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Abstract. We present the notion of projective independence, which ab-
stracts, in an algebraic setting, the factorization rule for the vacuum expec-
tation of creation-annihilations-preservation operators in interacting Fock
spaces described in [3]. Furthermore, we give a central limit theorem based
on such a notion and a Fock representation of the limit process.

2000 AMS Mathematics Subject Classification: Primary: 60B99,
46L53; Secondary: 81S05.

Key words and phrases: Interacting Fock spaces, central limit theo-
rems, GNS representation.

1. INTRODUCTION

In quantum probability one finds several central limit theorems (see, e.g., [1],
[7], [9], [11], [12], [14], [15], [19]). There are analogies and differences between
the classical and quantum cases. As in the classical setting, the features exhibited
by each quantum central limit theorem are: a suitable notion of independence for
the converging family of random variables and the property, for the limit law, to
be infinitely divisible with respect to a proper convolution. On the contrary, in the
non-commutative context, one requires the convergence in the sense of moments,
which is generally weaker than the convergence in law. A striking inhomogeneity
is also registered for the concept of independence. In fact, in quantum probability
many inequivalent notions of independence emerge: as the random variables in
general do not mutually commute, one can factorize the mixed moments in many
ways, obtaining in each case that the joint states (distributions) can be computed
once one knows the marginal ones.

In [8], [16]–[18] the authors developed an axiomatic study of quantum in-
dependence based on some universal prescriptions, thus limiting the number of
non-commutative independencies to five.

In addition to this approach, it has been developed another one, more prag-
matic, emphasizing concrete applications. Its underlying idea is that a factorization
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rule for the mixed moments is seen as a form of independence if it leads to a non-
trivial central limit theorem. Within this context, in [3] the authors proved a central
limit theorem with the help of the so-called one mode type interacting Fock spaces
(1-MT IFS), i.e. standard interacting Fock spaces with constant interacting func-
tions (see [6] for more details). Namely, it was shown that any probability measure
on R with finite moments of any order can be obtained as central limit (in the sense
of convergence of moments) of certain self-adjoint random variables, which are in
fact a sum of creation, annihilation and preservation operators in 1-MT IFS.

This theorem, proved also in [13] by means of a different approach, concretely
confirmed and furthermore generalized the result obtained by Accardi and Bożejko
in [2] according to which any symmetric measure on R, being infinitely divisible
with respect to the so-called universal convolution, can be a central limit law.

Therefore, it is natural to ask whether it is possible to find a notion of indepen-
dence, i.e. a factorization rule for the mixed moments, into the abstract setting of
algebraic probability spaces, which underlies the central limit theorem presented
in [3]. These notes offer an affirmative answer to such a question and we call the
desired independence projective.

The paper is organized as follows. In Section 2 we recall some tools which
will be useful later, e.g., the definition of algebraic probability space, singleton and
uniform boundedness conditions.

In Section 3 we introduce the central notion of projective independence and
analyze its relation with the factorization rule for the mixed moments in 1-MT IFS
described in [3]. Moreover, the definition of symmetric projective independence as
a particular case of the general one is given: we need it in order to split the proof
of the algebraic central limit theorem into two parts. In fact, in Section 4, we firstly
obtain our central limit theorem only in the symmetric case and then we use such
a result to prove the general theorem as an extension of it.

In order to gain the “symmetric” central limit theorem, we need some technical
conditions, namely the boundedness of the mixed moments and the existence of the
limit for the mean covariance (see condition (4.5)). The former allows us to use a
result by Accardi, Hashimoto and Obata in [5] and simplify our proof. The latter
replaces and weakens a usual condition, in central limit theorems, that the family
of converging random variables is identically distributed. In fact, it is easy to check
that, in this case, condition (4.5) is automatically verified.

It is worth noticing that the singleton condition, an ingredient of many central
limit theorems, is automatically satisfied by any symmetric projectively indepen-
dent family of algebraic random variables but it is not required in our main theo-
rem (Theorem 4.1). This is due to the fact that the singleton condition cannot give
non-symmetric central limit laws. (As another example in which the emergence
of non-symmetric distribution in the central limit theorem is a consequence of the
lacking of the singleton condition, one can recall the Ulmann law arising from the
ϕγ-independence in the central limit theorem by Accardi, Hashimoto and Obata
in [5]).
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By a theorem due to Accardi, Frigerio and Lewis (see [4]), the limit sequence
of any algebraic central limit theorem is the sequence of the mixed moments of cer-
tain random variables in a suitable algebraic probability space. Hence in Section 5
we show that, under some conditions, a GNS representation for the limit process
obtained in Theorem 4.1, is realized in the 1-mode type interacting Fock space.

We point out that a similar result is achieved in [10], where a central limit theo-
rem and a representation for the limit process are given for a “perturbed” symmet-
ric ϕ-projectively independent family in an algebraic probability space. Namely,
in [10], for every random variable of the limiting process, the perturbation is given
by the multiplication of a Riemann integrable function on the unit interval of R.

2. THE SINGLETON AND THE BOUNDEDNESS
OF THE MIXED MOMENTS CONDITIONS

Here we recall some definitions and properties which will be used in the suc-
cessive sections of the paper.

Let S be a non-empty ordered set. A partition of S is a family σ = {V1, . . . , Vl}
of mutually disjoint non-empty subsets of S, whose union is S.

If there occur two partitions σ1 = {V1, . . . , Vl} and σ2 = {U1, . . . , Ul} of S
such that for any i = 1, . . . , l there exists (a unique) j = 1, . . . , l such that Vi = Uj ,
we identify the two partitions in the set P (S) of all partitions of S. Moreover, for
any q ∈ N∗, we define P (q) := P ({1, . . . , q}).

Any Vi ∈ σ is called a block of the partition σ. A partition σ of S uniquely
defines an equivalence relation ∼σ on S, where i ∼σ j if and only if i, j belong to
the same block of σ.

