WEAK-TYPE INEQUALITY FOR THE MARTINGALE SQUARE FUNCTION AND A RELATED CHARACTERIZATION OF HILBERT SPACES*

BY

ADAM OSEKOWSKI (WARSZAWA)

Abstract. Let f be a martingale taking values in a Banach space \mathcal{B} and let $S(f)$ be its square function. We show that if \mathcal{B} is a Hilbert space, then

$$
\mathbb{P}(S(f) \geqslant 1) \leqslant \sqrt{e}\|f\|_{1}
$$

and the constant \sqrt{e} is the best possible. This extends the result of Cox, who established this bound in the real case. Next, we show that this inequality characterizes Hilbert spaces in the following sense: if \mathcal{B} is not a Hilbert space, then there is a martingale f for which the above weak-type estimate does not hold.

2000 AMS Mathematics Subject Classification: Primary: 60G42; Secondary: 46C15.

Key words and phrases: Martingale, square function, weak type inequality, Banach space, Hilbert space.

1. INTRODUCTION

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, filtered by $\left(\mathcal{F}_{n}\right)_{n \geqslant 0}$, a non-decreasing sequence of sub- σ-fields of \mathcal{F}. Let $f=\left(f_{n}\right)_{n \geqslant 0}$ and $g=\left(g_{n}\right)_{n \geqslant 0}$ be adapted martingales taking values in a certain separable Banach space $(\mathcal{B},\|\cdot\|)$. The difference sequences $d f=\left(d f_{n}\right)_{n \geqslant 0}$ and $d g=\left(d g_{n}\right)_{n \geqslant 0}$ of the martingales f and g are defined by $d f_{0}=f_{0}$ and $d f_{n}=f_{n}-f_{n-1}$ for $n \geqslant 1$, and similarly for $d g_{n}$. We say that g is a ± 1-transform of f if there is a deterministic sequence $\varepsilon=\left(\varepsilon_{n}\right)_{n \geqslant 0}$ of signs such that $d g_{n}=\varepsilon_{n} d f_{n}$ for each n.

It is well-known that martingale inequalities reflect the geometry of Banach spaces in which the martingales take values: see e.g. [1]-[4] and [7]. We shall mention here only one fact, closely related to the result studied in the present paper. As proved by Burkholder in [2], if f takes values in a separable Hilbert space and

[^0]g is its ± 1-transform, then
\[

$$
\begin{equation*}
\mathbb{P}\left(\sup _{n}\left\|g_{n}\right\| \geqslant 1\right) \leqslant 2\|f\|_{1} \tag{1.1}
\end{equation*}
$$

\]

and the constant 2 is the best possible (here, as usual, $\|f\|_{1}=\sup _{n}\left\|f_{n}\right\|_{1}$). In fact, the implication can be reversed: if \mathcal{B} is a separable Banach space with the property that (1.1) holds for any \mathcal{B}-valued martingale f and its ± 1-transform g, then \mathcal{B} is a Hilbert space. For details, see Burkholder [2] and Lee [6].

In this paper we shall study a related problem and characterize the class of Hilbert spaces by another weak-type estimate. Let us introduce the square function of f by the formula

$$
S(f)=\left(\sum_{k=0}^{\infty}\left\|d f_{k}\right\|^{2}\right)^{1 / 2}
$$

We shall also use the notation

$$
S_{n}(f)=\left(\sum_{k=0}^{n}\left\|d f_{k}\right\|^{2}\right)^{1 / 2}
$$

for the truncated square function, $n=0,1,2, \ldots$ Suppose that \mathcal{B} is a given and fixed separable Banach space and let $\beta(\mathcal{B})$ denote the least extended real number β such that, for any martingale f taking values in \mathcal{B},

$$
\mathbb{P}(S(f) \geqslant 1) \leqslant \beta(\mathcal{B})\|f\|_{1} .
$$

Using the method of moments, Cox [5] showed that $\beta(\mathbb{R})=\sqrt{e}$: consequently, $\beta(\mathcal{B}) \geqslant \sqrt{e}$ for any non-degenerate \mathcal{B}. We will extend this result to the following.

