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Abstract. An explicit formula for the Skorokhod type reflection map
for real-valued càdlàg functions is developed in the general case of con-
straining set [α, β], where α and β are not constant but change with time. In
addition, a number of properties of the reflection map, including continuity
and Lipschitz conditions under uniform, J1 and M1 metrics, are studied.
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1. INTRODUCTION

The original Skorokhod map was introduced in [7] as a tool for solving stochas-
tic differential equations.

DEFINITION 1.1 (one-sided Skorokhod map). Let α and ψ be real-valued
càdlàg functions on [0,∞). A pair of real-valued càdlàg functions (φ, η), where η
is nondecreasing, is said to be a solution of the Skorokhod problem (SP) on [α,∞)
for ψ if the following two properties are satisfied:

(i) For every t ∈ [0,∞), φ (t) = ψ (t) + η (t)  α(t).

(ii) η (0−) = 0, η (0)  0 and
∫∞

0
I{φ(s)>α(s)}dη (s) = 0.

The map Γα : D [0,∞)→ D+ [0,∞) defined by Γα(ψ) = φ is called the one-
sided reflection map or Skorokhod map (SM) on [α,∞), and the pair (φ, η) is called
a solution of the Skorokhod problem on [α,∞) for ψ. The condition η(0−) = 0 is a
traditional convention indicating merely that η has a jump at 0 whenever η(0) > 0.
In the above, D[0,∞) denotes the set of real-valued right-continuous functions
having left limits (usually called càdlàg functions). Similarly, we shall use I[0,∞),
C[0,∞), BV [0,∞) and AC[0,∞) to denote subspaces of D[0,∞) consisting of
nondecreasing functions, continuous functions, functions of bounded variation and
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absolutely continuous functions, respectively. The plus sign as a subscript will in-
dicate nonnegative functions.

The work presented in this paper was inspired mainly by [4], where Kruk,
Lehoczky, Ramanan and Shreve provided an explicit formula and studied the prop-
erties of the two-sided Skorokhod map (reflection map) Γ0,a from D [0,∞) to
D+ [0,∞) constraining the process in D[0,∞) to remain in the interval [0, a],
where a is a positive constant. From the applications point of view, it is desirable
to allow the reflection boundary to be dependent on time. Therefore, we are go-
ing to generalize their results by replacing the constant 0 and a with a function
α, β ∈ D [0,∞) such that α(t) < β(t) for every t  0.

The concept of Skorokhod map with time dependent boundaries has been stud-
ied recently by Burdzy et al. in [2]. In fact, their analysis includes a more relaxed
version of the Skorokhod map called the extended Skorokhod map. By using dif-
ferent methods based on the approach in [4] we provide in Section 2 a somewhat
different and independently derived explicit representation formula for the two-
sided Skorokhod map with time dependent boundaries. In Section 3 we establish
the so-called non-antiparticipatory property of the SM. In Section 4 we study con-
tinuity and Lipschitz conditions for the SM under three metrics on D[0,∞).

The original Skorokhod map developed in [7] was a one-sided map with
α = 0, i.e. Γ0. Its existence and uniqueness are well known. The following result
provides an explicit formula for a one-sided SM with a general boundary α.

LEMMA 1.1. Let α ∈ D[0,∞). Then

(1.1) Γα(ψ) = Γ0(ψ − α) + α for every ψ ∈ D[0,∞).

P r o o f. Let ψ′ = ψ − α and consider the SP for ψ′ on [0,∞). Let (φ′, η′) be
its solution. Then

φ′ = ψ′ + η′  0 and
∞∫
0

I{φ′(s)>0}dη′ (s) = 0.

It suffices to show that (φ, η) defined by φ = φ′ + α and η = η′ is the solution of
the SP for ψ on [α,∞). Indeed,

φ = φ′ + α = ψ′ + η′ + α = ψ + η  α

and ∞∫
0

I{φ(s)>α(s)}dη (s) =
∞∫
0

I{φ′(s)>0}dη′ (s) = 0. ¥

REMARK 1.1. It follows immediately from Lemma 1.1 and equation (1.4) in
[4] that

(1.2) Γα(ψ)(t) = ψ(t) + sup
0¬s¬t

[α(s)− ψ(s)]+ .
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DEFINITION 1.2 (two-sided Skorokhod map). Let α, β ∈ D [0,∞) be such
that α(t) < β(t) for every t  0. Given ψ ∈ D[0,∞), a pair of functions (φ̄, η̄) ∈
D[0,∞) × BV [0,∞) is said to be a solution of the Skorokhod problem on [α, β]
for ψ if the following two properties are satisfied:

(i) For every t ∈ [0,∞], φ̄(t) = ψ(t) + η̄(t) ∈ [α(t), β(t)].
(ii) η̄ (0−) = 0 and η̄ has the decomposition

η̄ = η̄l − η̄u,

where η̄l, η̄u ∈ I[0,∞), and

(1.3)
∞∫
0

I{φ̄(s)>α(s)}dη̄l (s) = 0 and
∞∫
0

I{φ̄(s)<β(s)}dη̄u (s) = 0.

To show the uniqueness of the solution of the Skorokhod problem when α and
β are functions of time we will need the following result. It generalizes part (i) of
Lemma 2.2 in [8].

LEMMA 1.2. Assume that β, ψ1, ψ2 ∈ D[0,∞), β(t) > 0 for every t  0 and
let

(
φ̄1, η̄1

)
and

(
φ̄2, η̄2

)
be the corresponding solutions of the Skorokhod problems

for ψ1 and ψ2 on [0, β]. Let η̄1 = η̄1
l − η̄1

u and η̄2 = η̄2
l − η̄2

u be the corresponding
decompositions satisfying (1.3). Then for t ∈ [0,∞) the following inequality holds:

(1.4) |φ̄1(t)− φ̄2(t)|2

¬ |ψ1(t)−ψ2(t)|2 +2
t∫
0

(
ψ1(t)−ψ2(t)−ψ1(s) +ψ2(s)

)(
η̄1(ds)− η̄2(ds)

)
.

P r o o f. It follows from (1.3) that

(1.5)

t∫
0

(
φ̄1(s)− φ̄2(s)

)
η̄1

l (ds) ¬ 0,
t∫
0

(
φ̄1(s)− φ̄2(s)

)
η̄1

u(ds)  0,

t∫
0

(
φ̄1(s)− φ̄2(s)

)
η̄2

l (ds)  0,
t∫
0

(
φ̄1(s)− φ̄2(s)

)
η̄2

u(ds) ¬ 0.

Therefore

(1.6)
∞∫
0

(
φ̄1(s)− φ̄2(s)

)(
η̄1(ds)− η̄2(ds)

) ¬ 0.

For every t  0 we have

(1.7) |η̄1(t)− η̄2(t)|2 ¬ 2
t∫
0

(
η̄1(s)− η̄2(s)

)(
η̄1(ds)− η̄2(ds)

)
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and

(1.8)
(
ψ1(t)− ψ2(t)

)(
η̄1(t)− η̄2(t)

)
=

t∫
0

(
ψ1(t)− ψ2(t)

)(
η̄1(ds)− η̄2(ds)

)

=
t∫
0

(
ψ1(t)− ψ2(t)− ψ1(s) + ψ2(s)

)(
η̄1(ds)− η̄2(ds)

)

+
t∫
0

(
ψ1(s)− ψ2(s)

)(
η̄1(ds)− η̄2(ds)

)
.

Using (1.7) and (1.8) we get

|φ̄1(t)− φ̄2(t)|2

= |ψ1(t)− ψ2(t)|2 + 2
(
ψ1(t)− ψ2(t)

)(
η̄1(t)− η̄2(t)

)
+ |η̄1(t)− η̄2(t)|2

¬ |ψ1(t)− ψ2(t)|2 + 2
t∫
0

(
ψ1(t)− ψ2(t)− ψ1(s) + ψ2(s)

)(
η̄1(ds)− η̄2(ds)

)

+ 2
t∫
0

(
φ̄1(s)− φ̄2(s)

)(
η̄1(ds)− η̄2(ds)

)

¬ |ψ1(t)− ψ2(t)|2 + 2
t∫
0

(
ψ1(t)− ψ2(t)− ψ1(s) + ψ2(s)

)(
η̄1(ds)− η̄2(ds)

)
,

where the last inequality follows from (1.6). ¥

We provide now sufficient conditions for the existence of the solution to the
Skorokhod problem. Later, in Example 2.1, we will establish that the conditions
are not redundant.

THEOREM 1.1. Let α, β ∈ D[0,∞) be such that inft0 [β(t)− α(t)] > 0.
Then for every ψ ∈ D[0,∞) there exists a unique solution of the Skorokhod prob-
lem on [α, β] for ψ.

P r o o f. The existence will follow from Theorem 2.1 and we postpone this
part of the proof till then. To establish the uniqueness of the solution, suppose that
(φ̄1, η̄1) and (φ̄2, η̄2) are two solutions of the Skorokhod problem on [α, β] for ψ.
Then it is easy to see and it will be verified in Lemma 2.2 that (φ̄1 − α, η̄1) and
(φ̄2 − α, η̄2) are two solutions of the Skorokhod problem on [0, β − α] for ψ − α.
Therefore we can assume without loss of generality that α = 0.

Let η̄1 = η̄1
l − η̄1

u and η̄2 = η̄2
l − η̄2

u be the respective decompositions satisfy-
ing (1.3). Then, by (1.4), for any t ∈ [0,∞),

|φ̄1(t)− φ̄2(t)|2 ¬ 0 + 2
t∫
0

0 · (η̄1(ds)− η̄2(ds)
)

= 0,

and so φ̄1(t) = φ̄2(t). ¥
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Suppose that the pair (φ̄, η̄) is a solution of the Skorokhod problem on [α, β]
for ψ. Then the map Γα,β : D[0,∞)→ D[0,∞) defined by Γα,β(ψ) = φ̄ will be
called the two-sided reflection map or Skorokhod map on [α, β]. Throughout this
paper α and β will always denote càdlàg functions possibly satisfying some addi-
tional conditions as indicated. S[0,∞) will denote a subspace of D[0,∞) consist-
ing of piecewise constant functions with a finite number of jumps and S+[0,∞) =
S[0,∞) ∩D+[0,∞). We use the projection maps πa,b : R→ [a, b] defined by

πa,b =





a if x ¬ a,
x if a ¬ x ¬ b,
b if x  b.

Note that each πa,b is monotone and Lipschitz continuous with constant 1. The fol-
lowing is a simple example of a Skorokhod map with a time dependent boundary.
It is based on (28) in [3].

EXAMPLE 1.1. Let ψ ∈ S[0,∞), let α, β ∈ S[0,∞) be such that α(t) <
β(t) for every t  0 and let 0 = t0 < t1 < . . . < tk be all the jump points of
either function. Define φ̄(0) = πα(0),β(0)

(
ψ(0)

)
and then, recursively, φ̄(ti+1) =

πα(ti+1),β(ti+1)

(
φ̄(ti) + ψ(ti+1)− ψ(ti)

)
. Finally, we set φ̄(t) = φ̄(ti) for any t ∈

(ti, ti+1) and φ̄(t) = φ̄(tk) for t ∈ (tk,∞). Then φ̄ is a well-defined function in
S[0,∞) and it is easy to verify that conditions (i) and (ii) of Definition 1.2 are
satisfied so that Γα,β(ψ) = φ̄, i.e. φ̄ is the Skorokhod map for ψ.