σ = {V1, . . . , Vl} ∈ P (S) is called a pair partition if |Vi| = 2 for any i =
1, . . . , l, where | · | denotes the cardinality.

An algebraic probability space is a pair {A, ϕ}, where A is a unital ∗-algebra
and ϕ : A → C is a linear, normalized (ϕ (1) = 1) and positive (ϕ (a∗a)  0 for
all a ∈ A) functional.

Throughout the paper we will deal with sets of the type {aε
i ; i ∈ I, ε ∈ F},

where F is a finite set such that F = Fs ∪ Fa with Fs ∩ Fa = ∅. The family
{aε

i ; i ∈ I, ε ∈ F} will be also thought closed with respect to the involution ∗ and
called self-adjoint. The reason for introducing the upper suffixes in (aε

i ) is derived
from concrete examples of central limit theorems (see [5]) and it is furthermore
natural whenever {A, ϕ} is constructed starting from the 1-MT IFS, as shown in
the example below.

EXAMPLE 2.1. Given a separable Hilbert space H, consider the 1-MT IFS
Γ(H, {λn}n∈N) overH with interacting sequence {λn} ⊂ R+ and vacuum vector
Φ, i.e.

Γ(H, {λn}n∈N) := CΦ⊕
∞⊕

n=1

H⊗n,
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where for any n,m  1, for any f1, . . . , fn, g1, . . . , gm ∈ H, the pre-scalar prod-
uct on the tensor product spaceH⊗n is obtained by

〈f1 ⊗ . . .⊗ fn, g1 ⊗ . . .⊗ gm〉 := δn
mλn

n∏
j=1

〈fj , gj〉

with the requirements λ0 = λ1 := 1 and λn = 0 =⇒ λm = 0 for any m  n (see
[3] and [6] for details on 1-MT IFS). Let us define the creation operator A+ (f)
with the test function f ∈ H:

A+ (f)Φ := f,

(
A+ (f) (f1 ⊗ . . .⊗ fn)

)
:= f ⊗ f1 ⊗ . . .⊗ fn, ∀n ∈ N, ∀ f1, . . . , fn ∈ H.

The annihilation operator A (f) is defined as the adjoint of the creation operator:

A (f)Φ := 0,
(
A (f) (f1 ⊗ . . .⊗ fn)

)

:=
λn

λn−1
〈f, f1〉 f2 ⊗ . . .⊗ fn, ∀n ∈ N, ∀ f1, . . . , fn ∈ H,

with the convention 0/0 = 0. Given α := (αm) ⊂ l∞ (R) with α0 = 0 and the
identity operator I ∈ B (H), define the preservation operator with intensity (α, I):

Λα (I) (f1 ⊗ . . .⊗ fn) := αn (f1 ⊗ . . .⊗ fn), ∀n ∈ N, ∀ f1, . . . , fn ∈ H.

Take A as

A := ∗-alg {I,A (f) ,Λα (I) : f ∈ H, α = (αm) ∈ l∞ (R)},

ϕ := 〈Φ, ·Φ〉.
Hence it follows that {A, ϕ} is an algebraic probability space. If ε ∈ {−1, 0, 1}
and

Aε (f, α, I) :=





A (f) if ε = −1,
Λα (I) if ε = 0,
A+ (f) if ε = 1,

then F = {−1, 0, 1} , Fs = {−1, 1} , Fa = {0}.
Let q ∈ N∗ and consider the map k : {1, . . . , q} → I; we write indifferently

kl or k (l), and put
Range (k) :=

{
k1, . . . , km

} ⊂ I, m ∈ N∗, m 6 q, ki 6= kj for i 6= j;

Vk,j := k−1
(
kj

)
=

{
l ∈ {1, . . . , q} : k (l) = kj

}
for j = 1, . . . , m.
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Clearly, k induces a partition σ ∈ P (q) whose blocks are the Vk,j’s. For a
fixed Vk,j = k−1

(
kj

)
, define εVk,j

:= {εl : l ∈ Vk,j}, the restriction of ε to Vk,j ,
where j = 1, . . . ,m.

If I{1,...,q} is the set of all mappings from {1, . . . , q} into I and k, l ∈ I{1,...,q},
we say that k is equivalent to l and write k ≈ l if they induce the same partition of
{1, . . . , q}, namely:

(i) |Range (k)| = |Range (l)| =: m;
(ii) k−1(kj) = l−1

(
lσ(j)

)
for all j = 1, . . . , m, where σ is a permutation on

{1, . . . , m}.
We define [k] := {l ∈ I{1,...,q} such that k ≈ l}, the≈-equivalence class of k.
Conversely, any partition σ ∈ P (q) defines a unique equivalence class [k],

where k is any function which is constant on the blocks of σ. Therefore, we have a
natural identification I{1,...,q}

/≈ ≡ P (q) which will be exploited in the following
by taking [k] ≡ σ.

A (unital) algebraic stochastic process is the quadruple
{{A, ϕ},B, (ji)i∈I

}
,

where {A,ϕ} is an algebraic probability space, I a set, B a unital ∗-algebra and,
for any i ∈ I, ji : B → A an identity preserving ∗-homomorphism.

The following definitions will be useful in the paper.

DEFINITION 2.1. Let {aε
i ; i ∈ I, ε ∈ F} be a self-adjoint family in {A, ϕ}.

It is said to satisfy the singleton condition (with respect to ϕ) if for any n > 1, for
any choice of i1, . . . , in ∈ I, ε1, . . . , εn ∈ F

(2.1) ϕ(aεn
in

. . . aε1
i1

) = 0

whenever {i1, . . . , in} has a singleton is (i.e. is 6= ij , j 6= s) and ϕ(aεs
is

) = 0.