Theorem 1.1. We have $\beta(\mathcal{B})=\sqrt{e}$ if and only if \mathcal{B} is a Hilbert space.
Let us sketch the proof. To show that for any martingale f taking values in a Hilbert space $(\mathcal{H},|\cdot|)$ we have

$$
\begin{equation*}
\mathbb{P}(S(f) \geqslant 1) \leqslant \sqrt{e}\|f\|_{1} \tag{1.2}
\end{equation*}
$$

we may restrict ourselves to the class of simple martingales. Recall that f is simple if for any n the random variable f_{n} takes only a finite number of values and there is a deterministic N such that $f_{N}=f_{N+1}=f_{N+2}=\ldots$ We must prove that

$$
\mathbb{E} V\left(f_{n}, S_{n}(f)\right) \leqslant 0, \quad n=0,1,2, \ldots,
$$

where $V(x, y)=1_{\{y \geqslant 1\}}-\sqrt{e}|x|$ for $x \in \mathcal{H}$ and $y \in[0, \infty)$.
To do this, we will use Burkholder's method and construct a function U : $\mathcal{H} \times[0, \infty) \rightarrow \mathbb{R}$, which satisfies the following three conditions:
1° We have the majorization $U \geqslant V$.
2° For any $x \in \mathcal{H}, y \geqslant 0$ and any simple mean-zero random variable T taking values in \mathcal{H} we have $\mathbb{E} U\left(x+T, \sqrt{y^{2}+|T|^{2}}\right) \leqslant U(x, y)$.
3° For any $x \in \mathcal{H}$ we have $U(x,|x|) \leqslant 0$.
Then (1.2) follows.
To see this, apply 2° conditionally on \mathcal{F}_{n}, with $x=f_{n}, y=S_{n}(f)$ and $T=$ $d f_{n+1}$. As the result, we obtain the inequality

$$
\mathbb{E}\left[U\left(f_{n+1}, S_{n+1}(f)\right) \mid \mathcal{F}_{n}\right] \leqslant U\left(f_{n}, S_{n}(f)\right)
$$

so, in other words, the process $\left(U\left(f_{n}, S_{n}(f)\right)\right)_{n \geqslant 0}$ is a supermartingale. Hence, by 1° and 3°,

$$
\mathbb{E} V\left(f_{n}, S_{n}(f)\right) \leqslant \mathbb{E} U\left(f_{n}, S_{n}(f)\right) \leqslant \mathbb{E} U\left(f_{0}, S_{0}(f)\right)=\mathbb{E} U\left(f_{0},\left|f_{0}\right|\right) \leqslant 0
$$

and we are done.
The special function U is constructed and studied in the next section. In Section 3 we prove the remaining part of Theorem 1.1: we shall show that the validity of (1.2) for all \mathcal{B}-valued martingales implies the parallelogram identity.

2. A SPECIAL FUNCTION

Let \mathcal{H} be a separable Hilbert space: in fact, we may and do assume that $\mathcal{H}=\ell^{2}$. The corresponding norm and scalar product will be denoted by $|\cdot|$ and \cdot, respectively. Introduce $U: \mathcal{H} \times[0, \infty) \rightarrow \mathbb{R}$ by the formula

$$
U(x, y)= \begin{cases}1-\left(1-y^{2}\right)^{1 / 2} \exp \left(|x|^{2} /\left[2\left(1-y^{2}\right)\right]\right) & \text { if }|x|^{2}+y^{2}<1 \tag{2.1}\\ 1-\sqrt{e}|x| & \text { if }|x|^{2}+y^{2} \geqslant 1\end{cases}
$$

In the lemma below, we study the properties of U and V.
Lemma 2.1. The function U satisfies the conditions $1^{\circ}, 2^{\circ}$ and 3°.
Proof. To show the majorization, we may assume that $|x|^{2}+y^{2}<1$. Then the inequality takes the form

$$
\exp \left(\frac{|x|^{2}}{2\left(1-y^{2}\right)}\right) \leqslant \sqrt{e} \frac{|x|}{\sqrt{1-y^{2}}}+\frac{1}{\sqrt{1-y^{2}}}
$$

and follows immediately from an elementary bound $\exp \left(s^{2} / 2\right) \leqslant \sqrt{e} s+1, s \in$ $[0,1]$, applied to $s=|x| / \sqrt{1-y^{2}}$. To check 2°, we introduce an auxiliary function

