PROBABILITY AND MATHEMATICAL STATISTICS Vol. 31, Fasc. 2 (2011), pp. 227–238

WEAK-TYPE INEQUALITY FOR THE MARTINGALE SQUARE FUNCTION AND A RELATED CHARACTERIZATION OF HILBERT SPACES*

BY

ADAM OSĘKOWSKI (WARSZAWA)

Abstract. Let f be a martingale taking values in a Banach space \mathcal{B} and let S(f) be its square function. We show that if \mathcal{B} is a Hilbert space, then

$$\mathbb{P}(S(f) \ge 1) \le \sqrt{e} \|f\|_1$$

and the constant \sqrt{e} is the best possible. This extends the result of Cox, who established this bound in the real case. Next, we show that this inequality characterizes Hilbert spaces in the following sense: if \mathcal{B} is not a Hilbert space, then there is a martingale f for which the above weak-type estimate does not hold.

2000 AMS Mathematics Subject Classification: Primary: 60G42; Secondary: 46C15.

Key words and phrases: Martingale, square function, weak type inequality, Banach space, Hilbert space.

1. INTRODUCTION

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, filtered by $(\mathcal{F}_n)_{n \ge 0}$, a non-decreasing sequence of sub- σ -fields of \mathcal{F} . Let $f = (f_n)_{n \ge 0}$ and $g = (g_n)_{n \ge 0}$ be adapted martingales taking values in a certain separable Banach space $(\mathcal{B}, \|\cdot\|)$. The difference sequences $df = (df_n)_{n \ge 0}$ and $dg = (dg_n)_{n \ge 0}$ of the martingales f and g are defined by $df_0 = f_0$ and $df_n = f_n - f_{n-1}$ for $n \ge 1$, and similarly for dg_n . We say that g is a ± 1 -transform of f if there is a deterministic sequence $\varepsilon = (\varepsilon_n)_{n \ge 0}$ of signs such that $dg_n = \varepsilon_n df_n$ for each n.

It is well-known that martingale inequalities reflect the geometry of Banach spaces in which the martingales take values: see e.g. [1]–[4] and [7]. We shall mention here only one fact, closely related to the result studied in the present paper. As proved by Burkholder in [2], if f takes values in a separable Hilbert space and

^{*} Partially supported by MNiSW Grant N N201 397437.

g is its ± 1 -transform, then

(1.1)
$$\mathbb{P}(\sup_{n} \|g_{n}\| \ge 1) \le 2\|f\|_{1}$$

and the constant 2 is the best possible (here, as usual, $||f||_1 = \sup_n ||f_n||_1$). In fact, the implication can be reversed: if \mathcal{B} is a separable Banach space with the property that (1.1) holds for any \mathcal{B} -valued martingale f and its ± 1 -transform g, then \mathcal{B} is a Hilbert space. For details, see Burkholder [2] and Lee [6].

In this paper we shall study a related problem and characterize the class of Hilbert spaces by another weak-type estimate. Let us introduce the *square function* of f by the formula

$$S(f) = \left(\sum_{k=0}^{\infty} \|df_k\|^2\right)^{1/2}.$$

We shall also use the notation

$$S_n(f) = \left(\sum_{k=0}^n \|df_k\|^2\right)^{1/2}$$

for the truncated square function, n = 0, 1, 2, ... Suppose that \mathcal{B} is a given and fixed separable Banach space and let $\beta(\mathcal{B})$ denote the least extended real number β such that, for any martingale f taking values in \mathcal{B} ,

$$\mathbb{P}(S(f) \ge 1) \le \beta(\mathcal{B}) \|f\|_1$$

Using the method of moments, Cox [5] showed that $\beta(\mathbb{R}) = \sqrt{e}$: consequently, $\beta(\mathcal{B}) \ge \sqrt{e}$ for any non-degenerate \mathcal{B} . We will extend this result to the following.

THEOREM 1.1. We have $\beta(\mathcal{B}) = \sqrt{e}$ if and only if \mathcal{B} is a Hilbert space.

Let us sketch the proof. To show that for any martingale f taking values in a Hilbert space $(\mathcal{H}, |\cdot|)$ we have

(1.2)
$$\mathbb{P}(S(f) \ge 1) \le \sqrt{e} \|f\|_1,$$

we may restrict ourselves to the class of simple martingales. Recall that f is *simple* if for any n the random variable f_n takes only a finite number of values and there is a deterministic N such that $f_N = f_{N+1} = f_{N+2} = \dots$ We must prove that

$$\mathbb{E}V(f_n, S_n(f)) \leq 0, \quad n = 0, 1, 2, \dots,$$

where $V(x, y) = 1_{\{y \ge 1\}} - \sqrt{e}|x|$ for $x \in \mathcal{H}$ and $y \in [0, \infty)$.