DEFINITION 2.2. The self-adjoint family {aε
i ; ε ∈ F, i ∈ I} in {A, ϕ} is

said to satisfy the condition of uniform boundedness of mixed moments if for each
m ∈ N∗ there exists a positive constant Dm such that

|ϕ(aεm
im

. . . aε1
i1

)| ¬ Dm

for any choice of i1, . . . , im ∈ I and ε1, . . . , εm ∈ F.

3. PROJECTIVE INDEPENDENCE

Let {A, ϕ} be an algebraic probability space and assume that a self-adjoint
family {aε

i ; ε ∈ F, i ∈ I} of elements of A is given. Then for any q ∈ N∗, ε =
{εq, . . . , ε1} ⊂ F, we take ε′ := ε ∩ Fs. Moreover, for any k : {1, . . . , q} → I,
any a

εq

kq
, . . . , aε1

k1
∈ A we write:∏← aε′ to denote the product of all aεl

kl
, with εl ∈ Fs, in the same order as

they appear in a
εq

kq
. . . aε1

k1
(we use the convention ϕ

(∏← a∅
)

:= 1);
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a
εVk′,j :=

∏←
s∈Vk′,j

aεs

k
′
j

, where
∏← denotes the product of aεl

kl
’s in the same

order appearing in the product a
εq

kq
. . . aε1

k1
and Vk′,j = k−1(k

′
j) for any j.

DEFINITION 3.1 (Projective independence). Let {A, ϕ} be an algebraic prob-
ability space. The self-adjoint family {aε

i ; ε ∈ F, i ∈ I} inA is called ϕ-projecti-
vely independent if for any q ∈ N∗, ε = (εq, . . . , ε1) ∈ F q, any k : {1, . . . , q}→I,
and a

εq

kq
, . . . , aε1

k1
∈ A there exist α (k, ε) ∈ C and ω (k′, ε′)  0 such that

ϕ(aεq

kq
. . . aε1

k1
) = α(k, ε)ϕ

( ←∏
aε′)(3.1)

= α (k, ε) ω(k′, ε′)
|Range(k′)|∏

j=1

ϕ(a
εVk′,j ).

From now on we will use indifferently the following notation:

α (k, ε) = α (σ, ε) and ω
(
k′, ε′

)
= ω

(
τ, ε′

)
,

where σ and τ are the partitions induced by the maps k and k′, respectively, on
{1, . . . , q}; and k′ := k|{{1,...,q}\{l| εl∈Fa}}. Obviously, Range (k′) ⊆ Range (k).

REMARK 3.1. The definition above abstracts, in an algebraic setting, the sit-
uation described in the paper [3], relative to 1-mode type interacting Fock spaces.
In that case, as already remarked, the explicit form of F is {−1, 0, 1}, Fs =
{−1, +1} and Fa = {0}. Moreover, the coefficients α(k, ε) and ω (k′, ε′) are prod-
ucts of the non-symmetric and symmetric Jacobi coefficients {αn} and {ωn} of the
distribution uniquely associated with the interacting Fock space (see [2]). In order
to be more explicit we present the following example.

EXAMPLE 3.1. Use the notation of Example 2.1, and let µ be the one-dimen-
sional distribution associated with the IFS with Jacobi parameters α := (αn) and
(ωn := λn/λn−1)n (see [2], Theorem 5.2). Then, if f1, f2 ∈ H, I the identity op-
erator, we have

〈Φ, A (f1) Λα (I) A (f2) A+ (f2) A+ (f1)Φ〉
= α1〈Φ, A (f1)A (f2) A+ (f2) A+ (f1) Φ〉
= α1 · ω1 · ω2〈Φ, A (f1) A+ (f1)Φ〉〈Φ, A (f2) A+ (f2)Φ〉.

Hence α(k, ε) = α1 and ω (k′, ε′) = ω1ω2.

The following definition is a particular case of Definition 3.1 and will be useful
in the proof of our central limit theorem.

DEFINITION 3.2. Let {A, ϕ} be an algebraic probability space and suppose
F = Fs. Then the self-adjoint family {aε

i ; ε ∈ Fs, i ∈ I} inA is called ϕ-symmet-
ric projectively independent if for any q ∈ N∗, any ε′ = (εq, . . . , ε1) ∈ (Fs)

q, any
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k′ : {1, . . . , q} → I there exists ω (k′, ε′)  0 such that, in the notation of Defini-
tion 3.1,

ϕ(aεq

k
′
q
. . . aε1

k
′
1

) = ω(k′, ε′)
|Range(k′)|∏

j=1

ϕ(a
εVk′,j ).

LEMMA 3.1. Let {aε
i ; ε ∈ Fs, i ∈ I} be a self-adjoint family of ϕ-symmetric

projectively independent elements of an algebraic probability space {A, ϕ} with
mean zero, i.e. ϕ (aε

i ) = 0 for any ε ∈ Fs, i ∈ I. Then it satisfies the singleton
condition.

P r o o f. Let us fix q ∈ N∗ and consider the product a
ε′q
k′q . . . aε′1

k′1 . If there ex-
ists l ∈ {1, . . . , q} such that |Vk′,l| = 1, then, by ϕ-symmetric projective indepen-
dence, we have

ϕ(aε′q
k′q . . . aε′1

k′1) = ω(k′, ε′)ϕ(aε′l
k′l)
|Range(k′)|−1∏

j=1, j 6=l

ϕ(a
ε′Vk′,j ) = 0.

Hence the singleton condition is fulfilled. ¥

REMARK 3.2. If the family is ϕ-projectively independent, the singleton con-
dition is not generally satisfied. In fact, under the assumptions of Examples 2.1 and
3.1, by such a condition of independence, if α1 6= 0, for any f1 6= 0, we have

〈Φ, A (f1) Λα (I) A+ (f1) Φ〉 = α1〈Φ, A (f1) A+ (f1) Φ〉 6= 0

even if 〈Φ, Λα (I)Φ〉 = 0.