$$
A(x, y)= \begin{cases}-x\left(1-y^{2}\right)^{-1 / 2} \exp \left(|x|^{2} /\left[2\left(1-y^{2}\right)\right]\right) & \text { if }|x|^{2}+y^{2}<1 \\ -\sqrt{e} x^{\prime} & \text { if }|x|^{2}+y^{2} \geqslant 1\end{cases}
$$

where $x^{\prime}=x /|x|$ for $x \neq 0$, and $x^{\prime}=0$ otherwise. We shall establish a pointwise estimate

$$
\begin{equation*}
U\left(x+d, \sqrt{y^{2}+|d|^{2}}\right) \leqslant U(x, y)+A(x, y) \cdot d \tag{2.2}
\end{equation*}
$$

for all $x, d \in \mathcal{H}$ and $y \geqslant 0$. Observe that this inequality immediately yields 2°, simply by putting $d=T$ and taking expectation of both sides.

To prove (2.2), note first that $U(x, y) \leqslant 1-\sqrt{e}|x|$ for all $x \in \mathcal{H}$ and $y \geqslant 0$. This is trivial for $|x|^{2}+y^{2} \geqslant 1$, while for the remaining pairs (x, y) it can be transformed into the equivalent inequality:

$$
\frac{|x|^{2}}{1-y^{2}} \leqslant \exp \left(\frac{|x|^{2}}{1-y^{2}}-1\right)
$$

which is obvious. Consequently, when $|x|^{2}+y^{2} \geqslant 1$, we have

$$
\begin{aligned}
U\left(x+d, \sqrt{y^{2}+|d|^{2}}\right) \leqslant 1-\sqrt{e}|x+d| & \leqslant 1-\sqrt{e}|x|+A(x, y) \cdot d \\
& =U(x, y)+A(x, y) \cdot d .
\end{aligned}
$$

Now suppose that $|x|^{2}+y^{2}<1$ and $|x+d|^{2}+y^{2}+|d|^{2} \leqslant 1$. Observe that for $X, D \in \mathcal{H}$ with $|D|<1$ we have

$$
\begin{aligned}
\exp \left(\frac{|D|^{2}|X|^{2}+2 X \cdot D+|D|^{2}}{1-|D|^{2}}\right) & \geqslant \exp \left(\frac{(X \cdot D)^{2}+2 X \cdot D+|D|^{2}}{1-|D|^{2}}\right) \\
& \geqslant \frac{(X \cdot D)^{2}+2 X \cdot D+|D|^{2}}{1-|D|^{2}}+1 \\
& =\frac{(1+X \cdot D)^{2}}{1-|D|^{2}} .
\end{aligned}
$$

It suffices to plug $X=x / \sqrt{1-y^{2}}$ and $D=d / \sqrt{1-y^{2}}$ to obtain (2.2). Finally, if $|x|^{2}+y^{2}<1<|x+d|^{2}+y^{2}+|d|^{2}$, then substituting X and D as previously, we have $|X|<1,|X+D|^{2}+|D|^{2}>1$ and (2.2) can be written in the form

$$
\exp \left(\frac{|X|^{2}-1}{2}\right)(1+X \cdot D) \leqslant|X+D|
$$

or

$$
\exp \left(\frac{|X|^{2}-1}{2}\right)\left(1+\frac{|X+D|^{2}-|X|^{2}-|D|^{2}}{2}\right) \leqslant|X+D| .
$$

Now we fix $|X|,|X+D|$ and maximize the left-hand side over D. Let us consider two cases. If $|X+D|^{2}+(|X+D|-|X|)^{2}<1$, then there is $D^{\prime} \in \mathcal{H}$ satisfying

$$
\begin{aligned}
& |X+D|=\left|X+D^{\prime}\right| \text { and }\left|X+D^{\prime}\right|^{2}+\left|D^{\prime}\right|^{2}=1 \text {. Consequently, } \\
& \exp \left(\frac{|X|^{2}-1}{2}\right)\left(1+\frac{|X+D|^{2}-|X|^{2}-|D|^{2}}{2}\right) \\
& \leqslant \exp \left(\frac{|X|^{2}-1}{2}\right)\left(1+\frac{\left|X+D^{\prime}\right|^{2}-|X|^{2}-\left|D^{\prime}\right|^{2}}{2}\right) \leqslant\left|X+D^{\prime}\right|=|X+D| .
\end{aligned}
$$