To remain consistent with the notation used in [4] we define the mappings
Rα,β

t , Cα,β , Λα,β : D[0,∞)→ D[0,∞) as follows:

(1.9) Rα,β
t (φ)(s) =

(
φ(s)− β(s)

)+ ∧ inf
s¬r¬t

(
φ(r)− α(r)

)
for 0 ¬ s ¬ t,

(1.10) Cα,β(φ)(t) = Cφ
α,β(t) = sup

0¬s¬t

[(
φ(s)− β(s)

)+ ∧ inf
s¬r¬t

(
φ(r)−α(r)

)]
,

(1.11) Λα,β(φ)(t) = φ(t)− sup
0¬s¬t

[(
φ(s)− β(s)

)+ ∧ inf
s¬r¬t

(
φ(r)− α(r)

)]
.

Using (1.9) we can obtain the following equivalent expressions to (1.11):

Λα,β(φ)(t) = φ(t)− sup
0¬s¬t

Rα,β
t (φ)(s) or Λα,β(φ) = φ− Cφ

α,β.

Note that

(1.12) φ1 ¬ φ2 implies Cφ1

α,β ¬ Cφ2

α,β.
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As we are often going to consider the special case when α = 0, we shall also use
the abbreviated notation

Rβ
t (φ) = R0,β

t (φ), Cβ(φ) = Cφ
0,β, Λβ(φ) = Λ0,β(φ).

PROPOSITION 1.1. Let β be a function in D+[0,∞). Then:
(i) Λβ maps D+[0,∞) into D+[0,∞).

(ii) If β ∈ C+[0,∞), then Λβ maps C+[0,∞) into C+[0,∞).
(iii) If β ∈ AC+[0,∞), then Λβ maps AC+[0,∞) into AC+[0,∞).

Before we prove Proposition 1.1 we recall the definition of a càdlàg function.
φ ∈ D+[0,∞) if and only if the following two conditions hold for any ε > 0:

for each θ1  0 there is θ2 > θ1 such that sup
s,r∈[θ1,θ2)

|φ(s)− φ(r)| ¬ ε,

for each θ2  0 there is 0 ¬ θ1 < θ2 such that sup
s,r∈[θ1,θ2)

|φ(s)− φ(r)| ¬ ε.

Note that for β, φ ∈ D[0,∞),

given θ1  0 and ε > 0, we can find θ2 > θ1 such that(1.13)
sup

s,r∈[θ1,θ2)
|φ(s)− φ(r)| ¬ ε and sup

s,r∈[θ1,θ2)
|β(s)− β(r)| ¬ ε.

Similarly,

given θ2  0 and ε > 0, we can find 0 ¬ θ1 ¬ θ2 such that(1.14)
sup

s,r∈[θ1,θ2)
|φ(s)− φ(r)| ¬ ε and sup

s,r∈[θ1,θ2)
|β(s)− β(r)| ¬ ε.

The following lemma is a generalization of Lemma 2.1 in [4].

LEMMA 1.3. Let φ, β ∈ D+[0,∞). Then:

(i) Cφ
β (t2)− Cφ

β (t1) ¬ sup
t1<s¬t2

|φ(s)− φ(t1)|

+ sup
t1<s¬t2

|β(s)− β(t1)| for 0 ¬ t1 < t2;

(ii) sup
t1,t2∈[θ1,θ2)

|Λβ(φ)(t1)− Λβ(φ)(t2)| ¬ 2 sup
t1,t2∈[θ1,θ2)

|φ(t1)− φ(t2)|

+ sup
t1,t2∈[θ1,θ2)

|β(t1)− β(t2)| for 0 ¬ θ1 < θ2.

P r o o f. From (1.9) we infer that for every t  0

(1.15)
(
φ(t)− β(t)

)+ =
(
φ(t)− β(t)

)+ ∧ φ(t) ¬ sup
0¬s¬t

Rβ
t (φ)(s).
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Let 0 ¬ t1 < t2; then, by (1.9),

sup
t1<s¬t2

Rβ
t2

(φ)(s) ¬ sup
t1<s¬t2

(
φ(s)− β(s)

)+

¬ sup
t1<s¬t2

[|φ(s)− φ(t1)|+
(
φ(t1)− β(t1)

)+ + |β(s)− β(t1)|
]

¬ (
φ(t1)− β(t1)

)+ + sup
t1<s¬t2

|φ(s)− φ(t1)|+ sup
t1<s¬t2

|β(s)− β(t1)|.

Therefore, by (1.15),

Cφ
β (t2) = sup

0<s¬t2

Rβ
t2

(φ)(s) = sup
0<s¬t1

Rβ
t2

(φ)(s) ∨ sup
t1<s¬t2

Rβ
t2

(φ)(s)

¬ sup
0<s¬t1

Rβ
t2

(φ)(s)

∨ [(
φ(t1)− β(t1)

)+ + sup
t1<s¬t2

|φ(s)− φ(t1)|+ sup
t1<s¬t2

|β(s)− β(t1)|
]

¬ Cφ
β (t1) + sup

t1<s¬t2

|φ(s)− φ(t1)|+ sup
t1<s¬t2

|β(s)− β(t1)|,

which completes the proof of part (i).
To prove part (ii) let t1, t2 ∈ [θ1, θ2) and assume without loss of generality

that t1 < t2. By part (i),

|Λβ(φ)(t2)− Λβ(φ)(t1)| ¬ |φ(t1)− φ(t2)|+ |Cφ
β (t1)− Cφ

β (t2)|
¬ 2 sup

t1,t2∈[θ1,θ2)
|φ(t1)− φ(t2)|+ sup

t1,t2∈[θ1,θ2)
|β(t1)− β(t2)|. ¥

The arguments from the proof of Lemma 1.3 can be used to show the follow-
ing, slightly different version.

REMARK 1.2. If φ, β ∈ D+[0,∞) and 0 ¬ θ1 ¬ θ2, then

(1.16) sup
t1,t2∈[θ1,θ2]

|Λβ(φ)(t1)− Λβ(φ)(t2)|

¬ 2 sup
t1,t2∈[θ1,θ2]

|φ(t1)− φ(t2)|+ sup
t1,t2∈[θ1,θ2]

|β(t1)− β(t2)|.

P r o o f o f P r o p o s i t i o n 1.1. Part (i) follows directly from (1.13), (1.14)
and Lemma 1.3. Part (ii) follows directly from (1.16). Part (iii) can be obtained
from (1.16) via arguments used in the proof of Corollary 2.3 in [4] with νΛβ(φ)(ε) =
νφ(ε/3) ∧ νβ(ε/3). ¥
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2. THE EXPLICIT REPRESENTATION OF THE SKOROKHOD MAP
AND ITS CONSTRAINING TERM

Burdzy et al. worked out in [2] a representation formula for a generalization
of the Skorokhod map called the extended Skorokhod map (ESM), which is the
solution of the extended Skorokhod problem (ESP). In the definition of the ESP
(see Definition 2.2 in [2]) η̄ is not required to be of bounded variation and (1.3) is
replaced by the following weaker conditions:

For every 0 ¬ s ¬ t,

η̄(t)− η̄(s)  0 if φ̄(r) < β(r) for all r ∈ (s, t],

η̄(t)− η̄(s) ¬ 0 if φ̄(r) > α(r) for all r ∈ (s, t],

η̄(t)− η̄(t−)  0 if φ̄(t) < β(t),

η̄(t)− η̄(t−) ¬ 0 if φ̄(t) > α(t).

The ESM is denoted by Γ̄α,β . Thus φ̄ = Γ̄α,β(ψ). Burdzy et al. established in
Theorem 2.6 of [2] that for any α, β ∈ D[0,∞) such that α ¬ β

(2.1) Γα,β(ψ) = ψ − Ξα,β(ψ),

where Ξα,β(ψ) : D[0,∞)→ D[0,∞) is given by

Ξα,β(ψ)(t) = max
{[(

ψ(0)− β(0)
)+ ∧ inf

0¬r¬t

(
ψ(r)− α(r)

)]
,

sup
0¬s¬t

[(
ψ(s)− β(s)

) ∧ inf
s¬r¬t

(
ψ(r)− α(r)

)]}
.

(2.2)

They obtained their result first for simple functions and then extended it by the
limiting process. The results of this paper are based on the approach developed by
Kruk et al. in [4] and are independent of [2]. The following is our generalization of
(1.13) in [4].

THEOREM 2.1. Let α, β ∈ D[0,∞), α ¬ β, and let Γα and Γα,β be the Sko-
rokhod maps on [α,∞) and [α, β], respectively. If inft0 [β(t)− α(t)] > 0, then

(2.3) Γα,β = Λα,β ◦ Γα.

We shall break the proof of Theorem 2.1 into several intermediate results. By
a similar argument to the one used in Lemma 1.1 we will show that to solve the SP
for ψ on [α, β] it is enough to solve the SP for ψ − α on [0, β − α]. Therefore we
focus first on the case of α = 0.

LEMMA 2.1. For any β ∈ D+[0,∞) and ψ ∈ D[0,∞)

(2.4) 0 ¬ Λβ ◦ Γ0(ψ) ¬ Γ0(ψ) ∧ β.

In particular, for t ∈ [0,∞),

(2.5) Γ0(ψ)(t) = 0 implies Λβ ◦ Γ0(ψ)(t) = 0.
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P r o o f. From (1.9) we get Λβ(φ)(t) = φ(t)− sup0¬s¬t Rβ
t (φ)(s)  0, and

since φ = φ ∧ β + φ ∧ (φ− β)+, we have

Λβ(φ)(t) ¬ φ(t)− (
φ(t)− β(t)

)+ ∧ φ(t) = φ(t) ∧ β(t). ¥

Let us define two increasing sequences of times {σβ
k | k = 0, 1, 2, . . . } and

{τβ
k | k = 0, 1, 2, . . . } as follows. We set

(2.6) τ0 = 0, σ0 = min{t > 0 | φ(t)− β(t)  0}

and for k  1

(2.7) τk = min{t > σk−1 | sup
σk−1¬s¬t

[φ(s)− β(s)]  φ(t)},

(2.8) σk = min{t > τk | φ(t)− β(t)  inf
τk¬r¬t

φ(r)}.

The right continuity of φ and β guarantees that τk and σk are well defined. It is
easy to see that

(2.9) φ(σ0)− β(σ0)  0.

Furthermore, for k  1,

(2.10) sup
σk−1¬s¬t

[φ(s)− β(s)] < φ(t) for every t ∈ [σk−1, τk),

(2.11) sup
σk−1¬s¬τk

[φ(s)− β(s)]  φ(τk),

(2.12) φ(s)− β(s) < inf
τk¬r¬s

φ(r) for every s ∈ [τk, σk),

(2.13) φ(σk)− β(σk)  inf
τk¬r¬σk

φ(r).

It follows from (2.10) that φ(s) − β(s) < φ(t) whenever σk−1 ¬ s ¬ t < τk,
k  1. Therefore

(2.14) φ(s)− β(s) ¬ inf
s¬r<τk

φ(r) whenever σk−1 ¬ s < τk.

Note that 0 = τ0 ¬ σ0 < τ1 < σ1 < τ2 < σ2 < . . . unless one of the times
equals ∞, at which point all the following times are also ∞. Also note that the
time sequences depend on both φ and β.
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PROPOSITION 2.1. Let φ, β ∈ D+[0,∞). If inft0 β(t) > 0, then

lim
k→∞

τk =∞ and lim
k→∞

σk =∞.

P r o o f. The conclusion follows from arguments used in the proof of Propo-
sition 3.1 of [4] with a = inft0 β(t). ¥

Note that if inft0 β(t) = 0, then it is easy to construct φ and ψ such that

lim
k→∞

τk = lim
k→∞

σk = γ <∞.