4. QUANTUM CENTRAL LIMIT THEOREM

Let {aε
n; ε ∈ F, n ∈ N} be a self-adjoint family in an algebraic probability

space {A, ϕ} and consider the centered sum

SN (aε) :=
N∑

n=1

aε
n

for ε ∈ F and N ∈ N.
In order to prove our central limit theorem, we need to consider the following

“normalized family” as in [3] and [13]:

(4.1) ãε
n =

{
aε

n if ε ∈ Fs,
cnaε

n if ε ∈ Fa,

where {cn} is a bounded sequence in R satisfying the condition

(4.2)
1√
N

N∑

n=1

cn → 1 as N → +∞,
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and we have to study the asymptotic behavior of the expression

1
N q/2

ϕ
(
SN (ãεq) . . . SN (ãε1)

)

for any q ∈ N∗. Suppose that {aε
n; ε ∈ F, n ∈ N} is ϕ-projectively independent. If

ε = (εq, . . . , ε1) ∈ F q, we make the partition

(4.3) {1, . . . , q} = {z1, . . . , zm} ∪ {z′1, . . . , z
′
h},

where q = m + h, and

{z1, . . . , zm} :=
{
d ∈ {1, . . . , q} ; εd ∈ Fs

}
,

{
z′1, . . . , z′h

}
:=

{
d ∈ {1, . . . , q}; εd ∈ Fa

}
.

Then (3.1) and (4.1) give

(4.4) ϕ(ãεq

kq
. . . ãε1

k1
) = α (σ, ε)ω(τ, ε′)

h∏
i=1

ckz′
i

|Range(k′)|∏
j=1

ϕ(a
ε′Vk′,j ).

THEOREM 4.1 (Central limit theorem). Let {A, ϕ} be an algebraic proba-
bility space and {aε

n; ε ∈ F, n ∈ N} be a ϕ-projectively independent self-adjoint
family in A such that ϕ (aε

n) = 0 for all ε ∈ F and n ∈ N. Suppose that {aε
i ;

ε ∈ Fs, n ∈ N} satisfies the uniform boundedness condition and the limit

(4.5) lim
N→∞

1
N

N∑

k=1

ϕ(aε1
k aε2

k ) =: C (ε1, ε2)

exists for any ε1, ε2 ∈ Fs. Then:
(i) As N →∞, the limit of the expression

(4.6)
1

N q/2
ϕ
(
SN (ãεq) . . . SN (ãε1)

)
=

1
N q/2

∑

1¬k1,...,kq¬N

ϕ(ãεq

kq
. . . ãε1

k1
)

is equal to zero if m is odd and, if m = 2p, is equal to

(4.7)
∑

σ∈Pτ (q;2p)

α (σ, ε) ω(τ, ε′)
p∏

j=1

C(εlj , εrj ),

where

Pτ (q; 2p) :=
{
σ ∈ P (q) : σ = τ ∪ γ, τ ∩ γ = ∅, τ∈ P.P. ({z1, . . . , z2p})

}
,

P.P. ({z1, . . . , z2p}) denotes the set of all pair partitions of {z1, . . . , z2p} and
{lj , rj}pj=1 the left-right index set relative to the pair partition τ such that r1 <
r2 < . . . < rp.
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(ii) More generally, if s, t > 0, s < t, putting, for any N ∈ N, S
(s,t)
N (ãε) :=∑[tN ]

n=[sN ]+1 ãε
n, the limit

lim
N→∞

1
N q/2

ϕ
(
S

(sq ,tq)
N (ãεq) . . . S

(s1,t1)
N (ãε1)

)
,

where sj , tj > 0, sj < tj , vanishes when m is odd and, if m = 2p, is equal to

∑

σ∈Pτ (q;2p)

α (σ, ε) ω(τ, ε′)
[ h∏

d=1

(
√

tz′d −
√

sz′d
)
]

× [ p∏
j=1

C(εlj , εrj )〈χ(slj
,tlj ), χ(srj ,trj )〉L2(R+)

]
,

where χ(s,t) is the indicator function of the interval (s, t) in R+.

In order to prove the theorem we firstly restrict to the case when F = Fs.

LEMMA 4.1 (Symmetric central limit theorem). Let {aε
n; ε ∈ Fs, n ∈ N} be

a self-adjoint family of elements of an algebraic probability space {A, ϕ}, symmet-
ric ϕ-projectively independent and with mean zero. We suppose that such a family
satisfies the uniform boundedness condition and the condition (4.5). Then:

(i) The limit

lim
N→∞

1
Nm/2

ϕ
(
SN (aεm) . . . SN (aε1)

)

is zero if m is odd and, if m = 2p, is equal to

(4.8) lim
N→∞

1
Np

∑

k′:{1,...,2p}→{1,...,p}
2-1 map

∑

1¬k′lj =k′rj¬N

j=1,...,p

ϕ(. . . a
εlj

k′lj
. . . a

εrj

k′rj
. . .)

=
∑

τ∈P.P.(2p)

ω (τ, ε)
p∏

j=1

C(εlj , εrj ),

where we use the same notation as in Theorem 4.1 and τ ∈ P.P. (2p) denotes the
set of all pair partitions of {1, . . . , 2p}.

(ii) More generally, if s, t > 0, s < t and putting S
(s,t)
N (aε) :=

∑[tN ]
n=[sN ]+1 aε

n,

the limit
lim

N→∞
1

Nm/2
ϕ
(
S

(sm,tm)
N (aεm) . . . S

(s1,t1)
N (aε1)

)
,

where sj , tj > 0, sj < tj , vanishes when m is odd and, if m = 2p, is equal to

∑

τ∈P.P.(2p)

ω (τ, ε)
p∏

j=1

[C(εlj , εrj )〈χ(slj
,tlj ), χ(srj ,trj )〉L2(R+)],

where χ(s,t) is the indicator function of the interval (s, t) in R+.
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P r o o f. (i) Firstly we have

(4.9)
1

Nm/2
ϕ
(
SN (aεm) . . . SN (aε1)

)
=

1
Nm/2

∑

1¬k′1,...,k′m¬N

ϕ(aεm
k′m . . . aε1

k′1).