Here the first passage is due to $\left|D^{\prime}\right|<|D|$, while in the second we have applied (2.2) to $x=X, y=0$ and $d=D^{\prime}$ (for these x, y and d we have already established the bound). Suppose, then, that $|X+D|^{2}+(|X+D|-|X|)^{2} \geqslant 1$. This inequality is equivalent to

$$
|X+D| \geqslant \frac{1-|X|^{2}}{\sqrt{2-|X|^{2}}-|X|},
$$

and hence

$$
\begin{aligned}
& \exp \left(\frac{|X|^{2}-1}{2}\right)\left(1+\frac{|X+D|^{2}-|X|^{2}-|D|^{2}}{2}\right)-|X+D| \\
& \leqslant \exp \left(\frac{|X|^{2}-1}{2}\right)\left(1+\frac{|X+D|^{2}-|X|^{2}-(|X+D|-|X|)^{2}}{2}\right)-|X+D| \\
& =\exp \left(\frac{|X|^{2}-1}{2}\right)\left(1-|X|^{2}\right)+\left\{\exp \left(\frac{|X|^{2}-1}{2}\right)|X|-1\right\}|X+D| \\
& \leqslant \frac{1-|X|^{2}}{\sqrt{2-|X|^{2}}-|X|}\left[\exp \left(\frac{|X|^{2}-1}{2}\right) \sqrt{2-|X|^{2}}-1\right] .
\end{aligned}
$$

It suffices to observe that the expression in the square brackets is nonpositive, which follows from the estimate $\exp \left(1-|X|^{2}\right) \geqslant 2-|X|^{2}$. This completes the proof of 2°. Finally, 3° is a consequence of the inequality (2.2): $U(x,|x|) \leqslant U(0,0)$ $+A(0,0) \cdot x=0$.

Thus, by the reasoning presented in the Introduction, the inequality (1.2) holds true. The constant \sqrt{e} is optimal even in the real case: see Cox [5]. In fact, we shall reprove this in the next section: see Remark 3.1 below.

3. CHARACTERIZATION OF HILBERT SPACES

Let $(\mathcal{B},\|\cdot\|)$ be a separable Banach space and recall the number $\beta(\mathcal{B})$ defined in the first section. Thus, for any \mathcal{B}-valued martingale f we have

$$
\begin{equation*}
\mathbb{P}(S(f) \geqslant 1) \leqslant \beta(\mathcal{B})\|f\|_{1} . \tag{3.1}
\end{equation*}
$$

For $x \in \mathcal{B}$ and $y \geqslant 0$, let $M(x, y)$ denote the class of all simple martingales f given on the probability space $([0,1], \mathbb{B}(0,1),|\cdot|)$, such that f is \mathcal{B}-valued, $f_{0} \equiv x$ and

$$
\begin{equation*}
y^{2}-\|x\|^{2}+S^{2}(f) \geqslant 1 \text { almost surely. } \tag{3.2}
\end{equation*}
$$

Here the filtration may vary. The key object in our further considerations is the function $U^{0}: \mathcal{B} \times[0, \infty) \rightarrow \mathbb{R}$ given by

$$
U^{0}(x, y)=\inf \left\{\mathbb{E}\left\|f_{n}\right\|\right\}
$$

where the infimum is taken over all n and all $f \in M(x, y)$. We will prove that U^{0} satisfies appropriate versions of the conditions $1^{\circ}-3^{\circ}$.

Lemma 3.1. The function U^{0} satisfies the following conditions:
$1^{\mathrm{o}^{\prime}}$ For any $x \in \mathcal{B}$ and $y \geqslant 0$ we have $U^{0}(x, y) \geqslant\|x\|$.
$2^{\circ \prime}$ For any $x \in \mathcal{B}, y \geqslant 0$ and any simple centered \mathcal{B}-valued random variable T,

$$
\mathbb{E} U^{0}\left(x+T, \sqrt{y^{2}+\|T\|^{2}}\right) \geqslant U^{0}(x, y)
$$