To do this, we will use Burkholder's method and construct a function $U: \mathcal{H} \times [0, \infty) \to \mathbb{R}$, which satisfies the following three conditions:

1° We have the majorization $U \ge V$.

 2° For any $x \in \mathcal{H}, y \ge 0$ and any simple mean-zero random variable T taking values in \mathcal{H} we have $\mathbb{E}U(x+T, \sqrt{y^2 + |T|^2}) \le U(x, y)$.

3° For any $x \in \mathcal{H}$ we have $U(x, |x|) \leq 0$.

Then (1.2) follows.

To see this, apply 2° conditionally on \mathcal{F}_n , with $x = f_n$, $y = S_n(f)$ and $T = df_{n+1}$. As the result, we obtain the inequality

$$\mathbb{E}\left[U(f_{n+1}, S_{n+1}(f))|\mathcal{F}_n\right] \leq U(f_n, S_n(f)),$$

so, in other words, the process $(U(f_n, S_n(f)))_{n \ge 0}$ is a supermartingale. Hence, by 1° and 3°,

$$\mathbb{E}V(f_n, S_n(f)) \leq \mathbb{E}U(f_n, S_n(f)) \leq \mathbb{E}U(f_0, S_0(f)) = \mathbb{E}U(f_0, |f_0|) \leq 0$$

and we are done.

The special function U is constructed and studied in the next section. In Section 3 we prove the remaining part of Theorem 1.1: we shall show that the validity of (1.2) for all \mathcal{B} -valued martingales implies the parallelogram identity.

2. A SPECIAL FUNCTION

Let \mathcal{H} be a separable Hilbert space: in fact, we may and do assume that $\mathcal{H} = \ell^2$. The corresponding norm and scalar product will be denoted by $|\cdot|$ and \cdot , respectively. Introduce $U : \mathcal{H} \times [0, \infty) \to \mathbb{R}$ by the formula

(2.1)
$$U(x,y) = \begin{cases} 1 - (1-y^2)^{1/2} \exp\left(|x|^2/[2(1-y^2)]\right) & \text{if } |x|^2 + y^2 < 1, \\ 1 - \sqrt{e}|x| & \text{if } |x|^2 + y^2 \ge 1. \end{cases}$$

In the lemma below, we study the properties of U and V.

LEMMA 2.1. The function U satisfies the conditions 1°, 2° and 3°.

Proof. To show the majorization, we may assume that $|x|^2 + y^2 < 1$. Then the inequality takes the form

$$\exp\left(\frac{|x|^2}{2(1-y^2)}\right) \leqslant \sqrt{e}\frac{|x|}{\sqrt{1-y^2}} + \frac{1}{\sqrt{1-y^2}}$$

and follows immediately from an elementary bound $\exp(s^2/2) \leq \sqrt{es} + 1$, $s \in [0, 1]$, applied to $s = |x|/\sqrt{1-y^2}$. To check 2°, we introduce an auxiliary function

$$A(x,y) = \begin{cases} -x(1-y^2)^{-1/2} \exp\left(|x|^2/[2(1-y^2)]\right) & \text{if } |x|^2 + y^2 < 1, \\ -\sqrt{e}x' & \text{if } |x|^2 + y^2 \ge 1, \end{cases}$$

where x' = x/|x| for $x \neq 0$, and x' = 0 otherwise. We shall establish a pointwise estimate

(2.2)
$$U(x+d, \sqrt{y^2 + |d|^2}) \le U(x, y) + A(x, y) \cdot d$$

for all $x, d \in \mathcal{H}$ and $y \ge 0$. Observe that this inequality immediately yields 2°, simply by putting d = T and taking expectation of both sides.

To prove (2.2), note first that $U(x, y) \leq 1 - \sqrt{e|x|}$ for all $x \in \mathcal{H}$ and $y \geq 0$. This is trivial for $|x|^2 + y^2 \geq 1$, while for the remaining pairs (x, y) it can be transformed into the equivalent inequality:

$$\frac{|x|^2}{1-y^2}\leqslant \exp{\left(\frac{|x|^2}{1-y^2}-1\right)},$$

which is obvious. Consequently, when $|x|^2 + y^2 \ge 1$, we have

$$U(x+d, \sqrt{y^2 + |d|^2}) \le 1 - \sqrt{e}|x+d| \le 1 - \sqrt{e}|x| + A(x,y) \cdot d$$

= $U(x,y) + A(x,y) \cdot d$.