From Lemma 3.1 we know that the family {aε
n; ε ∈ F, n ∈ N} satisfies the sin-

gleton condition. Moreover, by assumption, the uniform boundedness condition is
fulfilled. Then, from [5], Lemma 2.4, it follows that the limit of (4.9) can be dif-
ferent from zero only if m = 2p and k′: {1, . . . , 2p} → {1, . . . , p} is a 2-1 map,
whose range is denoted by {k′1, . . . , k

′
p}. It is well known that such a map induces

a pair partition on {1, . . . , 2p} for which we use the notation {lj , rj} := k′−1(k′j)
with lj > rj for all j = 1, . . . , p, r1 < . . . < rp. The limit for N →∞ of (4.9) can
be written as follows:

lim
N→∞

1
Np

∑

k′:{1,...,2p}→{1,...,p}
2-1 map

∑

1¬k′lj =k′rj¬N

j=1,...,p

ϕ(. . . a
εlj

k′lj
. . . a

εrj

k′rj
. . .).

Since our family is ϕ-symmetric projectively independent, this quantity is

(4.10)

lim
N→∞

∑

τ :={lj ,rj}pj=1∈P.P.(2p)

ω (τ, ε)
1

Np

N∑

k′l1=k′r1=1

. . .
N∑

k′lp=k′rp=1

p∏
j=1

ϕ(a
εlj

k′lj
a

εrj

k′rj
)

where we used the natural identification [k′] ≡ τ . By (4.5) we see that the limit
(4.10) exists and is equal to

∑

τ∈P.P.(2p)

ω (τ, ε)
p∏

j=1

C(εlj , εrj ).

Let us prove (ii):

(4.11)
1

Nm/2
ϕ
(
S

(sm,tm)
N (aεm) . . . S

(s1,t1)
N (aε1)

)

=
1

Nm/2

[t1N ]∑

k′1=[s1N ]+1

. . .
[tmN ]∑

k′m=[smN ]+1

ϕ(aεm
k′m . . . aε1

k′1).

Using the same arguments as in (i), one can check that the limit for N → ∞ in
(4.11) can be different from zero only if m = 2p. Moreover, after applying the
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ϕ-symmetric projective independence we obtain

lim
N→∞

1
Np

ϕ
(
S

(sm,tm)
N (aεm) . . . S

(s1,t1)
N (aε1)

)

= lim
N→∞

∑

τ :={lj ,rj}pj=1∈P.P.(2p)

ω (τ, ε)

× 1
Np

p∏
j=1

( [tlj N ]∑

k′lj =[slj
N ]+1

[trj N ]∑

k′rj
=[srj N ]+1

ϕ(a
εlj

k′lj
a

εrj

k′rj
)
)
.

Since for any j = 1, . . . , p, k′lj and k′rj
are equal, putting sj := max{slj , srj} and

tj := min{tlj , trj} we have

(4.12) lim
N→∞

1
Np

ϕ
(
S

(sm,tm)
N (aεm) . . . S

(s1,t1)
N (aε1)

)

= lim
N→∞

1
Np

∑

τ∈P.P.(2p)

ω (τ, ε)
p∏

j=1

( [tjN]∑

k′lj =k′rj
=[sjN ]+1

ϕ(a
εlj

k′lj
a

εrj

k′rj
)
)

if sj < tj and the limit vanishes if sj  tj . Now let us fix j = 1, . . . , p and consider

(4.13)
1
N

[tjN ]∑

k′lj =k′rj
=[sjN ]+1

ϕ(a
εlj

k′lj
a

εrj

k′rj
)

=
1
N

[tjN ]∑

k′lj =k′rj
=1

ϕ(a
εlj

k′lj
a

εrj

k′rj
)− 1

N

[sjN ]∑

k′lj =k′rj
=1

ϕ(a
εlj

k′lj
a

εrj

k′rj
).

Notice that for any t > 0, if M := [tN ] , there exists 0 ¬ δ < 1 such that for any
ε1, ε2 ∈ Fs

1
N

[tN ]∑

k=1

ϕ(aε1
k aε2

k ) =
t

M + δ

M∑

k=1

ϕ(aε1
k aε2

k )

and, by using (4.5), we obtain

lim
N→∞

1
N

[tN ]∑

k=1

ϕ(aε1
k aε2

k ) = tC (ε1, ε2).

Hence, from (4.13) we find

lim
N→∞

[tjN]∑

k′lj =k′rj
=[sjN ]+1

ϕ(a
εlj

k′lj
a

εrj

k′rj
) = (tj − sj)C(εlj , εrj ).
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Iterating the same arguments for any j = 1, . . . , p, from (4.12) it follows that

lim
N→∞

1
Np

ϕ
(
S

(sm,tm)
N (aεm) . . . S

(s1,t1)
N (aε1)

)

=
∑

τ∈P.P.(2p)

ω (τ, ε)
p∏

j=1

[C(εlj , εrj )〈χ(slj
,tlj ), χ(srj ,trj )〉L2(R+)]. ¥

P r o o f o f T h e o r e m 4.1. Let {aε
n; ε ∈ F, n ∈ N} be a ϕ-projectively

independent family of elements in an algebraic probability space (A, ϕ).
Let us prove (i). We have

1
N q/2

ϕ
(
SN (ãεq) . . . SN (ãε1)

)
=

1
N q/2

∑

1¬k1,...,kq¬N

ϕ(ãεq

kq
. . . ãε1

k1
).