$3^{o^{\prime \prime}}$ For any $x \in \mathcal{B}$ we have $U^{0}(x,\|x\|) \geqslant \beta(\mathcal{B})^{-1}$.
Proof. The property 1° is obvious: when $f \in M(x, y)$, then it follows that $\left\|f_{n}\right\|_{1} \geqslant\left\|f_{0}\right\|_{1}=\|x\|$ for all n. To establish $2^{{ }^{\prime \prime}}$, we use a modification of the so-called "splicing argument": see e.g. [1]. Let T be as in the statement and let $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be the set of its values: $\mathbb{P}\left(T=x_{j}\right)=p_{j}>0, \sum_{j=1}^{k} p_{j}=1$. For any $1 \leqslant j \leqslant k$, pick a martingale f^{j} from the class $M\left(x+x_{j}, \sqrt{y^{2}+\left\|x_{j}\right\|^{2}}\right)$. Let $a_{0}=0$ and $a_{j}=\sum_{\ell=1}^{j} p_{\ell}, j=1,2, \ldots, k$. Define a simple sequence f on $([0,1], \mathbb{B}(0,1),|\cdot|)$ by $f_{0} \equiv x$ and

$$
f_{n}(\omega)=f_{n-1}^{j}\left(\left(\omega-a_{j-1}\right) /\left(a_{j}-a_{j-1}\right)\right), \quad n \geqslant 1
$$

when $\omega \in\left(a_{j-1}, a_{j}\right]$. Then f is a martingale with respect to its natural filtration and, when $\omega \in\left(a_{j-1}, a_{j}\right]$,

$$
\begin{aligned}
y^{2} & -\|x\|^{2}+S^{2}(f)(\omega) \\
& =y^{2}+\left\|x_{j}\right\|^{2}-\left\|x+x_{j}\right\|^{2}+S^{2}\left(f^{j}\right)\left(\left(\omega-a_{j-1}\right) /\left(a_{j}-a_{j-1}\right)\right) \geqslant 1
\end{aligned}
$$

unless ω belongs to a set of measure zero. Therefore (3.2) holds, so by the definition of U^{0} we get

$$
\left\|f_{n}\right\|_{1} \geqslant U^{0}(x, y)
$$

However, the left-hand side equals

$$
\sum_{j=1}^{k} \int_{a_{j-1}}^{a_{j}}\left|f_{n}(\omega)\right| d \omega=\sum_{j=1}^{k} p_{j} \int_{0}^{1}\left|f_{n-1}^{j}(\omega)\right| d \omega
$$

which, by the proper choice of n and $f^{j}, j=1,2, \ldots, k$, can be made arbitrarily close to $\sum_{j=1}^{k} p_{j} U^{0}\left(x+x_{j}, \sqrt{y^{2}+\left\|x_{j}\right\|^{2}}\right)=\mathbb{E} U^{0}\left(x+T, \sqrt{y^{2}+\|T\|^{2}}\right)$. This gives $2^{\circ \prime}$. Finally, the condition $3^{\circ \prime}$ follows immediately from (3.1) and the definition of U^{0}.

The further properties of U^{0} are described in the next lemma.
Lemma 3.2. (i) The function U^{0} satisfies the symmetry condition

$$
U^{0}(x, y)=U^{0}(-x, y)
$$

for all $x \in \mathcal{B}$ and $y \geqslant 0$.
(ii) The function U^{0} has the homogeneity-type property

$$
U^{0}(x, y)=\sqrt{1-y^{2}} U^{0}\left(\frac{x}{\sqrt{1-y^{2}}}, 0\right)
$$

for all $x \in \mathcal{B}$ and $y \in[0,1)$.
(iii) If $z \in \mathcal{B}$ satisfies $\|z\|=1$ and $0 \leqslant s<t \leqslant 1$, then

$$
\begin{equation*}
U^{0}(s z, 0) \leqslant U^{0}(t z, 0) \exp \left(\left(s^{2}-t^{2}\right)\|z\|^{2} / 2\right) \tag{3.3}
\end{equation*}
$$