The next result generalizes Proposition 3.2 in [4].

PROPOSITION 2.2. Let φ, β ∈ D+[0,∞). If inft0 β(t) > 0, and k  1, then

Cφ
β (t) = sup

σk−1¬s¬t
[φ(s)− β(s)]+ for every t ∈ [σk−1, τk).

P r o o f. Both the lower bound and the upper bound can be established by
the same arguments that were used in the proof of Proposition 3.2 in [4] with Cφ

replaced by Cφ
β and a replaced by β. ¥

The next result corresponds to Proposition 3.3 in [4]. We repeat the steps of
the proof from there indicating the necessary changes.

PROPOSITION 2.3. Let φ, β ∈ D+[0,∞) and inft0 β(t) > 0. Then

Cφ
β (t) = 0 for 0 ¬ t < σ0,

Cφ
β (t) = inf

τk¬r¬t
φ(r) for every t ∈ [τk, σk) and every k  1.

P r o o f. For 0 ¬ t < σ0 we get Cφ
β (t) = 0, by (1.10). To get the upper bound

for k  1 we let t ∈ [τk, σk) and write Cφ
β (t) = S1 ∨ S2, where

S1 = sup
0¬s¬τk

[(
φ(s)− β(s)

)+ ∧ inf
s¬r¬t

φ(r)
]

and
S2 = sup

τk¬s¬t

[(
φ(s)− β(s)

)+ ∧ inf
s¬r¬t

φ(r)
]
.

Then S1 ¬ infτk¬r¬t φ(r) trivially and S2 ¬ infτk¬r¬t φ(r) by (2.12). To prove
the lower bound it suffices to show that for every positive ε

(2.15) Cφ
β (t)  inf

τk¬r¬t
φ(r)− ε.
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Let ε > 0 be arbitrary and let ρ ∈ [σk−1, τk] be such that

(2.16) sup
σk−1¬s¬τk

[φ(s)− β(s)] < φ(ρ)− β(ρ) + ε.

For t ∈ [τk, σk) by (1.10) we have

(2.17) Cφ
β (t)  (

φ(ρ)− β(ρ)
)+ ∧ inf

ρ¬r<τk

φ(r) ∧ inf
τk¬r¬t

φ(r).

By (2.11) we obtain

(2.18)
(
φ(ρ)− β(ρ)

)+  φ(ρ)− β(ρ)  φ(τk)− ε

and by (2.14) and (2.11) we get

(2.19) inf
ρ¬r<τk

φ(r)  φ(ρ)− β(ρ)  φ(τk)− ε.

Thus

(2.20) Cφ
β (t)  (

φ(τk)− ε
) ∧ inf

τk¬r¬t
φ(r)  inf

τk¬r¬t
φ(r)− ε,

and so (2.15) holds. ¥

The following result generalizes (3.24) of [4]. It combines the statements of
Propositions 2.2 and 2.3 into one representation formula.

THEOREM 2.2. Let φ, β ∈ D+[0,∞) and inft0 β(t) > 0. Then Cφ
β (t) has

the following representation:

(2.21) Cφ
β (t) =





0 if 0 ¬ t < σ0,

supσk−1¬s¬t[φ(s)− β(s)]+ if σk−1 ¬ t < τk, k  1,

infτk¬r¬t φ(r) if τk ¬ t < σk, k  1.

P r o o f. The formula (2.21) follows directly from the prior propositions. ¥

REMARK 2.1. From (2.21), (2.13) and (2.9) we obtain immediately the fol-
lowing:

(i) Cφ
β (τk) = φ(τk) for every k  1,

(ii) Cφ
β (σk) = φ(σk)− β(σk) for every k.

REMARK 2.2. It is clear from Theorem 2.2 that, for every k  1, Cφ
β is non-

decreasing on [σk−1, τk) and nonincreasing on [τk, σk). It can be shown as in [4]
that Cφ

β has a possible upward jump at σk−1 and a possible downward jump at τk.
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The next remark corresponds to (3.33) and some following observations in [4].

REMARK 2.3. If σk−1 ¬ t < τk for some k, then

(2.22) φ(t) > 0,

(2.23) Cφ
β (t) < φ(t).

P r o o f. Suppose that σk−1 ¬ t < τk for some k. Then, by (2.10) and (2.13),

φ(t) > sup
σk−1¬s¬t

[φ(s)− β(s)]  φ(σk−1)− β(σk−1)  0,

which proves (2.22). From (2.22) and (2.21) we get

Cφ
β (t) = sup

σk−1¬s¬t
[φ(s)− β(s)]+ = sup

σk−1¬s¬t
[φ(s)− β(s)] < φ(t),

which proves part (2.23). ¥

REMARK 2.4. If τk ¬ t < σk for some k  1, then

(2.24) Cφ
β (t) > φ(t)− β(t).

P r o o f. Let τk ¬ t < σk for some k  1; then, by (2.21) and (2.12), Cφ
β (t) =

infτk¬r¬t φ(r) > φ(t)− β(t). ¥

The following is a generalization of Theorem 3.4 in [4].

THEOREM 2.3. Let φ, β ∈ D+[0,∞), inft0 β(t) > 0 and let φ̄ = φ − Cφ
β .

Then
(i) Cφ

β ∈ BV [0,∞),
(ii) φ̄ ∈ D[0,∞) and 0 ¬ φ̄(t) ¬ β(t) for every t ∈ [0,∞),
(iii) |Cφ

β (t)| =
∫ t

0
I{φ̄(s)=0 or φ̄(s)=β(s)}d|Cφ

β |(s),
(iv) Cφ

β (t) = −
∫ t

0
I{φ̄(s)=0}d|Cφ

β |(s) +
∫ t

0
I{φ̄(s)=β(s)}d|Cφ

β |(s).
P r o o f. Part (i) follows directly from (2.21) and part (ii) follows from the

definition of Cφ
β . To prove (iii) we can easily adopt the arguments from the proof

of (3.28) in [4]. It is enough to show that

(2.25)
∫
A

d|Cφ
β | = 0, where A =

{
t  σ0 | φ̄(t) ∈ (

0, β(t)
)}

.

As in [4], for every t ∈ A, we define a(t) = inf{s ∈ [σ0, t]|(s, t] ⊂ A} and
b(t) = sup{s  t|[t, s) ⊂ A}. Then a(t) ¬ t < b(t), where b(t) /∈ A while a(t)
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might or might not be in A. Also the open interval
(
a(t), b(t)

)
is nonempty and

is contained in A. It can be shown that A is a countable union of such open non-
overlapping intervals and some of their left endpoints. That is, A =

⋃
i∈I(ai, bi) ∪

{aj |j ∈ J}, where I is a countable set and J ⊂ I . Consider aj ∈ A, where j ∈ J .
Then, by Remark 2.1, aj must be an interior point of either (σk−1, τk) or (τk, σk)
for some k. By extending the argument from [4] we can show that Cφ

β is continuous

at aj . To show (2.25) it is enough now to prove that
∫ bi

ai
d|Cφ

β | = 0 for every i ∈ I .

For this it suffices to show that Cφ
β is constant on (ai, bi) for every i. Since φ̄(t) ∈(

0, β(t)
)

for every t ∈ (ai, bi), it follows from Remark 2.1 that either (ai, bi) ⊂
(σk−1, τk) or (ai, bi) ⊂ (τk, σk) for some k. We shall consider only the latter. It is
enough to show that Cφ

β is constant on every closed interval [ci, di] ⊂ (ai, bi), while

Cφ
β (t) = infτk¬r¬t φ(r) for every t ∈ (ai, bi). Let ρ = inf{t ∈ [ci, di] | Cφ

β (t) <

Cφ
β (ci)}. Suppose that ρ <∞. Since Cφ

β is right-continuous and, by Remark 2.2,

nonincreasing on [ci, di], we must have Cφ
β (t) = Cφ

β (ci) for every t ∈ [ci, ρ). At ρ

we would have Cφ
β (ρ) = φ(ρ), which is impossible for ρ ∈ A. Therefore ρ =∞,

and so Cφ
β is constant on the interval [ci, di].

To prove (iv), first consider t such that φ(t) = 0. By Remark 2.3, τk ¬ t < σk

for some k. Thus, by Remark 2.2, Cφ
β is nonincreasing on {t  0 | φ̄(t) = 0}.

Similarly, Cφ
β is nondecreasing on {t  0 | φ̄(t) = β(t)}. Therefore (iv) follows

from (iii). ¥

We are now ready to complete the proofs of Theorems 2.1 and 1.1.

P r o o f o f T h e o r e m 2.1 f o r α = 0. Suppose that α = 0. Let ψ ∈
D[0,∞), φ = Γ0(ψ), η = φ− ψ and let φ̄ = Λβ ◦ Γ0(ψ), η̄ = φ̄ − ψ. Then φ̄ =
φ − Cφ

β = ψ + η − Cφ
β and η̄ = η − Cφ

β . Since η ∈ I[0,∞), by Theorem 2.3 (i),

η − Cφ
β ∈ BV [0,∞). Also, by Theorem 2.3 (ii), φ̄ ∈ D[0,∞) and 0 ¬ φ̄ ¬ β.

It follows from Lemma 2.1 that φ̄(t) = 0 whenever φ(t) = 0. Consequently, by
Definition 1.1,

∫∞
0

I{φ̄(s)>0}dη(s) = 0. It is enough, therefore, to define

η̄l(t) = η(t) +
t∫
0

I{φ̄(s)=0}d|Cφ
β |(s) and η̄u(t) =

t∫
0

I{φ̄(s)=β(s)}d|Cφ
β |(s)

and (1.3) follows immediately from parts (iii) and (iv) of Theorem 2.3. ¥

At this point the existence of a solution to the Skorokhod problem on [0, β] is
established, and so the proof of Theorem 1.1 is also complete in the case of α = 0.
The next two lemmas will allow us to reduce the general case to the case of α = 0.
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LEMMA 2.2. Let α, β ∈ D[0,∞) be such that inft0 [β(t)− α(t)] > 0. Then

(2.26) Γα,β(ψ) = Γ0,β−α(ψ − α) + α for every ψ ∈ D[0,∞).

P r o o f. Let β′ = β − α and consider the SP for ψ′ = ψ − α on [0, β′]. We
already know that it has a unique solution satisfying (2.3). Let

(
φ̄′, η̄′

)
be that

solution. Then φ̄′ = ψ′ + η̄′ ∈ [0, β′] and η̄′ = η̄′l − η̄′u, where η̄′u, η̄′l ∈ I[0,∞)
and

(2.27)
∞∫
0

I{φ̄′(s)>0}dη̄′l (s) = 0 and
∞∫
0

I{φ̄′(s)<β′(s)}dη̄′u (s) = 0.

Then
(
φ̄, η̄

)
defined by φ̄ = φ̄′ + α and η̄ = η̄′ is the solution of SP for ψ on [α, β].

Indeed, φ̄ = φ̄′ + α = ψ′ + η̄′ + α = ψ + η̄′ = ψ + η̄. Also η̄ = η̄′ = η̄′l − η̄′u,
where ∞∫

0

I{φ̄(s)>α(s)}dη̄l (s) =
∞∫
0

I{φ̄′(s)>0}dη̄′l (s) = 0,

∞∫
0

I{φ̄(s)<β(s)}dη̄u (s) =
∞∫
0

I{φ̄′(s)<β′(s)}dη̄′u (s) = 0. ¥

LEMMA 2.3. Let α, β ∈ D[0,∞). Then

(2.28) Λα,β(φ) = Λ0,β−α(φ− α) + α for every φ ∈ D[0,∞).