From (3.1), (4.4) and (4.3) the quantity above becomes

(4.14)
1

N q/2

∑

1¬kz′
1
,...,kz′

h
,k′z1 ,...,k′zm¬N

α (σ, ε)
h∏

d=1

ckz′d
ϕ
( ←∏

aε′)

=
1

Nh/2

∑

1¬kz′
1
,...,kz′

h
¬N

h∏
d=1

ckz′d
α (σ, ε)

×
(

1
Nm/2

∑

1¬k′z1 ,...,k′zm¬N

ω(τ, ε′)ϕ
( ←∏

aε′)
)
,

where σ and τ are the partitions induced by k and k′, respectively. Now, recalling
that the “symmetric” part of a ϕ-projectively independent family is a ϕ-symmetric
projectively independent family, by Lemma 4.1 and condition (4.2), the limit for
N →∞ of the left-hand side of (4.14) (or, equivalently, of (4.6)), is equal to zero
if m is odd and, if m = 2p, is equal to

∑

σ∈Pτ (q;2p)

α (σ, ε) ω(τ, ε′)
p∏

j=1

C(εlj , εrj ).

For (ii) we firstly observe that for any t > 0, N ∈ N, there exist M ∈ N, δ > 0
such that

1√
N

[tN ]∑

k=1

ck =
√

t√
M + δ

M∑

k=1

ck.

Hence, as a consequence of (4.2), we find

lim
N→∞

1√
N

[tN ]∑

k=1

ck =
√

t,

and the assertion can be achieved by using the same arguments as in (i) and (ii) in
the proof of Lemma 4.1. ¥
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5. INTERACTING FOCK SPACE REPRESENTATIONS OF THE LIMIT PROCESSES

Throughout this section we will take F := {−1, 0, 1}, Fs := {−1, +1} and
Fa := {0} and, for any a ∈ A, a−1 = (a1)∗, a0 = (a0)∗. Our goal consists in
finding Fock representations for the limit processes coming out from the two results
achieved in Theorem 4.1.

We firstly look at part (i) of this theorem. As a consequence of the recon-
struction theorem by Accardi, Frigerio and Lewis (see [4]), there exist an algebraic
probability space (B, ψ) and random variables a−1

ψ , a1
ψ, a0

ψ in it such that

(5.1)
∑

σ∈Pτ (q;2p)

α (σ, ε)ω(τ, ε′)
p∏

j=1

C(εlj , εrj )

= lim
N→∞

1
N q/2

ϕ
(
SN (ãεq) . . . SN (ãε1)

)
= ψ(aεq

ψ . . . aε1
ψ ).

If (Hψ, Φψ) is the GNS representation of (B, ψ), then

ψ(aεq

ψ . . . aε1
ψ ) = 〈Φψ, Aεq . . . Aε1Φψ〉,

where the Aεj ’s are operators inHψ. We would like to write them concretely as op-
erators of creation, annihilation and preservation in a suitable Fock space. To this
purpose it is necessary to make some constraints on the family {aε

i ; ε ∈ F, i ∈ I}
in {A, ϕ}, i.e. we need something more than the projective independence. There-
fore we suppose that for any ε1, ε2 ∈ Fs

(5.2) C (ε1, ε2) =
{

c > 0 if ε1 = −1, ε2 = 1,
0 otherwise,

and without loss of generality we take c = 1. Under this assumption, there are some
terms which do not give any contribution to the sum

∑
σ∈Pτ (q;2p) above. Namely,

for ε′ = {−1, 1}2p , denote by {−1, 1}2p
+ the subset of all ε′ such that

•
∑2p

j=1 ε′ (j) = 0;

• for any k = 1, . . . , 2p,
∑k

j=1 ε′ (j)  0.

Then it is easy to check that (5.2) implies that only a partition ε such that ε′ ∈
{−1, 1}2p

+ can give a nonzero term into summation on the left-hand side of (5.1).
Let {lj , rj}pj=1 be the left-right index set relative to ε′ ∈ {−1, 1}2p

+ . By (5.2) we
also see that the nonzero contributions in the considered sum are determined ex-
actly by ε′∈{−1, 1}2p

+ such that, for any j = 1, . . . , p, ε (lj)=−1 and ε (rj)=1.

To avoid the introduction of new symbols, whenever we write ε′ ∈ {−1, 1}2p
+ , we

require ε (lj) = −1, and ε (rj) = 1 are satisfied. Moreover, we assume:
1. For any q ∈ N∗, any ε ∈ {−1, 0, 1}q , k : {1, . . . , q} → I

(5.3) ϕ(aεq

kq
. . . aε1

k1
) = 0
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if there is a crossing in k, i.e. there exist h < i < j < l such that kh = kj , ki = kl.
Hence only τ ∈ P.P. (2p) non-crossing can appear on the left-hand side of (5.1).
We use the notation ε ∈ {−1, 0, 1}q2p,+ to indicate any ε ∈ {−1, 0, 1}q , where
q = 2p + h and such that ε′ := ε|Fs ∈ {−1, 1}2p

+ . Since it is well known (see [6],
Lemma 22.6, for details) that any non-crossing pair partition τ on {1, . . . , 2p} is
uniquely determined by ε′ ∈ {−1, 1}2p

+ , it follows that every σ ∈ Pτ (q; 2p) such
that τ is non-crossing is uniquely determined by ε ∈ {−1, 0, 1}q2p,+ . As a conse-
quence, from now on, we write α (σ, ε) as α (ε) and ω (τ, ε′) as ω (ε′).