Now suppose that $|x|^2 + y^2 < 1$ and $|x + d|^2 + y^2 + |d|^2 \le 1$. Observe that for $X, D \in \mathcal{H}$ with |D| < 1 we have

$$\begin{split} \exp\left(\frac{|D|^2|X|^2 + 2X \cdot D + |D|^2}{1 - |D|^2}\right) &\geqslant \exp\left(\frac{(X \cdot D)^2 + 2X \cdot D + |D|^2}{1 - |D|^2}\right) \\ &\geqslant \frac{(X \cdot D)^2 + 2X \cdot D + |D|^2}{1 - |D|^2} + 1 \\ &= \frac{(1 + X \cdot D)^2}{1 - |D|^2}. \end{split}$$

It suffices to plug $X = x/\sqrt{1-y^2}$ and $D = d/\sqrt{1-y^2}$ to obtain (2.2). Finally, if $|x|^2 + y^2 < 1 < |x+d|^2 + y^2 + |d|^2$, then substituting X and D as previously, we have |X| < 1, $|X + D|^2 + |D|^2 > 1$ and (2.2) can be written in the form

$$\exp\left(\frac{|X|^2 - 1}{2}\right)(1 + X \cdot D) \leqslant |X + D|,$$

or

$$\exp\left(\frac{|X|^2 - 1}{2}\right) \left(1 + \frac{|X + D|^2 - |X|^2 - |D|^2}{2}\right) \leqslant |X + D|.$$

Now we fix |X|, |X + D| and maximize the left-hand side over D. Let us consider two cases. If $|X + D|^2 + (|X + D| - |X|)^2 < 1$, then there is $D' \in \mathcal{H}$ satisfying

$$\begin{split} |X+D| &= |X+D'| \text{ and } |X+D'|^2 + |D'|^2 = 1. \text{ Consequently,} \\ &\exp\left(\frac{|X|^2 - 1}{2}\right) \left(1 + \frac{|X+D|^2 - |X|^2 - |D|^2}{2}\right) \\ &\leqslant \exp\left(\frac{|X|^2 - 1}{2}\right) \left(1 + \frac{|X+D'|^2 - |X|^2 - |D'|^2}{2}\right) \leqslant |X+D'| = |X+D| \end{split}$$

Here the first passage is due to |D'| < |D|, while in the second we have applied (2.2) to x = X, y = 0 and d = D' (for these x, y and d we have already established the bound). Suppose, then, that $|X + D|^2 + (|X + D| - |X|)^2 \ge 1$. This inequality is equivalent to

$$|X + D| \ge \frac{1 - |X|^2}{\sqrt{2 - |X|^2} - |X|},$$

and hence

$$\begin{split} &\exp\left(\frac{|X|^2 - 1}{2}\right) \left(1 + \frac{|X + D|^2 - |X|^2 - |D|^2}{2}\right) - |X + D| \\ &\leqslant \exp\left(\frac{|X|^2 - 1}{2}\right) \left(1 + \frac{|X + D|^2 - |X|^2 - (|X + D| - |X|)^2}{2}\right) - |X + D| \\ &= \exp\left(\frac{|X|^2 - 1}{2}\right) (1 - |X|^2) + \left\{\exp\left(\frac{|X|^2 - 1}{2}\right) |X| - 1\right\} |X + D| \\ &\leqslant \frac{1 - |X|^2}{\sqrt{2 - |X|^2} - |X|} \left[\exp\left(\frac{|X|^2 - 1}{2}\right) \sqrt{2 - |X|^2} - 1\right]. \end{split}$$

It suffices to observe that the expression in the square brackets is nonpositive, which follows from the estimate $\exp(1 - |X|^2) \ge 2 - |X|^2$. This completes the proof of 2°. Finally, 3° is a consequence of the inequality (2.2): $U(x, |x|) \le U(0, 0) + A(0, 0) \cdot x = 0$.

Thus, by the reasoning presented in the Introduction, the inequality (1.2) holds true. The constant \sqrt{e} is optimal even in the real case: see Cox [5]. In fact, we shall reprove this in the next section: see Remark 3.1 below.

3. CHARACTERIZATION OF HILBERT SPACES

Let $(\mathcal{B}, \|\cdot\|)$ be a separable Banach space and recall the number $\beta(\mathcal{B})$ defined in the first section. Thus, for any \mathcal{B} -valued martingale f we have

$$(3.1) \qquad \qquad \mathbb{P}(S(f) \ge 1) \le \beta(\mathcal{B}) \|f\|_1.$$

For $x \in \mathcal{B}$ and $y \ge 0$, let M(x, y) denote the class of all simple martingales f given on the probability space $([0, 1], \mathbb{B}(0, 1), |\cdot|)$, such that f is \mathcal{B} -valued, $f_0 \equiv x$ and

(3.2)
$$y^2 - ||x||^2 + S^2(f) \ge 1$$
 almost surely.