P r o o f. We have

Λα,β(φ)(t) = φ(t)− α(t)− sup
0¬s¬t

[(
φ(s)− β(s)

)+∧ inf
s¬r¬t

(
φ(r)− α(r)

)]
+ α(t)

= Λ0,β−α(φ− α)(t) + α(t). ¥

P r o o f o f T h e o r e m 2.1 f o r g e n e r a l α ∈ D[0,∞). By using Lem-
mas 1.1, 2.2 and 2.3 we get

Γα,β(ψ) = Γ0,β−α(ψ − α) + α = Λ0,β−α ◦ Γ0(ψ − α) + α

= Λ0,β−α

(
Γα(ψ)− α

)
+ α = Λα,β ◦ Γα(ψ). ¥

With the completion of the proof of Theorem 2.1 the existence of a solution to
the Skorokhod problem on [α, β] is established, and so the proof of Theorem 1.1
is complete. Indeed, according to Theorem 2.1, φ̄ = Λα,β ◦ Γα(ψ) and η̄ = φ̄− ψ
define a solution (φ̄, η̄) for ψ.

COROLLARY 2.1. If α, β ∈ D[0,∞) and inft0 [β(t)− α(t)] > 0, then Γα,β

maps BV [0,∞) into BV [0,∞).
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P r o o f. Let ψ, α, β ∈ D[0,∞) and let inft0 [β(t)− α(t)] > 0. By Theo-
rem 2.1, φ̄ = Γα,β(ψ) is the Skorokhod map on [α, β] for ψ. In particular η̄ =
φ̄− ψ ∈ BV [0,∞). Thus, φ̄ = ψ + η̄ ∈ BV [0,∞) whenever ψ ∈ BV [0,∞). ¥

The following example shows that without the assumption of inft0 β(t) > 0
formula (2.3) of Theorem 2.1 does not produce the Skorokhod map as defined by
Definition 1.2.

EXAMPLE 2.1. Consider a function ψ defined for 0 ¬ t < 1 as follows:

ψ(t) =

{
(2n + 1)−1 if t ∈ [1− 2−2n, 1− 2−(2n+1)), n = 0, 1, 2, . . .,

−(2n)−1 if t ∈ [1− 2−(2n−1), 1− 2−2n), n = 1, 2, . . .

and set ψ(t) = 0 for t  1. Let α = 0 and define β for 0 ¬ t < 1 as follows:
β(t) = |ψ(t)| = n−1 for t ∈ [1− 2−(n−1), 1− 2−n), n = 1, 2, . . ., and β(t) = 1
for t  1. Note that inft0 [β(t)− α(t)] = 0. We will show that if φ̄ is defined by
(2.3), then η̄ = φ̄− ψ /∈ BV [0,∞). Using (2.7) and (2.8), it is easy to verify that
σn = 1 − 2−2(n+1) for n = 0, 1, 2, . . ., and τn = 1 − 2−(2n+1) for n = 1, 2, . . .
Applying the explicit formula (1.3) from [4] to calculate φ(t) and (2.21) to calcu-
late Cφ

β we can obtain φ̄(t) and η̄(t) as follows:
If t ∈ [1 − 2−2n, 1 − 2−(2n+1)) for some n = 1, 2, . . ., then φ(t) = 2−1 +

(2n + 1)−1, Cφ
β (t) = 2−1, and so φ̄(t) = (2n + 1)−1 and η̄(t) = 0.

If t ∈ [1− 2−(2n+1), 1− 2−2(n+1)) for some n = 1, 2, . . ., then φ(t) = 2−1 −
(2n + 2)−1, Cφ

β (t) = 2−1 − (2n + 2)−1, and so φ̄(t) = 0 and η̄(t) = (2n + 2)−1.
Since

∑∞
n=2 |η̄(1 − 2n) − η̄(1 − 2−(n+1))| = 2

∑∞
n=2(2n)−1 = ∞, η̄ is of un-

bounded variation.

We end this section with the following reflection property.

REMARK 2.5. If α, β ∈ D[0,∞) and inft0 [β(t)− α(t)] > 0, then for every
ψ ∈ D[0,∞)

(2.29) Γα,β(−ψ) = −Γ−β,−α(ψ).

P r o o f. Let (φ̄, η̄) be the solution of the Skorokhod problem on [α, β] for−ψ
with η̄ = η̄l− η̄u satisfying (1.3). Then−φ̄ = ψ− η̄,−β(t) ¬ −φ̄(t) ¬ −ᾱ(t) for
every t  0, and

∞∫
0

I{−φ̄(s)>−β(s)}dη̄u (s) = 0 and
∞∫
0

I{−φ̄(s)<−α(s)}dη̄l (s) = 0.

Thus (−φ̄,−η̄) is the solution of the Skorokhod problem on [−β,−α] for ψ. ¥
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3. NON-ANTICIPATORY PROPERTIES

We shall use the shift operators Td,Hd : D[0,∞)→ D[0,∞) indexed by d ∈
[0,∞) and defined by Td(f)(t) = f(d + t) − f(d) and Hd(f)(t) = f(d + t) for
t ∈ [0,∞). Let ψd = Td(ψ), η̄d = Td(η̄), η̄d

l = Td(η̄l), η̄d
u = Td(η̄u), φ̄d = Hd(φ̄),

αd = Hd(α) and βd = Hd(β).

THEOREM 3.1 (non-anticipatory property). If (φ̄, η̄) solves the Skorokhod
problem for ψ on [α, β], then (φ̄d, η̄d) solves the Skorokhod problem for φ̄(d) + ψd

on [αd, βd]. In particular,

(3.1) Γα,β(ψ)(d + s) = Γαd,βd

(
φ̄(d) + Td(ψ)

)
(s).

P r o o f. Let (φ̄, η̄) be a solution to the Skorokhod problem for ψ on [α, β].
Then

φ̄(d) + ψd(t) = ψ(d + t) + φ̄(d)− ψ(d) = φ̄(d + t)− η̄(d + t) + η̄(d)

= φ̄d(t)− η̄d(t).

Also, φ̄d(t) = φ̄(d + t) ∈ [α(d + t), β(d + t)] = [αd(t), βd(t)], which estab-
lishes part (i) of Definition 1.2. To establish part (ii) note that

∞∫
0

I{φ̄d(s)>αd}dη̄d
l (s) =

∞∫
d

I{φ̄(t)>α}dη̄l(t) = 0

and
∞∫
0

I{φ̄d(s)<βd(s)}dη̄d
u(s) =

∞∫
d

I{φ̄(t)<β(t)}dη̄u(t) = 0. ¥

As a consequence of the anti-participatory property of the Skorokhod map we
obtain the following property of the constraining term.

COROLLARY 3.1. Let φ, α, β ∈ D[0,∞) be such that inft0

(
β(t)−α(t)

)
>0

and φ  α. Then for any d, h  0

Cφ
α,β(d + h) = Cφ

α,β(d) + sup
0¬s¬h

[(
φ(d + s)− Cφ

α,β(d)− β(d + s)
)+

∧ inf
s¬r¬h

(
φ(d + r)− Cφ

α,β(d)− α(d + r)
)]

.

P r o o f. Let (φ̄, η̄) be the solution of the Skorokhod problem for φ on [α, β].
Then, by Theorem 3.1, (φ̄d, η̄d) is the solution of the Skorokhod problem for
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φ̄(d) + φd on [αd, βd]. Therefore

Cφ
α,β(d + h)− Cφ

α,β(d) = η̄(d + h)− η̄(d) = C
φ̄(d)+φd

αd,βd (h)

= sup
0¬s¬h

[((
φ̄(d) + φ(d + s)− φ(d)

)− β(d + s)
)+

∧ inf
s¬r¬h

(
φ̄(d) + φ(d + r)− φ(d)− α(d + r)

)]

= sup
0¬s¬h

[((
φ(d + s)− η̄(d)

)− β(d + s)
)+

∧ inf
s¬r¬h

(
φ(d + r)− η̄(d)− α(d + r)

)]

= sup
0¬s¬h

[(
φ(d + s)− Cφ

α,β(d)− β(d + s)
)+

∧ inf
s¬r¬h

(
φ(d + r)− Cφ

α,β(d)− α(d + r)
)]

. ¥

4. THE CONTINUITY PROPERTIES
OF THE SKOROKHOD MAP AND THE METRICS ON D[0, T ]

In this section we need to consider functions on D[0, T ]. The notation of Λα,β ,
Γα, Γα,β , Rα,β

t , Cφ
α,β , that we used before in relation to D[0,∞], will be applied

now for D[0, T ]. We discuss continuity and Lipschitz conditions for Λα,β and Γα,β

under three metrics: the uniform metric, J1 metric d0 and M1 metric d1. We begin
with the uniform metric.

PROPOSITION 4.1. For any ψ1, ψ2, φ1, φ2, α1, α2, β1, β2 ∈ D[0, T ] such that
α1 < β1 and α2 < β2 we have

(4.1) ‖Γα1(ψ1)− Γα2(ψ2)‖T ¬ 2‖ψ1 − ψ2‖T + ‖α1 − α2‖T ,

(4.2) ‖Cφ1

α1,β1
− Cφ2

α2,β2
‖T ¬ ‖φ1 − φ2‖T + [‖α1 − α2‖T ∨ ‖β1 − β2‖T ],

(4.3) ‖Λα1,β1(φ1)− Λα2,β2(φ2)‖T
¬ 2‖φ1 − φ2‖T + [‖α1 − α2‖T ∨ ‖β1 − β2‖T ].

If also inft0 [β1(t)− α1(t)] > 0, and inft0 [β2(t)− α2(t)] > 0, then

(4.4) ‖Γα1,β1(ψ1)− Γα1,β2(ψ2)‖T
¬ 4‖ψ1 − ψ2‖T + 2‖α1 − α2‖T + [‖α1 − α2‖T ∨ ‖β1 − β2‖T ].
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P r o o f. We shall use the following easily verifiable inequalities:

(4.5) |x2 ∧ y2 − x1 ∧ y1| ¬ |x2 − x1| ∨ |y2 − y1|,

(4.6) |(y1 − x1)+ − (y2 − x2)+| ¬ |x1 − x2|+ |y1 − y2|.

Let ψ1, ψ2, φ1, φ2, α1, α2, β1, β2 ∈ D+[0, T ], α1 < β1, α2 < β2 and let t ∈ [0, T ].
Using (1.2) and (4.6) we get

|Γα1(ψ1)(t)− Γα2(ψ2)(t)|
¬ sup

0¬t¬T

[
ψ1(t)− ψ2(t)− sup

0¬s¬t

(
α1(s)− ψ1(s)

)+ + sup
0¬s¬t

(
α2(s)− ψ2(s)

)+]

¬ sup
0¬t¬T

[ψ1(t)− ψ2(t)] + sup
0¬t¬T

∣∣(α1(s)− ψ1(s)
)+ − (

α2(s)− ψ2(s)
)+∣∣

¬ sup
0¬t¬T

[ψ1(t)− ψ2(t)] + sup
0¬t¬T

[|α1(s)− α2(s)|+ |ψ1(s)− ψ2(s)|]

¬ 2‖ψ1 − ψ2‖T + ‖α1 − α2‖T .