Proof. (i) It is sufficient to use the equivalence $f \in M(x, y)$ if and only if $-f \in M(-x, y)$.
(ii) This follows immediately from the fact that $f \in M(x, y)$ if and only if $f / \sqrt{1-y^{2}} \in M\left(x / \sqrt{1-y^{2}}, 0\right)$.
(iii) Fix $x \in \mathcal{B}$ with $0<\|x\|<1$ and $\delta>0$ such that $\|x+\delta x\| \leqslant 1$. Apply 2° to $y=0$ and a centered random variable T which takes two values: δx and $-2 x /\left(1+\|x\|^{2}\right)$. We get

$$
\begin{aligned}
U^{0}(x, 0) \leqslant & \frac{\delta\|x\|\left(1+\|x\|^{2}\right)}{2\|x\|+\delta\|x\|\left(1+\|x\|^{2}\right)} U^{0}\left(-\frac{x\left(1-\|x\|^{2}\right)}{1+\|x\|^{2}}, \frac{2\|x\|}{1+\|x\|^{2}}\right) \\
& +\frac{2\|x\|}{2\|x\|+\delta\|x\|\left(1+\|x\|^{2}\right)} U^{0}(x+\delta x, \delta\|x\|)
\end{aligned}
$$

By (i) and (ii), the first term on the right equals

$$
\frac{\delta\|x\|\left(1-\|x\|^{2}\right)}{2\|x\|+\delta\|x\|\left(1+\|x\|^{2}\right)} U^{0}(x, 0)
$$

The second summand can be bounded from above by

$$
\frac{2\|x\|}{2\|x\|+\delta\|x\|\left(1+\|x\|^{2}\right)} U^{0}(x+\delta x, 0)
$$

because $M(x+\delta x, 0) \subset M(x+\delta x, \delta\|x\|)$. Plugging these two facts into the inequality above yields

$$
\begin{equation*}
\frac{U^{0}(x+\delta x, 0)}{U^{0}(x, 0)} \geqslant 1+\delta\|x\|^{2} \tag{3.4}
\end{equation*}
$$

This gives

$$
\frac{U^{0}(x(1+k \delta), 0)}{U^{0}(x(1+(k-1) \delta), 0)} \geqslant 1+\delta(1+(k-1) \delta)\|x\|^{2}
$$

provided $\|x(1+k \delta)\| \leqslant 1$. Consequently, if N is an integer such that the condition $\|x(1+N \delta)\| \leqslant 1$ holds true, then

$$
\begin{equation*}
\frac{U^{0}(x(1+N \delta), 0)}{U^{0}(x, 0)} \geqslant \prod_{k=1}^{N}\left(1+\delta(1+(k-1) \delta)\|x\|^{2}\right) \tag{3.5}
\end{equation*}
$$

Now we turn to (3.3). Assume first that $s>0$. Put $x=s z, \delta=(t / s-1) / N$ and let $N \rightarrow \infty$ in the inequality above to obtain

$$
\frac{U^{0}(t z, 0)}{U^{0}(s z, 0)} \geqslant \exp \left(\frac{1}{2}\|z\|^{2}\left(t^{2}-s^{2}\right)\right)
$$

which is the claim. Next, suppose that $s=0$. For any $0<s^{\prime}<t$ we have, by $2^{\circ}{ }^{\prime}$,

$$
\begin{aligned}
U^{0}(0,0) & \leqslant \frac{1}{2} U^{0}\left(s^{\prime} z,\left\|s^{\prime} z\right\|\right)+\frac{1}{2} U^{0}\left(-s^{\prime} z,\left\|s^{\prime} z\right\|\right) \\
& =U^{0}\left(s^{\prime} z,\left\|s^{\prime} z\right\|\right) \leqslant U^{0}\left(s^{\prime} z, 0\right)
\end{aligned}
$$

where in the latter passage we have used the inclusion $M\left(s^{\prime} z, 0\right) \subset M\left(s^{\prime} z,\left\|s^{\prime} z\right\|\right)$. Thus,

$$
\frac{U^{0}(t z, 0)}{U^{0}(0,0)} \geqslant \frac{U^{0}(t z, 0)}{U^{0}\left(s^{\prime} z, 0\right)} \geqslant \exp \left(\frac{1}{2}\|z\|^{2}\left(t^{2}-\left(s^{\prime}\right)^{2}\right)\right)
$$