Here the filtration may vary. The key object in our further considerations is the function $U^0: \mathcal{B} \times [0, \infty) \to \mathbb{R}$ given by

$$U^0(x,y) = \inf\{\mathbb{E}||f_n||\},\$$

where the infimum is taken over all n and all $f \in M(x, y)$. We will prove that U^0 satisfies appropriate versions of the conditions $1^{\circ}-3^{\circ}$.

- LEMMA 3.1. The function U^0 satisfies the following conditions:
- 1°' For any $x \in \mathcal{B}$ and $y \ge 0$ we have $U^0(x, y) \ge ||x||$.

 $2^{o'}$ For any $x \in \mathcal{B}, y \ge 0$ and any simple centered \mathcal{B} -valued random variable T.

$$\mathbb{E}U^{0}(x+T, \sqrt{y^{2}} + ||T||^{2}) \ge U^{0}(x, y).$$

 $3^{\circ'}$ For any $x \in \mathcal{B}$ we have $U^0(x, ||x||) \ge \beta(\mathcal{B})^{-1}$.

Proof. The property $1^{o'}$ is obvious: when $f \in M(x, y)$, then it follows that $||f_n||_1 \ge ||f_0||_1 = ||x||$ for all n. To establish $2^{o'}$, we use a modification of the so-called "splicing argument": see e.g. [1]. Let T be as in the statement and let $\{x_1, x_2, \ldots, x_k\}$ be the set of its values: $\mathbb{P}(T = x_j) = p_j > 0$, $\sum_{j=1}^k p_j = 1$. For any $1 \le j \le k$, pick a martingale f^j from the class $M(x + x_j, \sqrt{y^2 + ||x_j||^2})$. Let $a_0 = 0$ and $a_j = \sum_{\ell=1}^j p_\ell$, $j = 1, 2, \ldots, k$. Define a simple sequence f on $([0, 1], \mathbb{B}(0, 1), |\cdot|)$ by $f_0 \equiv x$ and

$$f_n(\omega) = f_{n-1}^j ((\omega - a_{j-1})/(a_j - a_{j-1})), \quad n \ge 1,$$

when $\omega \in (a_{j-1}, a_j]$. Then f is a martingale with respect to its natural filtration and, when $\omega \in (a_{j-1}, a_j]$,

$$y^{2} - ||x||^{2} + S^{2}(f)(\omega)$$

= $y^{2} + ||x_{j}||^{2} - ||x + x_{j}||^{2} + S^{2}(f^{j})((\omega - a_{j-1})/(a_{j} - a_{j-1})) \ge 1,$

unless ω belongs to a set of measure zero. Therefore (3.2) holds, so by the definition of U^0 we get

$$\|f_n\|_1 \ge U^0(x,y).$$

However, the left-hand side equals

$$\sum_{j=1}^{k} \int_{a_{j-1}}^{a_j} |f_n(\omega)| d\omega = \sum_{j=1}^{k} p_j \int_0^1 |f_{n-1}^j(\omega)| d\omega,$$

which, by the proper choice of n and f^j , j = 1, 2, ..., k, can be made arbitrarily close to $\sum_{j=1}^k p_j U^0(x + x_j, \sqrt{y^2 + ||x_j||^2}) = \mathbb{E}U^0(x + T, \sqrt{y^2 + ||T||^2})$. This gives $2^{o'}$. Finally, the condition $3^{o'}$ follows immediately from (3.1) and the definition of U^0 .

The further properties of U^0 are described in the next lemma.

LEMMA 3.2. (i) The function U^0 satisfies the symmetry condition

$$U^0(x,y) = U^0(-x,y)$$

for all $x \in \mathcal{B}$ and $y \ge 0$.

(ii) The function U^0 has the homogeneity-type property

$$U^{0}(x,y) = \sqrt{1-y^{2}}U^{0}\left(\frac{x}{\sqrt{1-y^{2}}},0\right)$$

for all $x \in \mathcal{B}$ and $y \in [0, 1)$.

(iii) If $z \in \mathcal{B}$ satisfies ||z|| = 1 and $0 \leq s < t \leq 1$, then

(3.3)
$$U^0(sz,0) \leq U^0(tz,0) \exp\left((s^2 - t^2) \|z\|^2/2\right).$$

Proof. (i) It is sufficient to use the equivalence $f \in M(x, y)$ if and only if $-f \in M(-x, y)$.