Taking sup0¬t¬T we obtain (4.1).
By (4.5) and (4.6),

Cφ1

α,β1
(t)− Cφ2

α,β2
(t) ¬ sup

0¬s¬t
[Rα1,β1

t (φ1)(s)−Rα2,β2
t (φ2)(s)]

¬ sup
0¬s¬t

[∣∣(φ1(s)− β1(s)
)+ − (

φ2(s)− β2(s)
)+|

∨ ∣∣ inf
s¬r¬t

(
φ1(r)− α1(r)

)− inf
s¬r¬t

(
φ2(r)− α2(r)

)∣∣]

¬ sup
0¬s¬t

{[|φ1(s)− φ2(s)|+ |β1(s)− β2(s)|]

∨ sup
s¬r¬t

[|φ1(r)− φ2(r)|+ |α1(r)− α2(r)|]}

¬ (‖φ1 − φ2‖T + ‖β1 − β2‖T ) ∨ (‖φ1 − φ2‖T + ‖α1 − α2‖T )
¬ ‖φ1 − φ2‖T + (‖α1 − α2‖T ∨ ‖β1 − β2‖T ).

Now, taking sup0¬t¬T we conclude (4.2).
Since

‖Λα1,β1(φ1)− Λα2,β2(φ2)‖T ¬ ‖φ1 − φ2‖T + ‖Cφ1

α1,β1
− Cφ2

α1,β2
‖T ,

(4.3) follows immediately from (4.2). Finally, using (4.1) combined with (4.3) and
(2.3) we obtain (4.4). ¥

COROLLARY 4.1. Both mappings Λα,β and Γα,β are Lipschitz continuous in
the uniform metric with corresponding constants 2 and 4, respectively.
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The following scaling properties will be useful in dealings with Skorokhod
metric d0. Let M = {λ : [0, T ] → [0, T ] | λ is increasing, continuous and onto}.
Then for every λ ∈M the following properties hold:

(4.7) Γα(ψ) ◦ λ = Γα◦λ(ψ ◦ λ),

(4.8) Λα◦λ,β◦λ(φ ◦ λ) = Λα,β(φ) ◦ λ.

Indeed, (4.7) follows directly from the definition of Γα. To prove (4.8) note first
that

Cφ
α,β

(
λ(t)

)
(4.9)

= sup
0¬s¬λ(t)

Rα,β
λ(t)(φ)(s) = sup

0¬s¬t
Rα◦λ,β◦λ

t (φ ◦ λ)(s) = Cφ◦λ
α◦λ,β◦λ(t).

Therefore, Λα,β(φ)
(
λ(t)

)
= φ

(
λ(t)

) − Cφ
α,β

(
λ(t)

)
= φ ◦ λ(t) − Cφ◦λ

α◦λ,β◦λ(t) =
Λα◦λ,β◦λ(φ ◦ λ)(t).

Note that (4.8) holds also on [0,∞) with λ being an increasing continuous
bijection on [0,∞). The Skorokhod metric d0 on D[0,∞) (D[0, T ], respectively)
is defined by

d0(f, g) = inf
λ

(‖λ− I‖ ∨ ‖f − g ◦ λ‖),

where the infimum is over all strictly increasing continuous bijections of [0,∞)
(D[0, T ], respectively).

PROPOSITION 4.2. Let T > 0 and let α, β ∈ D[0, T ] be such that α(t)¬β(t)
for every t ∈ [0, T ]. Then:

(i) For any ψ1, ψ2 ∈ D[0, T ]

(4.10) d0

(
Γα(ψ1), Γα(ψ2)

) ¬ 2d0(ψ1, ψ2) + sup
r,s∈[0,T ]

|α(r)− α(s)|.

(ii) For any φ1, φ2 ∈ D[0, T ]

(4.11) d0

(
Λα,β(φ1), Λα,β(φ2)

)

¬ 2d0(φ1, φ2) + sup
r,s∈[0,T ]

|α(r)− α(s)| ∨ sup
r,s∈[0,T ]

|β(r)− β(s)|.

(iii) If inft0 [β(t)− α(t)] > 0, then for any ψ1, ψ2 ∈ D[0, T ]

(4.12) d0

(
Γα,β(ψ1), Γα,β(ψ2)

) ¬ 4d0(ψ1, ψ2) + 2 sup
r,s∈[0,T ]

|α(r)− α(s)|

+ sup
r,s∈[0,T ]

|α(r)− α(s)| ∨ sup
r,s∈[0,T ]

|β(r)− β(s)|.
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P r o o f. We begin with (i). Let λ ∈M. By (4.7) and (4.1) we have

‖λ− I‖T ∨‖Γα(ψ1)−Γα(ψ2) ◦λ‖T = ‖λ− I‖T ∨‖Γα(ψ1)−Γα◦λ(ψ2 ◦λ)‖T
¬ ‖λ− I‖T ∨ (2‖ψ1 − ψ2 ◦ λ‖T + ‖α− α ◦ λ‖T )

¬ ‖λ− I‖T ∨ 2‖ψ1 − ψ2 ◦ λ‖T + sup
r,s∈[0,T ]

|α(r)− α(s)|.

Taking infλ we conclude (4.10).
To prove (ii) we can assume without loss of generality that φ1 6= φ2. Given

φ1, φ2 ∈ D[0, T ], φ1 6= φ2, for every δ > 0 there is λ ∈M such that

sup
0¬t¬T

|λ(t)− t| ¬ d0(φ1, φ2) + δ[1 ∧ d0(φ1, φ2)]

and
sup

0¬t¬T

∣∣φ1(t)− φ2

(
λ(t)

)∣∣ ¬ d0(φ1, φ2) + δ[1 ∧ d0(φ1, φ2)].

By (4.3),

‖Λα,β(φ1)− Λα,β(φ2) ◦ λ‖T = ‖Λα,β(φ1)− Λα◦λ,β◦λ(φ2 ◦ λ)‖T(4.13)

¬ 2‖φ1 − φ2 ◦ λ‖T + ‖α− α ◦ λ‖T ∨ ‖β − β ◦ λ‖T
¬ 2‖φ1 − φ2 ◦ λ‖T + sup

r,s∈[0,T ]
|α(r)− α(s)| ∨ sup

r,s∈[0,T ]
|β(r)− β(s)|

¬ 2
[
d0(φ1, φ2) + δ

(
1 ∧ d0(φ1, φ2)

)]

+ sup
r,s∈[0,T ]

|α(r)− α(s)| ∨ sup
r,s∈[0,T ]

|β(r)− β(s)|.

Since (4.13) holds for every δ > 0, we can conclude (4.11).
Part (iii) follows from (2.3), (4.11) and (4.10). ¥

The following example shows that the terms representing the oscillations of α
and β, supr,s∈[0,T ] |α(r)−α(s)| and supr,s∈[0,T ] |β(r)−β(s)|, appearing in (4.11)
and (4.12), cannot be omitted. In particular, the example shows that, in general,
neither Λβ nor Γ0,β are continuous in d0 metric.

EXAMPLE 4.1. Define

β = aI[0,b) + 2aI[b,N ], φ1 = 2aI[b−ε,N ], φ2 = 2aI[b,N ].

Then it is easy to see that φ̄1 = aI[b−ε,N ] and φ̄2 = φ2 = 2aI[b,N ]. Hence d0(φ̄1, φ̄2)
= a, while d0(φ1, φ2) = ε. Since ε can be chosen arbitrarily small, Λβ is not con-
tinuous as a map Λβ :

(
D+[0,∞), d0

)→ (
D+[0,∞), d0

)
and neither is Γ0,β . Note

that in this example the oscillation of β is the dominating term of the distance. By
applying (2.29) we could easily create an example with the oscillation of α as the
dominating term.
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We consider next the continuity of the Skorokhod map under M1 metric d1.
The time dependent nature of the constraints α and β makes this issue somewhat
technically involved. We shall need a few technical results before addressing it.
The next result examines the monotonicity of the Skorokhod map.

PROPOSITION 4.3. Let φ, β ∈ D+[0, T ] and φ(0) < β(0). Then:
(i) If φ is nondecreasing and there is S ∈ (0, T ] and a > 0 such that φ ¬ β

on [0, S] and β(s) = a ¬ φ(s) for s ∈ [S, T ], then Λβ(φ) is nondecreasing.
(ii) If φ is nondecreasing, β nonincreasing and there is S ∈ (0, T ] and a > 0

such that φ(s) = a ¬ β(s) for s ∈ [0, S] and β(s) ¬ a ¬ φ(s) for s ∈ [S, T ], then
Λβ(φ) is nonincreasing.

(iii) If both φ and β are nonincreasing and there is S ∈ (0, T ] and a > 0
such that a ¬ φ(s) ¬ β(s) for s ∈ [0, S] and β(s) ¬ φ(s) = a for s ∈ [S, T ],
then Λβ(φ) is nonincreasing.

P r o o f. Suppose that the assumptions in (i) hold. Then infs¬r¬t φ(r) = φ(s)
 (

φ(s) − β(s)
)+, and so Cφ

β (t) = sup0¬s¬t[φ(s) − β(s)]+ =
(
φ(t) − a

)+ for

every t ∈ [0, T ]. Therefore Λβ(φ) = φ − Cφ
β = φ − (φ − a)+ = φ ∧ a, and so it

is nondecreasing.
When φ is nondecreasing, and β is nonincreasing, then infs¬r¬t φ(r) = φ(s)

 (
φ(s) − β(s)

)+ and φ − β is nondecreasing. Hence, under the assumptions
of (ii), Cφ

β (t) = sup0¬s¬t[φ(s) − β(s)]+ =
(
φ(t) − β(t)

)+. Therefore Λβ(φ) =

φ− Cφ
β = φ− (φ− β)+ = φ ∧ β = a ∧ β, and so it is nonincreasing.

Finally, if the assumptions of (iii) hold, then

Cφ
β (t) = sup

0¬s¬t

[(
φ(s)− β(s)

)+ ∧ φ(t)
]
,

and so Cφ
β (t) = 0 for t ∈ [0, S] and Cφ

β (t) = φ(t)− β(t) for t ∈ [S, T ]. Therefore

Λβ(φ) = φ− Cφ
β = φ− (φ− β)+ = φ ∧ β and it is nonincreasing. ¥

We shall use the following conventions: for φ ∈ D[0, T ], φ(0−) will stand
for φ(0) and Gφ = {(t, y) ∈ [0, T ]× R | y ∈ [φ(t−) ∧ φ(t), φ(t−) ∨ φ(t)]} will
represent the graph of φ ordered by the standard relation ¬ defined as follows:

(4.14) (t1, y1) ¬ (t2, y2)
if either t1 < t2 or t1 = t2 and |φ(t1−)− y1| ¬ |φ(t2−)− y2|.

For each t ∈ [0, T ], Gt
φ = {(t, y) | y ∈ [φ(t−) ∧ φ(t), φ(t−) ∨ φ(t)]} repre-

sents a vertical segment of the graph if φ is discontinuous at t or a point
(
t, φ(t)

)
otherwise. Then, Gφ =

⋃
0¬t¬T Gt

φ. A continuous nondecreasing mapping (r, g)
from [0, 1] onto Gφ will be called a parametric representation of Gφ, and Π(φ)
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will denote the set of all parametric representations of Gφ. The M1 metric d1 is
defined for φ1, φ2 ∈ D[0,∞) by

d1(φ1, φ2) = inf{‖r1 − r2‖T ∨ ‖g1 − g2‖T | (ri, gi) ∈ Π(φi), i = 1, 2}.
Before we examine Lipschitz conditions under this metric we need to under-

stand how graph parameterizations are being transformed by Λβ . For φ ∈ D[0, T ],
Dφ will denote the set of all points of discontinuity of φ in [0, T ].

