∑

k=1

(
m

k

)∥∥ sup
f,g∈F

‖f−g‖2,λ¬γ

∣∣U (k)
n

(
πP

k,m (f − g)
)∣∣∥∥

2,P.

Hence, applying Lemma 3.5 to each term in the summation gives the result. ¥
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