(ii) This follows immediately from the fact that $f \in M(x,y)$ if and only if $f/\sqrt{1-y^2} \in M(x/\sqrt{1-y^2},0)$.

(iii) Fix $x \in \mathcal{B}$ with 0 < ||x|| < 1 and $\delta > 0$ such that $||x + \delta x|| \leq 1$. Apply $2^{o'}$ to y = 0 and a centered random variable T which takes two values: δx and $-2x/(1 + ||x||^2)$. We get

$$\begin{aligned} U^{0}(x,0) &\leqslant \frac{\delta \|x\| (1+\|x\|^{2})}{2\|x\|+\delta \|x\| (1+\|x\|^{2})} U^{0} \left(-\frac{x(1-\|x\|^{2})}{1+\|x\|^{2}}, \frac{2\|x\|}{1+\|x\|^{2}} \right) \\ &+ \frac{2\|x\|}{2\|x\|+\delta \|x\| (1+\|x\|^{2})} U^{0} \left(x+\delta x, \delta \|x\|\right). \end{aligned}$$

By (i) and (ii), the first term on the right equals

$$\frac{\delta \|x\| (1 - \|x\|^2)}{2\|x\| + \delta \|x\| (1 + \|x\|^2)} U^0(x, 0).$$

The second summand can be bounded from above by

$$\frac{2\|x\|}{2\|x\|+\delta\|x\|(1+\|x\|^2)}U^0(x+\delta x,0),$$

because $M(x + \delta x, 0) \subset M(x + \delta x, \delta ||x||)$. Plugging these two facts into the inequality above yields

(3.4)
$$\frac{U^0(x+\delta x,0)}{U^0(x,0)} \ge 1+\delta ||x||^2.$$

A. Osękowski

This gives

$$\frac{U^0(x(1+k\delta),0)}{U^0(x(1+(k-1)\delta),0)} \ge 1 + \delta(1+(k-1)\delta) ||x||^2,$$

provided $||x(1+k\delta)|| \le 1$. Consequently, if N is an integer such that the condition $||x(1+N\delta)|| \le 1$ holds true, then

(3.5)
$$\frac{U^0(x(1+N\delta),0)}{U^0(x,0)} \ge \prod_{k=1}^N \left(1 + \delta \left(1 + (k-1)\delta\right) \|x\|^2\right).$$

Now we turn to (3.3). Assume first that s > 0. Put x = sz, $\delta = (t/s - 1)/N$ and let $N \to \infty$ in the inequality above to obtain

$$\frac{U^0(tz,0)}{U^0(sz,0)} \ge \exp\left(\frac{1}{2} \|z\|^2 (t^2 - s^2)\right),$$

which is the claim. Next, suppose that s = 0. For any 0 < s' < t we have, by $2^{\circ'}$,

$$U^{0}(0,0) \leq \frac{1}{2}U^{0}(s'z, \|s'z\|) + \frac{1}{2}U^{0}(-s'z, \|s'z\|)$$

= $U^{0}(s'z, \|s'z\|) \leq U^{0}(s'z, 0),$

where in the latter passage we have used the inclusion $M(s'z, 0) \subset M(s'z, ||s'z||)$. Thus,

$$\frac{U^0(tz,0)}{U^0(0,0)} \ge \frac{U^0(tz,0)}{U^0(s'z,0)} \ge \exp\left(\frac{1}{2} \|z\|^2 (t^2 - (s')^2)\right)$$

and it remains to let $s' \rightarrow 0$.

REMARK 3.1. Suppose that $\mathcal{B} = \mathbb{R}$. It is easy to see that $U^0(1,0) \leq 1$: consider f starting from 1 and satisfying $\mathbb{P}(df_1 = -1) = \mathbb{P}(df_1 = 1) = 1/2$, $df_2 = df_3 \equiv \ldots \equiv 0$. Thus, by $3^{o'}$ and (3.3), we have

$$\beta(\mathbb{R})^{-1} \leqslant U^0(0,0) \leqslant U^0(1,0)/\sqrt{e} \leqslant 1/\sqrt{e},$$

that is, $\beta(\mathbb{R}) \ge \sqrt{e}$. This implies the sharpness of (1.2) in the Hilbert-space-valued setting.

Now we will work under the assumption $\beta(\mathcal{B}) = \sqrt{e}$. Then we are able to derive the explicit formula for U^0 .