LEMMA 4.1. Let φ1, φ2, β ∈ D[0, T ], let (r1, g1) ∈ Πφ1 and let (r2, g2) ∈
Πφ2 . Then there is a continuous, nondecreasing mapping ξ from [0, 1] onto [0, 1]
such that for every i = 1, 2 and t ∈ Dβ there are 0 ¬ ui

t < vi
t ¬ 1 such that the

following conditions hold:

(4.15) vi
s < ui

t whenever s < t,

(4.16) (ri ◦ ξ, gi ◦ ξ)−1(Gt
φi

) =
[
ui

t, v
i
t

]
.

P r o o f. Since Dβ is a countable subset of [0, T ], for each t ∈ Dβ we can
choose [ut, vt] ⊂ [0, 1], so that ut < vt for every t ∈ [0, T ] and vs < ut for s < t.
(Remark 12.3.3 in [9] describes such a construction.) For each t ∈ Dβ let [ai

t, b
i
t] =

(ri, gi)−1(Gt
φi

). We define ξ1 : [0, 1]→ [0, 1] by setting ξ1(ut) = a1
t , ξ1(vt) = b1

t

and extending it by linear interpolation onto [ut, vt] for every t ∈ Dβ . Then we
extend it to a continuous function on the closure of

⋃
t∈Dβ

[ut, vt]. Finally, we set
ξ1(0) = 0, ξ1(1) = 1 and extend it onto the rest of [0, 1] by linear interpolation.
Similarly, we let [c2

t , d
2
t ] = ξ−1

1 ([a2
t , b

2
t ]) and define ξ2 : [0, 1] → [0, 1] by setting

ξ2(0) = 0, ξ2(1) = 1, ξ2(ut) = c2
t , ξ2(vt) = d2

t for every t ∈ Dβ and extending
it onto [0, 1] by continuity and linear interpolation. Finally, we define ξ = ξ1 ◦ ξ2.
Then

(r1 ◦ ξ, g1 ◦ ξ)−1(Gt
φ1

) = ξ−1([a1
t , b

1
t ]) = ξ−1

2

(
ξ−1
1

(
([a1

t , b
1
t ])

))
= ξ−1

2 ([ut, vt])

and

(r2 ◦ ξ, g2 ◦ ξ)−1(Gt
φ2

) = ξ−1
2

(
ξ−1
1 ([a2

t , b
2
t ])

)
= ξ−1

2 ([c2
t , d

2
t ]) = [ut, vt].

Therefore it is enough to take [u1
t , v

1
t ] = ξ−1

2 ([ut, vt]) and [u2
t , v

2
t ] = [ut, vt] and

(4.16) is satisfied. Because ξ is nondecreasing, (4.15) follows. ¥

LEMMA 4.2. Let φ1, φ2, β ∈ D[0, T ], let (r1, g1) ∈ Πφ1 and let (r2, g2) ∈
Πφ2 . Then there is a continuous, nondecreasing mapping ξ from [0, 1] onto [0, 1]
such that for every i = 1, 2 and t ∈ Dβ there are 0 ¬ ai

t < bi
t < ci

t < di
t ¬ 1 such

that the following conditions hold:

(4.17) di
s < ai

t whenever s < t,
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(4.18) (ri ◦ ξ, gi ◦ ξ)−1(Gt
φi

) =
[
ai

t, d
i
t

]
,

(4.19) (gi ◦ ξ)−1
(
φi(t−)

)
=

[
ai

t, b
i
t

]
,

(4.20) (gi ◦ ξ)−1
(
φi(t)

)
=

[
ci
t, d

i
t

]
.

P r o o f. Let
[
ui

t, v
i
t

]
= (ri, gi)−1(Gt

φi
). We assume first that

(4.21) ui
t < vi

t for every t ∈ Dβ and each i = 1, 2.

We define ξ1 : [0, 1]→ [0, 1] by setting ξ1(0) = 0, ξ1(1) = 1, and for each t ∈ Dβ

ξ1(u1
t ) = ξ1

(
(2u1

t + v1
t )/3

)
= u1

t and ξ1

(
(u1

t + 2v1
t )/3

)
= ξ1(v1

t ) = v1
t .

Finally, we extend it onto [0, 1] by linear interpolation.
For each t ∈ Dβ , let [a2

t , d
2
t ] = ξ−1

1 ([u2
t , v

2
t ]). We define ξ2 : [0, 1] → [0, 1]

similarly to ξ1. We set ξ2(0) = 0, ξ2(1) = 1, and for each t ∈ Dβ we set

ξ2(a2
t ) = ξ2

(
(2a2

t + d2
t )/3

)
= a2

t and ξ2

(
(a2

t + 2d2
t )/3

)
= ξ2(d2

t ) = d2
t ,

and we extend it onto [0, 1] by linear interpolation. Then we define ξ = ξ1 ◦ ξ2.
Since both ξ1 and ξ2 are continuous nondecreasing mappings from [0, 1] onto [0, 1],
so is ξ. We define a1

t , d
1
t so that [a1

t , d
1
t ] = ξ−1

2 ([u1
t , v

1
t ]).

Consider s < t. Since for each i = 1, 2, ri is nondecreasing, we have vi
s < ui

t.
Because ξ1 and ξ2 are nondecreasing, we also have di

s ¬ ai
t. Since [u1

s, v
1
s ] and

[u1
t , v

1
t ] are disjoint, so must be ξ−1

2 ([u1
s, v

1
s ]) and ξ−1

2 ([u1
t , v

1
t ]). Thus we have

established (4.17). The remaining properties will be shown separately for i = 1, 2.
If i = 1, then

(r1 ◦ ξ, g1 ◦ ξ)−1(Gt
φ1

) = (ξ1 ◦ ξ2)−1([u1
t , v

1
t ]) = ξ−1

2 ([u1
t , v

1
t ]) = [a1

t , d
1
t ].

Similarly, if i = 2, then

(r2 ◦ ξ, g2 ◦ ξ)−1(Gt
φ2

) = (ξ1 ◦ ξ2)−1([u2
t , v

2
t ]) = ξ−1

2 ([a2
t , d

2
t ]) = [a2

t , d
2
t ].

We define bi
t, ci

t by (gi ◦ ξ)−1
(
φi(t−)

)
=

[
ai

t, b
i
t

]
, and (gi ◦ ξ)−1

(
φi(t)

)
=

[
ci
t, d

i
t

]
so that (4.19) and (4.20) hold. Then

[a1
t , b

1
t ] = (r1 ◦ ξ, g1 ◦ ξ)−1

({(
t, φ1(t−)

)})

⊃ (ξ1 ◦ ξ2)−1({u1
t }) = ξ−1

2

(
[u1

t , (2u
1
t + v1

t )/3]
)
,
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and so a1
t < b1

t . Similarly,

[c1
t , d

1
t ] = (r1 ◦ ξ, g1 ◦ ξ)−1

({(
t, φ1(t)

)})

⊃ (ξ1 ◦ ξ2)−1({v1
t }) = ξ−1

2

(
[(u1

t + 2v1
t )/3, v1

t ]
)
,

so that c1
t < d1

t . Finally, because the mappings (r1 ◦ ξ, g1 ◦ ξ)−1
({(

t, φ1(t−)
)})

and (r1 ◦ ξ, g1 ◦ ξ)−1
({(

t, φ1(t)
)})

are disjoint, we get b1
t < c1

t .
Analogously, a2

t < b2
t , because

[a2
t , b

2
t ] = (r2 ◦ ξ, g2 ◦ ξ)−1

({(
t, φ2(t−)

)})
⊃ (ξ1 ◦ ξ2)−1({u2

t }) ⊃ ξ−1
2 ({a2

t })
= [a2

t , (2a2
t + d2

t )/3],

and c2
t < d2

t , because

[c2
t , d

2
t ] = (r2 ◦ ξ, g2 ◦ ξ)−1

({(
t, φ2(t)

)})
⊃ (ξ1 ◦ ξ2)−1({v2

t }) ⊃ ξ−1
2 ({d2

t })
= [(a2

t + 2d2
t )/3, d2

t ].

Thus the proof is complete in the case when ui
t < vi

t for every t ∈ Dβ and
i = 1, 2. If this is not the case, then by Lemma 4.1 there is ξ0 such that (4.21) holds
for (ri ◦ ξ0, gi ◦ ξ0). Then we can apply the already proven part to (ri ◦ ξ0, gi ◦ ξ0)
and so there is ξ′ and 0 ¬ ai

t < bi
t < ci

t < di
t ¬ 1 such that (4.17)–(4.20) hold for

(ri ◦ ξ0 ◦ ξ′, gi ◦ ξ0 ◦ ξ′). ¥

REMARK 4.1. If φ, β ∈ D+[0, T ], inf0¬t¬T β(t) > 0, t ∈ (0, T ] and φ(t) ¬
β(t), then φ̄(t)− φ̄(t−) = φ(t)− φ(t−).

P r o o f. Note that

[φ(t)− φ(t−)]− [φ̄(t)− φ̄(t−)] = [φ(t)− φ̄(t)]− [φ(t−)− φ̄(t−)]

= Cφ
β (t)− Cφ

β (t−).

Therefore, it is enough to show that Cφ
β (t)− Cφ

β (t−) = 0. Suppose that Cφ
β (t)−

Cφ
β (t−) > 0. Then

Cφ
β (t) = Rβ

t (φ)(t) =
(
φ(t)− β(t)

)+ ∧ φ(t) =
(
φ(t)− β(t)

)+
> 0,

which contradicts our assumption. ¥

REMARK 4.2. If φ, β ∈ D+[0, T ], inf0¬t¬T β(t) > 0, t ∈ (0, T ] and φ(t)−
β(t)  φ(t−)− φ̄(t−), then φ̄(t) = β(t).
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P r o o f. Let φ(t) − β(t)φ(t−) − φ̄(t−). Then, by (2.4), φ(t) − β(t)0.
Suppose φ̄(t) < β(t). Then Cφ

β (t)− Cφ
β (t−) = [φ(t)− φ̄(t)]− [φ(t−)− φ̄(t−)]

 β(t)− φ̄(t). Thus, as in the proof of Remark 4.1,

Rβ
t (φ)(t) = sup

0¬s¬t
Rβ

t (φ)(s) =
(
φ(t)− β(t)

)+ ∧ φ(t) = φ(t)− β(t),

and therefore φ̄(t) = φ(t)− sup0¬s¬t Rβ
t (φ)(s) = β(t), which contradicts our as-

sumption. ¥

LEMMA 4.3. Let φ1, φ2, β ∈ D+[0, T ] be such that inf0¬t¬T β(t) > 0, and
let (r1, g1) ∈ Πφ1 and (r2, g2) ∈ Πφ2 . Then there is a continuous, nondecreas-
ing mapping ξ from [0, 1] onto [0, 1] and parametric representations (rβ

1 , gβ
1 ) and

(rβ
2 , gβ

2 ) in Πβ such that

(4.22) r1 ◦ ξ = rβ
1 and r2 ◦ ξ = rβ

2 ,

(4.23)
(
r1 ◦ ξ,Λ

gβ
1
(g1 ◦ ξ)

) ∈ ΠΛβ(φ1) and
(
r2 ◦ ξ, Λ

gβ
2
(g2 ◦ ξ)

) ∈ ΠΛβ(φ2).

P r o o f. By Lemma 4.2 there is {(ai
t, b

i
t, c

i
t, d

i
t)| t ∈ Dβ, i = 1, 2} and a map-

ping ξ such that (4.17)–(4.20) hold. For i = 1, 2, let r̃i = ri ◦ ξ and g̃i = gi ◦ ξ.
Then (r̃i, g̃i) ∈ Πφi .