and it remains to let $s^{\prime} \rightarrow 0$.
REMARK 3.1. Suppose that $\mathcal{B}=\mathbb{R}$. It is easy to see that $U^{0}(1,0) \leqslant 1$: consider f starting from 1 and satisfying $\mathbb{P}\left(d f_{1}=-1\right)=\mathbb{P}\left(d f_{1}=1\right)=1 / 2, d f_{2}=$ $d f_{3} \equiv \ldots \equiv 0$. Thus, by $3^{\circ \prime}$ and (3.3), we have

$$
\beta(\mathbb{R})^{-1} \leqslant U^{0}(0,0) \leqslant U^{0}(1,0) / \sqrt{e} \leqslant 1 / \sqrt{e}
$$

that is, $\beta(\mathbb{R}) \geqslant \sqrt{e}$. This implies the sharpness of (1.2) in the Hilbert-space-valued setting.

Now we will work under the assumption $\beta(\mathcal{B})=\sqrt{e}$. Then we are able to derive the explicit formula for U^{0}.

Lemma 3.3. If $\beta(\mathcal{B})=\sqrt{e}$, then

$$
U^{0}(x, y)= \begin{cases}\sqrt{1-y^{2}} \exp \left(\|x\|^{2} /\left[2\left(1-y^{2}\right)\right]-\frac{1}{2}\right) & \text { if }\|x\|^{2}+y^{2}<1 \\ \|x\| & \text { if }\|x\|^{2}+y^{2} \geqslant 1\end{cases}
$$

Proof. First let us focus on the set $\left\{(x, y):\|x\|^{2}+y^{2} \geqslant 1\right\}$. By $1^{\mathrm{o}^{\prime}}$ we have $U^{0}(x, y) \geqslant\|x\|$. To get the reverse estimate, consider a martingale f such that $f_{0} \equiv x, d f_{1}$ takes values $-x$ and x, and $d f_{2}=d f_{3} \equiv \ldots \equiv 0$. Then $y^{2}-$ $\|x\|^{2}+S^{2}(f)=y^{2}+\|x\|^{2} \geqslant 1$ (so $f \in M(x, y)$) and $\|f\|_{1}=\|x\|$, which implies $U^{0}(x, y) \leqslant\|x\|$ by the definition of U^{0}. Now suppose that $\|x\|^{2}+y^{2}<1$. Using the second and third part of the previous lemma, we may write
$U^{0}(x, y)=\sqrt{1-y^{2}} U^{0}\left(\frac{x}{\sqrt{1-y^{2}}}, 0\right) \geqslant U^{0}(0,0) \sqrt{1-y^{2}} \exp \left(\frac{\|x\|^{2}}{2\left(1-y^{2}\right)}\right)$,
so, by 3°,

$$
U^{0}(x, y) \geqslant \sqrt{1-y^{2}} \exp \left(\frac{\|x\|^{2}}{2\left(1-y^{2}\right)}-\frac{1}{2}\right)
$$

To get the reverse bound, we use the homogeneity of U^{0} and (3.3) again:

$$
\begin{aligned}
U^{0}(x, y) & =\sqrt{1-y^{2}} U^{0}\left(\frac{x}{\sqrt{1-y^{2}}}, 0\right) \\
& \leqslant \sqrt{1-y^{2}} U^{0}\left(\frac{x}{|x|}, 0\right) \exp \left(\frac{1}{2}\left(\frac{\|x\|^{2}}{1-y^{2}}-1\right)\right) \\
& =\sqrt{1-y^{2}} \exp \left(\frac{\|x\|^{2}}{2\left(1-y^{2}\right)}-\frac{1}{2}\right)
\end{aligned}
$$

where in the last line we have used the equality $U^{0}(\bar{x}, 0)=\|\bar{x}\|$ valid for \bar{x} of norm one (we have just established this in the first part of the proof). For completeness, let us mention here that if $x=0$, then $x /|x|$ should be replaced above by any vector of norm one.