LEMMA 3.3. If
$$\beta(\mathcal{B}) = \sqrt{e}$$
, then

$$U^{0}(x,y) = \begin{cases} \sqrt{1-y^{2}} \exp\left(\|x\|^{2}/[2(1-y^{2})] - \frac{1}{2}\right) & \text{if } \|x\|^{2} + y^{2} < 1, \\ \|x\| & \text{if } \|x\|^{2} + y^{2} \ge 1. \end{cases}$$

Proof. First let us focus on the set $\{(x, y) : ||x||^2 + y^2 \ge 1\}$. By 1°' we have $U^0(x, y) \ge ||x||$. To get the reverse estimate, consider a martingale f such that $f_0 \equiv x$, df_1 takes values -x and x, and $df_2 = df_3 \equiv \ldots \equiv 0$. Then $y^2 - ||x||^2 + S^2(f) = y^2 + ||x||^2 \ge 1$ (so $f \in M(x, y)$) and $||f||_1 = ||x||$, which implies $U^0(x, y) \le ||x||$ by the definition of U^0 . Now suppose that $||x||^2 + y^2 < 1$. Using the second and third part of the previous lemma, we may write

$$U^{0}(x,y) = \sqrt{1-y^{2}}U^{0}\left(\frac{x}{\sqrt{1-y^{2}}},0\right) \ge U^{0}(0,0)\sqrt{1-y^{2}}\exp\left(\frac{\|x\|^{2}}{2(1-y^{2})}\right),$$

so, by $3^{o'}$,

$$U^{0}(x,y) \ge \sqrt{1-y^{2}} \exp\left(\frac{\|x\|^{2}}{2(1-y^{2})} - \frac{1}{2}\right).$$

To get the reverse bound, we use the homogeneity of U^0 and (3.3) again:

$$\begin{split} U^{0}(x,y) &= \sqrt{1-y^{2}} U^{0} \bigg(\frac{x}{\sqrt{1-y^{2}}}, 0 \bigg) \\ &\leqslant \sqrt{1-y^{2}} U^{0} \left(\frac{x}{|x|}, 0 \right) \exp \bigg(\frac{1}{2} \left(\frac{\|x\|^{2}}{1-y^{2}} - 1 \right) \bigg) \\ &= \sqrt{1-y^{2}} \exp \bigg(\frac{\|x\|^{2}}{2(1-y^{2})} - \frac{1}{2} \bigg), \end{split}$$

where in the last line we have used the equality $U^0(\overline{x}, 0) = \|\overline{x}\|$ valid for \overline{x} of norm one (we have just established this in the first part of the proof). For completeness, let us mention here that if x = 0, then x/|x| should be replaced above by any vector of norm one.

LEMMA 3.4. Suppose that $\beta(\mathcal{B}) = \sqrt{e}$ and let us assume that $x, y \in \mathcal{B}$ and $\alpha > 0$ satisfy ||x|| < 1, $||x + \alpha x + y||^2 + ||\alpha x + y||^2 < 1$ and $||x + \alpha x - y||^2 + ||\alpha x - y||^2 < 1$. Then

$$(3.6) \quad 2 + 2\alpha \|x\|^2 \leqslant \sqrt{1 - \|\alpha x + y\|^2} \exp\left(\frac{\|x + \alpha x + y\|^2}{2(1 - \|\alpha x + y\|^2)} - \frac{\|x\|^2}{2}\right) \\ + \sqrt{1 - \|\alpha x - y\|^2} \exp\left(\frac{\|x + \alpha x - y\|^2}{2(1 - \|\alpha x - y\|^2)} - \frac{\|x\|^2}{2}\right).$$

Proof. Consider a random variable T such that

$$\mathbb{P}\left(T = -\frac{2x}{1+\|x\|^2}\right) = p, \quad \mathbb{P}(T = \alpha x + y) = \mathbb{P}(T = \alpha x - y) = \frac{1-p}{2},$$

where $p \in (0, 1)$ is chosen so that $\mathbb{E}T = 0$. That is,

$$p = \frac{\alpha(1 + \|x\|^2)}{2 + \alpha(1 + \|x\|^2)}.$$

A. Osękowski

By $2^{\circ'}$, we have $U^0(x,0) \leq \mathbb{E}U^0(x+T, ||T||)$. Since $||x+T||^2 + ||T||^2 < 1$ almost surely, the previous lemma implies that this can be rewritten in the equivalent form:

$$\exp\left(\frac{\|x\|^2}{2}\right) \leqslant p\sqrt{1 - \left(\frac{2\|x\|}{1 + \|x\|^2}\right)^2} \exp\left(\frac{\|x((-1 + \|x\|^2)/(1 + \|x\|^2))\|^2}{2(1 - (2\|x\|/(1 + \|x\|^2))^2)}\right) \\ + \frac{1 - p}{2}\sqrt{1 - \|\alpha x + y\|^2} \exp\left(\frac{\|x + \alpha x + y\|^2}{2(1 - \|\alpha x + y\|^2)}\right) \\ + \frac{1 - p}{2}\sqrt{1 - \|\alpha x - y\|^2} \exp\left(\frac{\|x + \alpha x - y\|^2}{2(1 - \|\alpha x - y\|^2)}\right).$$