2 (Factorization principle). For any ε ∈ {−1, 1}2q
+

(5.4) ϕ(aεq

kq
. . . aε1

k1
) = ϕ

( rd1∏
h=ld1

aεh
kh

)
. . . ϕ

( rdm+1∏
h=ldm+1

aεh
kh

)
,

where m and {dj}m+1
j=1 are determined by ε = {lh, rh}qh=1 such that 1 ¬ m < q

with 1 = d1 < . . . < dm+1 ¬ q, rdh
= ldh−1+1 for any h = 2, . . . , m + 1 and

rd1 = 1, ldm+1 = 2q. Each block {εldj
, . . . , εrdj

} with j = 1, . . . , m + 1 is called
a connected component of the partition ε.

3 (Rule to compute the mixed moments). Let us introduce the following no-
tation:

ω1 := ω(ε′ = {−1, 1}),
ω2 := ω(ε′ = {−1,−1, 1, 1})

and, generally, for any n  3

ωn := ω(ε′ = {−1, . . . ,−1︸ ︷︷ ︸
n times

, 1, . . . , 1︸ ︷︷ ︸
n times

}).

Take

(5.5) ϕ(ak1a
+
k1

) = ω1

and, if ε ∈ {−1, 1}2p
+ and

(5.6) ϕ(aε2p

k2p
. . . aε1

k1
) =

r∏
j=1

ω
lj
j , r ¬ p, lj ∈ N, j = 1, . . . r,

then

(5.7) ϕ(ak2p+1a
ε2p

k2p
. . . aε1

k1
a+

k2p+1
) = ω1

r∏
j=1

ω
lj
j+1.

For example, if
ϕ(a−1

3 a1
3a
−1
2 a−1

1 a1
1a

1
2) = ω2

1ω2,

then
ϕ(a−1

4 a−1
3 a1

3a
−1
2 a−1

1 a1
1a

1
2a

1
4) = ω1ω

2
2ω3.
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By means of (5.4)–(5.7), one can inductively compute all the mixed moments.
Fixing ε ∈ {−1, 0, 1}q2p,+ , we introduce the depth function of the string ε as

the map dε : {1, . . . , q} → {0,±1, . . . ,±2p} such that for any j ∈ {1, . . . , q}

dε (j) :=
j∑

k=1

ε (k)

and consider the sequence of real numbers {αn}n satisfying the property

(5.8)
h∏

j=1

αdε(j) = α (ε),

where on the right-hand side the same α appears as in the first line of (5.1). It is
worth noticing that (5.8) does not uniquely determine the sequence; in fact, for
ε1 = {−1, 0, 1} and ε2 = {−1, 1,−1, 0, 1} we find α (ε1) = α (ε2) = α1.

Let C be the complex field. If λ0 := 1, λ1 := ω1 and, for any n  2, λn :=
λn−1ωn, we introduce the 1-mode interacting Fock space Γ (C, {λn}) as in [2].
Namely, let us take Kn := C⊗n, where its elements are multiples of a vector a+nΦ
and (v, w)n := λnvw, v, w ∈ C. Then {(·, ·)n} is a sequence of pre-scalar prod-
ucts. After completing, Kn is equipped with a Hilbert space structure. The 1-mode
interacting Fock space Γ (C, {λn}) is given by the orthogonal sum

⊕
n0

{Kn, (·, ·)n}.

Since λn = 0 =⇒ λm = 0 for all m  n, the following linear operator, called a
creation operator, is well defined:

a+ : a+nΦ 7−→ a+(n+1)Φ,

while, using the convention 0/0 = 0, we define the annihilation operator as a
linear operator such that

a : a+nΦ 7−→ λn

λn−1
a+(n−1)Φ.

Then the commutation relation

(5.9) aa+ =
λN

λN−1

is satisfied, where N is the number operator. Finally, the preservation operator
with intensity {αn}n determined by (5.8) is defined as

αN (a+nΦ) := αn(a+nΦ),

where N is again the number operator.
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LEMMA 5.1. The family of creation and annihilation operators is symmetric
projectively independent with respect to the vacuum state 〈Φ, ·Φ〉 in 1-mode IFS.

P r o o f. In fact, for any p ∈ N, any ε =
(
ε (1) , . . . , ε (2p)

) ∈ {−1, 1}2p
+ , by

the definitions of 1-mode IFS and depth function, from (5.9) we have

〈Φ, a
ε(2p)
2p . . . a

ε(1)
1 Φ〉 =

p∏
j=1

ωdε(rj),

where {lj , rj}pj=1 is the unique non-crossing pair partition induced by ε. The as-
sertion follows after noticing that the terms of the product on the right-hand side
above depend only on ε. ¥

Denote by Q := a + a+ + αN the non-symmetric field operator in 1-mode
IFS. The following result gives us the Fock representation for the limit process.

THEOREM 5.1. The limit process {a−1
ψ , a1

ψ, a0
ψ} is represented in Γ (C, {λn}),

that is
ψ(aεq

ψ . . . aε1
ψ ) = 〈Φ, Qq . . . Q1Φ〉.

P r o o f. In fact, from [2], Theorem 5.1 and (5.8), we get

〈Φ, Qq . . . Q1Φ〉 =
∑

NCP(q;2p)

α (ε)
p∏

j=1

ωdε′ (rj),

where

NCP(q; 2p) :=
{
σ ∈ P (q) : σ = τ ∪ γ, τ ∩ γ = ∅, τ∈ NCP.P.({z1, . . . , z2p})

}

and NCP.P. ({z1, . . . , z2p}) is the set of all the non-crossing pair partitions of
{z1, . . . , z2p}. On the other hand, we know from (5.1)–(5.3) and (5.8) that

ψ(aεq

ψ . . . aε1
ψ ) =

∑

NCP(q;2p)

α (ε) ω(ε′).