For i = 1, 2 we let ∆t
i = φi(t−)− φ̄i(t−). Then we define parameterizations

(rβ
i , gβ

i ) ∈ Πβ so that parameterizations (r̃i, g̃i) and (rβ
i , gβ

i ) are synchronized in
a particular way.

We define rβ
i so that rβ

i = r̃i. We define gβ
i first on each [ai

t, d
i
t] for t ∈ Dβ by

setting gβ
i (ai

t) = β(t−), gβ
i (di

t) = β(t). If, furthermore,

(4.24)
[(

φi(t−)−∆t
i

) ∧ (
φi(t)−∆t

i

)
,
(
φi(t−)−∆t

i

) ∨ (
φi(t)−∆t

i

)]

∩ [β(t−) ∧ β(t), β(t−) ∨ β(t)] 6= ∅,
then we require further synchronization of g̃i and gβ

i that will depend on a particular
configuration of φi(t−) − ∆t

i, φi(t) − ∆t
i, β(t−), β(t). Therefore, we consider

several cases.
(A) If φi(t−) −∆t

i ¬ β(t−) ¬ φi(t) −∆t
i ¬ β(t), then we define gβ

i (s) =(
g̃i(s)−∆t

i

)∨β(t−) for s ∈ [ai
t, c

i
t] and extend it by linear interpolation on [ci

t, d
i
t].

Note that in this case g̃i −∆t
i is nondecreasing and g̃i −∆t

i ¬ gβ
i on [ai

t, d
i
t].

(B) If φi(t−)−∆t
i ¬ β(t−) ¬ β(t) ¬ φi(t)−∆t

i, then we let

si
t = inf{s ∈ [ai

t, d
i
t]| g̃i(s)−∆t

i  β(t)}
and define gβ

i (s) =
(
g̃i(s)−∆t

i

) ∨ β(t−) for s ∈ [ai
t, s

i
t] and gβ

i (s) = β(t) on
[si

t, d
i
t]. Note that in this case g̃i −∆t

i is nondecreasing, g̃i −∆t
i ¬ gβ

i on [ai
t, s

i
t]

and gβ
i = β(t) ¬ g̃i −∆t

i on [si
t, d

i
t].



54 M. Slaby

(C) If φi(t−)−∆t
i ¬ β(t) ¬ β(t−) ¬ φi(t)−∆t

i or φi(t−)−∆t
i ¬ β(t) ¬

φi(t)−∆t
i ¬ β(t−), then we let si

t = inf{s ∈ [ai
t, d

i
t]| g̃i(s)−∆t

i > β(t)}, define
gβ
i (s) = β(t) for s ∈ [si

t, d
i
t] and extend it by linear interpolation on [ai

t, s
i
t]. Then

g̃i −∆t
i is nondecreasing, g̃i −∆t

i ¬ gβ
i on [ai

t, s
i
t] and gβ

i = β(t) ¬ g̃i −∆t
i on

[si
t, d

i
t].

(D) If β(t) ¬ φi(t−)−∆t
i ¬ φi(t)−∆t

i ¬ β(t−) or β(t) ¬ φi(t−)−∆t
i ¬

β(t−) ¬ φi(t)−∆t
i, then we define gβ

i (bi
t) = φi(t−)−∆t

i and extend it by linear
interpolation onto [ai

t, b
i
t] and [bi

t, d
i
t]. Then g̃i − ∆t

i is nondecreasing and gβ
i is

nonincreasing, φi(t−) − ∆t
i = g̃i(s) − ∆t

i ¬ gβ
i (s) for s ∈ [ai

t, b
i
t] and gβ

i (s) ¬
φi(t−)−∆t

i ¬ g̃i(s)−∆t
i for s ∈ [bi

t, d
i
t].

(E) If β(t) ¬ φi(t)−∆t
i ¬ φi(t−)−∆t

i ¬ β(t−), then define gβ
i = g̃i −∆t

i

on [bi
t, c

i
t] and extend it by linear interpolation onto [ai

t, b
i
t] and [ci

t, d
i
t]. Then both

g̃i − ∆t
i and gβ

i are nonincreasing, φi(t−) − ∆t
i = g̃i(s) − ∆t

i ¬ gβ
i (s) for s ∈

[ai
t, b

i
t] and gβ

i (s) ¬ g̃i(s)−∆t
i = φi(t)−∆t

i for s ∈ [ci
t, d

i
t].

(F) If φi(t) − ∆t
i ¬ β(t) ¬ φi(t−) − ∆t

i ¬ β(t−) holds true, then we de-
fine gβ

i = (g̃i − ∆t
i) ∨ β(t) for s ∈ [bi

t, d
i
t] and extend it by linear interpolation

on [ai
t, b

i
t]. Note that in this case g̃i − ∆t

i is nonincreasing and g̃i − ∆t
i ¬ gβ

i on
[ai

t, d
i
t].

If (4.24) does not hold, then we simply extend gβ
i onto [ai

t, d
i
t] by linear inter-

polation.
Outside

⋃
t∈Dβ

[ut, vt] we extend rβ
i so that rβ

i = r̃i and we extend gβ
i so that

gβ
i (s) = β(t) whenever rβ

i (s) = t and t /∈ Dβ . Note that if rβ
i (s) = t, then we

have gβ
i (s) ∈ [β(t−) ∧ β(t), β(t−) ∨ β(t)]. In fact, it can be easily verified that

(rβ
i , gβ

i ) ∈ Πβ .
In order to prove (4.23) we need to show that

(
ri ◦ ξ,Λ

gβ
i
(gi ◦ ξ)

)
is continuous,(4.25)

(
ri ◦ ξ,Λ

gβ
i
(gi ◦ ξ)

)
maps [0, 1] onto GΛβ(φi), and(4.26)

(
ri ◦ ξ,Λ

gβ
i
(gi ◦ ξ)

)
is increasing in a sense of (4.14).(4.27)

The easiest to establish is (4.25). It follows from Proposition 1.1 (ii) since
ri ◦ ξ, gi ◦ ξ, and gβ

i are all continuous.
We show next that

(
ri ◦ ξ, Λ

gβ
i
(gi ◦ ξ)

)
is increasing in a sense of (4.14). Let

0 ¬ s1 ¬ s2 ¬ 1. Then ri ◦ ξ(s1) ¬ ri ◦ ξ(s2) because ri and ξ are nondecreasing.
It remains to show that

(4.28)
(
ri ◦ ξ, Λ

gβ
i
(gi ◦ ξ)

)
is increasing on [ai

t, d
i
t].
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While doing that we will, at the same time, establish (4.26) by showing that

(4.29) Λ
gβ

i
(gi ◦ ξ)(ai

t) = φ̄i(t−),

(4.30) Λ
gβ

i
(gi ◦ ξ)(di

t) = φ̄i(t).

Consider a fixed i and t ∈ Dβ . Applying the non-anticipatory property (Theo-
rem 3.1) to gi ◦ ξ and gβ

i , we get Λ
gβ

i
(gi ◦ ξ)(ai

t + s) = Λλ(γ)(s), where γ(s) =

gi ◦ ξ(ai
t + s) −∆t

i and λ(s) = gβ
i (ai

t + s). Note that γ(0) = gi ◦ ξ(ai
t) −∆t

i =
φi(t−)− φi(t−) + φ̄i(t−) and λ(0) = gβ

i (ai
t) = β(t−), hence, by (2.4), we have

γ(0) ¬ λ(0), which means that Λλ(γ)(0) = γ(0), and so (4.29) holds.
If φi(t−) ¬ φi(t), then γ is nondecreasing on [0, di

t − ai
t]. On the other hand,

if φi(t−)  φi(t), then γ is nonincreasing on [0, di
t− ai

t]. Similarly, λ is either non-
decreasing or nonincreasing depending whether β(t−) ¬ β(t) or β(t−)  β(t).

If (4.24) does not hold, then γ ¬ λ on [0, di
t − ai

t]. Hence Λλ(γ) = γ, and so
(4.28) holds. Also, by Remark 4.1, Λλ(γ)(di

t − ai
t) = γ(di

t − ai
t) = gi ◦ ξ(di

t) −
∆t

i = φi(t) − φi(t−) + φ̄i(t−) = φ̄i(t), and so (4.30) holds. Therefore we can
assume (4.24).

Further analysis depends on the particular relation among points: φi(t−)−∆t
i,

φi(t) − ∆t
i, β(t−), β(t). We need to consider all configurations possible under

(4.24). Since φi(t−) − ∆t
i = φ̄i(t−), by (2.4), we must always have φi(t−) −

∆t
i ¬ β(t−). That leaves eight possible ordered arrangements.

If φi(t−)−∆t
i ¬ β(t−) ¬ φi(t)−∆t

i ¬ β(t), then, by (A), γ is nondecreas-
ing and γ ¬ λ on [0, di

t − ai
t]. Similarly, if φi(t) −∆t

i ¬ β(t) ¬ φi(t−) −∆t
i ¬

β(t−), then, by (F), γ is nonincreasing and γ ¬ λ on [0, di
t − ai

t]. Therefore, in
both cases (4.28) and (4.30) follow, by the same argument we used above, when
(4.24) did not hold.

If φi(t−) − ∆t
i ¬ β(t−) ¬ β(t) ¬ φi(t) − ∆t

i, then, by (B) and Proposi-
tion 4.3 (i), Λλ(γ) is nondecreasing on [0, di

t − ai
t] and Λλ(γ)(di

t − ai
t) =

λ(di
t − ai

t) = gβ
i (di

t) = β(t). Since, by Remark 4.2, β(t) = φ̄i(t), (4.30) follows.
If φi(t−) − ∆t

i ¬ β(t) ¬ β(t−) ¬ φi(t) − ∆t
i or φi(t−) − ∆t

i ¬ β(t) ¬
φi(t)−∆t

i ¬ β(t−), then, by (C), Proposition 4.3 (i) is applicable. Hence Λλ(γ)
is nondecreasing on [0, di

t − ai
t] and, as above, Λλ(γ)(di

t − ai
t) = β(t). Again, by

Remark 4.2, β(t) = φ̄i(t), and so (4.30) follows.
If β(t) ¬ φi(t−) − ∆t

i ¬ φi(t) − ∆t
i ¬ β(t−) or β(t) ¬ φi(t−) − ∆t

i ¬
β(t−) ¬ φi(t) − ∆t

i, then, by (D), Proposition 4.3 (ii), and Remark 4.2, Λλ(γ)
is nonincreasing on [0, di

t − ai
t] and Λλ(γ)(di

t − ai
t) = gβ

i (di
t) = β(t) = φ̄i(t).

If β(t) ¬ φi(t)−∆t
i ¬ φi(t−)−∆t

i ¬ β(t−) holds true, then, by (E), Propo-
sition 4.3 (iii), and Remark 4.2, Λλ(γ) is nonincreasing on [0, di

t − ai
t] and

Λλ(γ)(di
t − ai

t) = gβ
i (di

t) = β(t) = φ̄i(t).
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Thus we have shown that (4.28) and (4.30) hold in each case, and so (4.26)
and (4.27) are established, which completes our proof. ¥

The next result generalizes Corollary 1.6 from [4] for d1 metric. Just like
Proposition 4.2 it involves the oscillation of the constraining function β.

PROPOSITION 4.4. For T > 0 let β, φ1, φ2 ∈ D+[0, T ] be such that

inf
0¬t¬T

β(t) > 0.

Then

(4.31) d1

(
Λβ(φ1),Λβ(φ2)

) ¬ 2 d1(φ1, φ2) + sup
s,t∈[0,T ]

|β(t)− β(s)|.