However, the first term on the right equals

$$\frac{\alpha(1 - \|x\|^2)}{2 + \alpha(1 + \|x\|^2)} \exp\left(\frac{\|x\|^2}{2}\right)$$

and, in addition, $(1-p)/2 = (2 + \alpha(1 + ||x||^2))^{-1}$. Consequently, it suffices to multiply both sides of the inequality above by $(2 + \alpha(1 + ||x||^2)) \exp(-||x||^2/2)$; the claim follows.

Now we are ready to complete the proof of Theorem 1.1. Suppose that a, b belong to the unit ball K of \mathcal{B} and take $\varepsilon \in (0, 1/2)$. Applying (3.6) to $x = \varepsilon a$, $y = \varepsilon^2 b$ and $\alpha = \varepsilon$ gives

(3.7)
$$2 + 2\varepsilon^{3} ||a||^{2} \leq \sqrt{1 - \varepsilon^{4} ||a + b||^{2}} \exp(m(a, b)) + \sqrt{1 - \varepsilon^{4} ||a - b||^{2}} \exp(m(a, -b)),$$

where

$$\begin{split} m(a,b) &= \frac{\varepsilon^2 \|a + \varepsilon(a+b)\|^2}{2(1 - \varepsilon^4 \|a+b\|^2)} - \frac{\varepsilon^2 \|a\|^2}{2} \\ &= \frac{\varepsilon^2}{2} \left(\|a + \varepsilon(a+b)\|^2 - \|a\|^2 \right) + \frac{\varepsilon^6 \|a + \varepsilon(a+b)\|^2 \|a+b\|^2}{2(1 - \varepsilon^4 \|a+b\|^2)}. \end{split}$$

It is easy to see that there exists an absolute constant M_1 such that

$$\sup_{a,b\in K} |m(a,b)| \leqslant M_1 \varepsilon^3$$

Consequently, there is a universal $M_2 > 0$ such that if ε is sufficiently small, then

$$\exp\left(m(a,b)\right) \leqslant 1 + m(a,b) + m(a,b)^2$$
$$\leqslant 1 + \frac{\varepsilon^2}{2} \left(\|a + \varepsilon(a+b)\|^2 - \|a\|^2\right) + M_2 \varepsilon^6$$

for any $a, b \in K$. Since $\sqrt{1-x} \leq 1-x/2$ for $x \in (0,1)$, the inequality (3.7) implies

$$2 + 2\varepsilon^{3} ||a||^{2} \leq (1 - \varepsilon^{4} ||a + b||^{2}/2) \left(1 + \frac{\varepsilon^{2}}{2} (||a + \varepsilon(a + b)||^{2} - ||a||^{2}) + M_{2}\varepsilon^{6} \right) \\ + (1 - \varepsilon^{4} ||a - b||^{2}/2) \left(1 + \frac{\varepsilon^{2}}{2} (||a + \varepsilon(a - b)||^{2} - ||a||^{2}) + M_{2}\varepsilon^{6} \right).$$

This, after some manipulations, leads to

$$\begin{aligned} \|a + \varepsilon(a+b)\|^2 + \|a + \varepsilon(a-b)\|^2 - 2\|a(1+\varepsilon)\|^2 \\ \ge \varepsilon^2 (\|a+b\|^2 + \|a-b\|^2 - 2\|a\|^2) - 2\varepsilon^4 M_3, \end{aligned}$$

where M_3 is a positive constant not depending on ε , a and b. Equivalently,

$$\begin{aligned} \left\|a + \frac{\varepsilon}{1+\varepsilon}b\right\|^2 + \left\|a - \frac{\varepsilon}{1+\varepsilon}b\right\|^2 - 2\|a\|^2 - 2\left\|\frac{\varepsilon}{1+\varepsilon}b\right\|^2 \\ \geqslant \frac{\varepsilon^2}{(1+\varepsilon)^2}(\|a+b\|^2 + \|a-b\|^2 - 2\|a\|^2 - 2\|b\|^2) - 2\frac{\varepsilon^4}{(1+\varepsilon)^2}M_3. \end{aligned}$$