Moreover, from (5.4)–(5.7) it follows that

ω(ε′) =
p∏

j=1

ωdε′ (rj),

where {lj , rj}pj=1 is the unique non-crossing pair partition induced by ε′. ¥

Finally, we turn to give a Fock representation for the limit process expressed in
part (ii) of Theorem 4.1. As already noticed, one knows that there exist an algebraic
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probability space (B, ψ) and random variables a
−1(sj ,tj)
ψ , a

1(sj ,tj)
ψ , a

0(sj ,tj)
ψ , 0 ¬

sj < tj , j = 1, . . . , q, in this space such that

(5.10)
∑

σ∈Pτ (q;2p)

α (σ, ε) ω(τ, ε′)
[ h∏

d=1

(
√

t
z′
d

−
√

s
z′
d

)
]

× [ p∏
j=1

〈χ(slj
,tlj ), χ(srj ,trj )〉L2(R+)C(εlj , εrj )

]

= lim
N→∞

1
N q/2

ϕ
(
S

(sq ,tq)
N (ãεq) . . . S

(s1,t1)
N (ãε1)

)
= ψ(aεq(sq ,tq)

ψ . . . a
ε1(s1,t1)
ψ ).

As above, given (Hψ,Φψ), the GNS space of (B, ψ), we want to realize Hψ as a
Fock space, Φψ as the vacuum on such a space and reach the equality

ψ(aεq(sq ,tq)
ψ . . . a

ε1(s1,t1)
ψ ) = 〈Φψ, Aεq . . . Aε1Φψ〉,

where the Aεj ’s are operators of creation, annihilation and preservation inHψ.
Firstly we suppose the condition (5.2), assumptions 1–3 and (5.5)–(5.8) hold

also in our case.
Let H := L2 (R+) and get the 1-MT IFS on it, together with creation and

annihilation operators, as in Example 2.1. The preservation operator with intensity
{αn}n determined by (5.8) and X ∈ B (H):

Λα (X) : Hn → Hn,

is such that, for any f1, . . . , fn ∈ H
Λα (X) (f1 ⊗ . . .⊗ fn) := αn (Xf1) f2 ⊗ . . .⊗ fn.

If X is the identity operator, we will write Λα := Λα (I), while, for any f ∈ H,
Λα (f) := Λα (Mf ), where Mf is the multiplication operator by f .

LEMMA 5.2. The family of creation and annihilation operators is symmet-
ric projectively independent with respect to the vacuum state 〈Φ, ·Φ〉 in 1-mode
type IFS.

P r o o f. The assertion can be achieved by using the same arguments as in the
proof of Lemma 5.1. ¥

Let s, t  0, s < t. Denote by
√

t − √s the function on R+ with constant
value

√
t − √s, χ[s,t] the indicator function on the interval [s, t], and Q(s,t) :=

A(χ[s,t]) + A+(χ[s,t]) + Λα(
√

t − √s) the non-symmetric field operator in 1-
mode type IFS. From now on we will use the following notation: for any ε ∈
{−1, 0, 1}

Aε (s, t) :=





A(χ[s,t]) if ε = −1,

Λα(
√

t−√s) if ε = 0,

A+(χ[s,t]) if ε = 1.
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THEOREM 5.2. The limit process {a−1(sj ,tj)
ψ , a

1(sj ,tj)
ψ , a

0(sj ,tj)
ψ } has a repre-

sentation in Γ (H, {λn}), that is

ψ(aεq(sq ,tq)
ψ . . . a

ε1(s1,t1)
ψ ) = 〈Φ, Q

(sq ,tq)
q . . . Q

(s1,t1)
1 Φ〉,

where 0 ¬ sj < tj for each j = 1, . . . , q.

P r o o f. Let us take 0 ¬ sj < tj for each j = 1, . . . , q. Then

(5.11) 〈Φ, Q
(sq ,tq)
q . . . Q

(s1,t1)
1 Φ〉

=
∑

ε∈{−1,0,1}q
〈Φ, A

εq
q (sq, tq) . . . Aε1

1 (s1, t1)Φ〉.

Make the usual partition {1, . . . , q}={z1, . . . , z2p}∪ {z′1, . . . , z
′
h}. For any given ε,

if ε′ is its restriction to the elements of Fs, then ε ∈ {−1, 0, 1}q2p,+ holds if and
only if ε′ ∈ {−1, 1}2p

+ . Denote by {lj , rj}pj=1 the left-right family of indices of
the unique pair partition on {z1, . . . , z2p} induced by ε′. Then, by the definition of
1-MT IFS and Lemma 3.3 of [3], (5.11) is equal to

(5.12)
∑

ε∈{−1,0,1}q2p,+

∑

z′h<...<z′1∈{2,...,q−1}

h∏
d=1

(
√

tz′d −
√

sz′d
)αdε(z′d)

×
p∏

j=1

ωdε′(rj)
〈χ(slj

,tlj ), χ(srj
,trj )〉.

Hence, by means of (5.8), the expression (5.12) can be written as follows:

∑

NCP(q;2p)

α (ε)
[ h∏

d=1

(
√

t
z′
d

−
√

s
z′
d

)
][ p∏

j=1

ωdε′ (rj)〈χ(slj
,tlj ), χ(srj ,trj )〉

]
,

where

NCP(q; 2p) :=
{
σ ∈ P (q) : σ = τ ∪ γ, τ ∩ γ = ∅, τ∈ NCP.P.({z1, . . . , z2p})

}
.

On the other hand, from (5.1), (5.2), (5.8) and (5.3) we know that

ψ(aεq(sq ,tq)
ψ . . . a

ε1(s1,t1)
ψ ) =

∑

NCP(q;2p)

α (ε) ω(ε′)
h∏

d=1

(
√

t
z′
d

−
√

s
z′
d

)

×
p∏

j=1

〈χ(slj
,tlj ), χ(srj ,trj )〉.

From (5.4)–(5.7) it follows that

ω(ε′) =
p∏

j=1

ωdε′ (rj). ¥
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