P r o o f. Let φ1, φ2 ∈ D+[0, T ] and let (r1, g1) ∈ Πφ1 , (r2, g2) ∈ Πφ2 . Let
ξ, (rβ

1 , gβ
1 ), (rβ

2 , gβ
2 ) be as described in Lemma 4.3. Then, by (4.22), (4.23) and

(4.3), we have

d1

(
Λβ(φ1), Λβ(φ2)

) ¬ ‖rβ
1 − rβ

2 ‖T ∨ ‖Λgβ
1
(g1 ◦ ξ)− Λ

gβ
2
(g2 ◦ ξ)‖T

¬ ‖r1 ◦ ξ − r2 ◦ ξ‖T ∨ [2 ‖g1 ◦ ξ − g2 ◦ ξ‖T + ‖gβ
1 − gβ

2 ‖T ]

¬ ‖r1 − r2‖T ∨ [2 ‖g1 − g2‖T + ‖gβ
1 − gβ

2 ‖T ]

¬ 2 (‖r1 − r2‖T ∨ ‖g1 − g2‖T ) + ‖gβ
1 − gβ

2 ‖T .

Because the above inequality holds for any two parameterizations, (r1, g1) ∈ Πφ1

and (r2, g2) ∈ Πφ2 , we can conclude (4.31). ¥

Before we examine the distance between two Skorokhod maps in metric d1

we consider the effect of translation on d1 distance.

PROPOSITION 4.5. For any ψ1, ψ2 and α ∈ D[0, T ]

(4.32) d1(ψ1 + α, ψ2 + α) ¬ d1(ψ1, ψ2) + sup
s,t∈[0,T ]

|α(s)− α(t)|.

P r o o f. Let ψ1, ψ2, α ∈ D[0, T ] and choose arbitrary (ri, gi) ∈ Πψi for i =
1, 2. By Lemma 4.1 there is a continuous, nondecreasing mapping ξ from [0, 1]
onto [0, 1] and intervals {[ui

t, v
i
t] | t ∈ Dα, i = 1, 2} such that (4.15) and (4.16)

hold. We can extend the definition of [ui
t, v

i
t] to all t ∈ [0, T ] by insisting that (4.16)

holds for every t. Define gα
i : [0, T ] −→ R by setting gα

i (ui
t) = α(t−), gα

i (vi
t) =

α(t) and extending it linearly on each [ui
t, v

i
t] for each t ∈ [0, T ] and each i = 1, 2.

Then (ri ◦ ξ, gi ◦ ξ + gα
i ) ∈ Πφi+α for i = 1, 2 and

‖r1 ◦ ξ − r2 ◦ ξ‖T ∨ ‖(g1 ◦ ξ + gα
1 )− (g2 ◦ ξ + gα

2 )‖T
¬ ‖r1 − r2‖T ∨ (‖g1 ◦ ξ − g2 ◦ ξ‖T + ‖gα

1 − gα
2 ‖T )

¬ ‖r1 − r2‖T ∨ ‖g1 − g2‖T + sup
s,t∈[0,T ]

|α(s)− α(t)|.
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Thus

d1(ψ1 + α, ψ2 + α) ¬ ‖r1 − r2‖T ∨ ‖g1 − g2‖T + sup
s,t∈[0,T ]

|α(s)− α(t)|,

and because (ri, gi) ∈ Πψi
, i = 1, 2, were arbitrary, we conclude (4.32). ¥

THEOREM 4.1. For T > 0 let α, β be two functions in D[0, T ] such that
inf0¬t¬T

(
β(t)− α(t)

)
> 0 and let ψ1, ψ2 ∈ D[0, T ]. Then

(4.33) d1

(
Γα,β(ψ1), Γα,β(ψ2)

) ¬ 4 d1(ψ1, ψ2)
+ sup

s,t∈[0,T ]
|(β − α)(s)− (β − α)(t)|+ 4 sup

s,t∈[0,T ]
|α(s)− α(t)|.

P r o o f. By Lemma 2.2 and Proposition 4.4, we have

d1

(
Γα,β(ψ1), Γα,β(ψ2)

)
= d1

(
Γβ−α(ψ1 − α),Γβ−α(ψ1 − α)

)

= d1

(
Λβ−α

(
Γ0(ψ1 − α)

)
, Λβ−α

(
Γ0(ψ2 − α)

))

¬ 2d1

(
Γ0(ψ1 − α),Γ0(ψ2 − α)

)
+ sup

s,t∈[0,T ]
|(β − α)(s)− (β − α)(t)|.

Since, by Theorem 13.5.1 in [9], d1

(
Γ0(ψ1), Γ0(ψ2)

) ¬ 2d1(ψ1, ψ2), by applying
Proposition 4.5 we conclude (4.33). ¥

REMARK 4.3. Following the standard argument described in Theorem 12.9.4
in [9] we can conclude that the inequalities in (4.1)–(4.4) and (4.31)–(4.33) remain
true for φ1, φ2, ψ1, ψ2, α, β ∈ D[0,∞).

EXAMPLE 4.2. Let β, φ1, φ2 be the functions constructed in Example 4.1.
Then d1(φ̄1, φ̄2) = a while d1(φ1, φ2) = ε, and since ε can be arbitrarily small,
neither Λβ nor Γ0,β are continuous in metric d1.

We want to make a couple of useful observations about the projection πa,b

introduced in Section 1 and used in Example 1.1.

REMARK 4.4. Let a, b ∈ R be such that a < b. Then for every x, y ∈ R
(4.34)

∣∣(πa,b(x)− πa,b(y)
)− (x− y)

∣∣ ¬ |x− y|.
P r o o f. First note that πa,b(x) ¬ x provided πa,b(x) 6= a. Similarly, we have

πa,b(x)  x whenever πa,b(x) 6= b. Therefore

πa,b(x)− πa,b(y) ¬ (x− y)I{πa,b(x)6=a and πa,b(y)6=b}
¬ (x− y) + |x− y|

(4.35)

and

πa,b(x)− πa,b(y)  (x− y)I{πa,b(x)6=b and πa,b(y) 6=a}
 (x− y)− |x− y|. ¥

(4.36)
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REMARK 4.5. Let ψ, α, β ∈ D[0,∞), inft0

(
β(t) − α(t)

)
> 0 and t > 0.

Then

(4.37) φ̄(0) = πα(0),β(0)

(
ψ(0)

)
,

(4.38) φ̄(t) = πα(t),β(t)

(
φ̄(t−) + ψ(t)− ψ(t−)

)
.

P r o o f. Since φ(0) = Γα(ψ)(0) = ψ(0) +
(
α(0)− ψ(0)

)+ = ψ(0) ∨ α(0),
Cφ

α,β(0) =
(
φ(0)− β(0)

)+ ∧ (
φ(0)− α(0)

)
=

(
φ(0)− β(0)

)+ and φ̄(0) = φ(0)

− Cφ
β (0) = φ(0)− (

φ(0)− β(0)
)+ = φ(0) ∧ β(0), we get

φ̄(0) =
(
ψ(0) ∨ α(0)

) ∧ β(0) = πα(0),β(0)

(
ψ(0)

)
.

It is clear from Example 1.1 that (4.38) holds true when ψ, α and β are piece-
wise constant. For general ψ, α and β with possible discontinuities at t we can find
sequences ψn αn and βn in S[0,∞) such that

inf
t0

(
βn(t)− αn(t)

)
> 0 for every n, ψn n→∞−→ ψ, αn n→∞−→ α and βn n→∞−→ β

uniformly on compact sets. Taking the limits on both sides of the equation φ̄n(t) =
παn(t),βn(t)

(
φ̄n(t−) + ψn(t)− ψn(t−)

)
, by (4.4), we obtain (4.38). ¥

In a special case, when α = 0 and β = a > 0, the statements (4.3), (4.4),
(4.11), (4.12), (4.31), and (4.33) coincide with Lipschitz conditions given in Corol-
lary 1.6 in [4]. As it is stated there, it is well known that the smallest Lipschitz con-
stant when β does not depend on time is 2. In the following results we will lower
our constant to 2 for time dependent constraining functions α and β by means
similar to those used in [9], Theorem 14.8.1.

PROPOSITION 4.6 (Lipschitz continuity). Let ψ1, ψ2, α, β ∈ D[0,∞) and let
inft0

(
β(t)− α(t)

)
> 0. Then

(4.39) ‖Γα,β(ψ1)− Γα,β(ψ2)‖ ¬ 2 ‖ψ1 − ψ2‖.

P r o o f. We assume first that ψ1, ψ2, α, β ∈ S[0, T ] and let 0 = t0 < t1 <
. . . < tk be all the jump points of ψ1, ψ2, α or β. We will show by induction that
for j = 0, 1, 2, . . . , k

(4.40)
∣∣(φ̄1(tj)− φ̄2(tj)

)− (
ψ1(tj)− ψ2(tj)

)∣∣ ¬ ‖ψ1 − ψ2‖.

Since, by (4.37), φ̄i(0) = πα(0),β(0)

(
ψi(0)

)
for i = 1, 2, it follows immediately

from Remark 4.4 that (4.40) holds true for j = 0.
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Suppose (4.40) holds for j. By Remark 4.5, for i = 1, 2 we have

φ̄i(tj+1) = Γα,β (ψi) (tj+1)
= πα(tj+1),β(tj+1)

(
φ̄i(tj) + ψi(tj+1)− ψi(tj)

)
.

(4.41)

By (4.35) we obtain

φ̄1(tj+1)− φ̄2(tj+1) = πα(tj+1),β(tj+1)

(
φ̄1(tj) + ψ1(tj+1)− ψ1(tj)

)

− πα(tj+1),β(tj+1)

(
φ̄2(tj) + ψ2(tj+1)− ψ2(tj)

)

¬
{

0 if φ̄1(tj+1) = α(tj+1) or φ̄2(tj+1) = β(tj+1),(
φ̄1(tj)− φ̄2(tj)

)
+

(
ψ1(tj+1)− ψ2(tj+1)

)− (
ψ1(tj)− ψ2(tj)

)
otherwise

¬ (
ψ1(tj+1)− ψ2(tj+1)

)
+ ‖ψ1 − ψ2‖

by the inductive assumption.
Similarly, applying (4.36) we obtain the lower bound:

φ̄1(tj+1)− φ̄2(tj+1) = πα(tj+1),β(tj+1)

(
φ̄1(tj) + ψ1(tj+1)− ψ1(tj)

)

− πα(tj+1),β(tj+1)

(
φ̄2(tj) + ψ2(tj+1)− ψ2(tj)

)


{

0 if φ̄1(tj+1) = β(tj+1) or φ̄2(tj+1) = α(tj+1),(
φ̄1(tj)− φ̄2(tj)

)
+

(
ψ1(tj+1)− ψ2(tj+1)

)− (
ψ1(tj)− ψ2(tj)

)
otherwise

 (
ψ1(tj+1)− ψ2(tj+1)

)− ‖ψ1 − ψ2‖.
Thus the proof of (4.40) is complete, and so (4.39) holds true when ψ1, ψ2, α, β ∈
S[0,∞). Consider now general ψ1, ψ2, α, β ∈ D[0,∞) such that

inf
t0

(
β(t)− α(t)

)
> 0.

As in the proof of Remark 4.5, we can find sequences ψn
1 , ψn

2 , αn, βn ∈ S[0,∞)
converging uniformly on compact sets to ψ1, ψ2, α and β, respectively. Since (4.39)
holds true for ψn

1 , ψn
2 , αn, βn, applying (4.4) and Remark 4.3 we conclude (4.39)

for ψ1, ψ2, α, β. ¥
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