Next, let $c \in \mathcal{B}$, $\gamma > 0$ and substitute $a = \gamma c$; we assume that γ is small enough to ensure that $a \in K$. If we divide both sides by γ^2 and substitute $\delta = \varepsilon (1 + \varepsilon)^{-1} \gamma^{-1}$, we obtain

$$\begin{aligned} \|c+\delta b\|^{2} + \|c-\delta b\|^{2} - 2\|c\|^{2} - 2\|\delta b\|^{2} \\ & \ge \delta^{2}(\|\gamma c+b\|^{2} + \|\gamma c-b\|^{2} - 2\|\gamma c\|^{2} - 2\|b\|^{2}) - 2\varepsilon^{2}\delta^{2}M_{3} \\ & \ge \delta^{2}(\|\gamma c+b\|^{2} + \|\gamma c-b\|^{2} - 2\|\gamma c\|^{2} - 2\|b\|^{2}) - 2\delta^{4}M_{3}. \end{aligned}$$

Let γ and ε go to 0 so that δ remains fixed. As the result, we infer that, for any $\delta > 0, b \in K$ and $c \in \mathcal{B}$,

(3.8)
$$\|c + \delta b\|^2 + \|c - \delta b\|^2 - 2\|c\|^2 - 2\|\delta b\|^2 \ge -2\delta^4 M_3.$$

Now, let N be a large positive integer and consider a symmetric random walk $(g_n)_{n \ge 0}$ over integers, starting from 0. Let $\tau = \inf\{n : |g_n| = N\}$. The inequality (3.8), applied to $\delta = N^{-1}$, implies that for any $a \in \mathcal{B}$ and $b \in K$ the process

$$(\xi_n)_{n \ge 0} = \left(\left\| a + \frac{bg_{\tau \land n}}{N} \right\|^2 - \left\{ \frac{\|b\|^2}{N^2} - \frac{M_3}{N^4} \right\} (\tau \land n) \right)_{n \ge 0}$$

is a submartingale. Since $\mathbb{E}(\tau \wedge n) = \mathbb{E}g_{\tau \wedge n}^2$, we obtain

$$\mathbb{E}\left(\left\|a+\frac{bg_{\tau\wedge n}}{N}\right\|^2-\left\{\frac{\|b\|^2}{N^2}-\frac{M_3}{N^4}\right\}g_{\tau\wedge n}^2\right)=\mathbb{E}\xi_n\geqslant\mathbb{E}\xi_0=\|a\|^2.$$

Letting $n \to \infty$ and using Lebesgue's dominated convergence theorem gives

$$\frac{1}{2}(\|a+b\|^2 + \|a-b\|^2) - \|b\|^2 + \frac{M_3}{N^2} \ge \|a\|^2.$$

It suffices to let N go to ∞ to obtain

$$||a+b||^2 + ||a-b||^2 \ge 2||a||^2 + 2||b||^2.$$

We have assumed that b belongs to the unit ball K, but, by homogeneity, the above estimate extends to any $b \in \mathcal{B}$. Putting a + b and a - b in the place of a and b, respectively, we obtain the reverse estimate

$$||a+b||^2 + ||a-b||^2 \le 2||a||^2 + 2||b||^2.$$

This implies that the parallelogram identity is satisfied, and hence \mathcal{B} is a Hilbert space.

Acknowledgments. The author would like to thank an anonymous referee for the careful reading of the first version of the manuscript and helpful suggestions.

REFERENCES

- [1] D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), pp. 997–1011.
- [2] D. L. Burkholder, Martingale transforms and geometry of Banach spaces, in: Proceedings of the Third International Conference on Probability in Banach Spaces, Tufts University, 1980, Lecture Notes in Math. Vol. 860 (1981), pp. 35–50.
- [3] D. L. Burkholder, On the number of escapes of a martingale and its geometrical significance, in: Almost Everywhere Convergence, G. A. Edgar and L. Sucheston (Eds.), Academic Press, New York 1989, pp. 159–178.
- [4] D. L. Burkholder, Explorations in martingale theory and its applications, in: École d'Eté de Probabilités de Saint-Flour XIX – 1989, Lecture Notes in Math. Vol. 1464, Springer, Berlin 1991, pp. 1–66.
- [5] D. C. Cox, The best constant in Burkholder's weak- L^1 inequality for the martingale square function, Proc. Amer. Math. Soc. 85 (1982), pp. 427–433.
- [6] J. M. Lee, On Burkholder's biconvex-function characterization of Hilbert spaces, Proc. Amer. Math. Soc. 118 (2) (1993), pp. 555–559.
- [7] G. Pisier, *Martingales with values in uniformly convex spaces*, Israel J. Math. 20 (1975), pp. 326–350.

Department of Mathematics, Informatics and Mechanics University of Warsaw Banacha 2 02-097 Warsaw, Poland *E-mail*: ados@mimuw.edu.pl

> Received on 28.12.2010; revised version on 8.4.2011