Lemma 3.4. Suppose that $\beta(\mathcal{B})=\sqrt{e}$ and let us assume that $x, y \in \mathcal{B}$ and $\alpha>0$ satisfy $\|x\|<1,\|x+\alpha x+y\|^{2}+\|\alpha x+y\|^{2}<1$ and $\|x+\alpha x-y\|^{2}+$ $+\|\alpha x-y\|^{2}<1$. Then

$$
\begin{align*}
2+2 \alpha\|x\|^{2} \leqslant & \sqrt{1-\|\alpha x+y\|^{2}} \exp \left(\frac{\|x+\alpha x+y\|^{2}}{2\left(1-\|\alpha x+y\|^{2}\right)}-\frac{\|x\|^{2}}{2}\right) \tag{3.6}\\
& +\sqrt{1-\|\alpha x-y\|^{2}} \exp \left(\frac{\|x+\alpha x-y\|^{2}}{2\left(1-\|\alpha x-y\|^{2}\right)}-\frac{\|x\|^{2}}{2}\right)
\end{align*}
$$

Proof. Consider a random variable T such that

$$
\mathbb{P}\left(T=-\frac{2 x}{1+\|x\|^{2}}\right)=p, \quad \mathbb{P}(T=\alpha x+y)=\mathbb{P}(T=\alpha x-y)=\frac{1-p}{2}
$$

where $p \in(0,1)$ is chosen so that $\mathbb{E} T=0$. That is,

$$
p=\frac{\alpha\left(1+\|x\|^{2}\right)}{2+\alpha\left(1+\|x\|^{2}\right)}
$$

By $2^{\circ \prime}$, we have $U^{0}(x, 0) \leqslant \mathbb{E} U^{0}(x+T,\|T\|)$. Since $\|x+T\|^{2}+\|T\|^{2}<1$ almost surely, the previous lemma implies that this can be rewritten in the equivalent form:

$$
\begin{aligned}
\exp \left(\frac{\|x\|^{2}}{2}\right) \leqslant & p \sqrt{1-\left(\frac{2\|x\|}{1+\|x\|^{2}}\right)^{2}} \exp \left(\frac{\left\|x\left(\left(-1+\|x\|^{2}\right) /\left(1+\|x\|^{2}\right)\right)\right\|^{2}}{2\left(1-\left(2\|x\| /\left(1+\|x\|^{2}\right)\right)^{2}\right)}\right) \\
& +\frac{1-p}{2} \sqrt{1-\|\alpha x+y\|^{2}} \exp \left(\frac{\|x+\alpha x+y\|^{2}}{2\left(1-\|\alpha x+y\|^{2}\right)}\right) \\
& +\frac{1-p}{2} \sqrt{1-\|\alpha x-y\|^{2}} \exp \left(\frac{\|x+\alpha x-y\|^{2}}{2\left(1-\|\alpha x-y\|^{2}\right)}\right)
\end{aligned}
$$

However, the first term on the right equals

$$
\frac{\alpha\left(1-\|x\|^{2}\right)}{2+\alpha\left(1+\|x\|^{2}\right)} \exp \left(\frac{\|x\|^{2}}{2}\right)
$$

and, in addition, $(1-p) / 2=\left(2+\alpha\left(1+\|x\|^{2}\right)\right)^{-1}$. Consequently, it suffices to multiply both sides of the inequality above by $\left(2+\alpha\left(1+\|x\|^{2}\right)\right) \exp \left(-\|x\|^{2} / 2\right)$; the claim follows.

Now we are ready to complete the proof of Theorem 1.1. Suppose that a, b belong to the unit ball K of \mathcal{B} and take $\varepsilon \in(0,1 / 2)$. Applying (3.6) to $x=\varepsilon a$, $y=\varepsilon^{2} b$ and $\alpha=\varepsilon$ gives

$$
\begin{align*}
2+2 \varepsilon^{3}\|a\|^{2} \leqslant & \sqrt{1-\varepsilon^{4}\|a+b\|^{2}} \exp (m(a, b)) \tag{3.7}\\
& +\sqrt{1-\varepsilon^{4}\|a-b\|^{2}} \exp (m(a,-b))
\end{align*}
$$

where

$$
\begin{aligned}
m(a, b) & =\frac{\varepsilon^{2}\|a+\varepsilon(a+b)\|^{2}}{2\left(1-\varepsilon^{4}\|a+b\|^{2}\right)}-\frac{\varepsilon^{2}\|a\|^{2}}{2} \\
& =\frac{\varepsilon^{2}}{2}\left(\|a+\varepsilon(a+b)\|^{2}-\|a\|^{2}\right)+\frac{\varepsilon^{6}\|a+\varepsilon(a+b)\|^{2}\|a+b\|^{2}}{2\left(1-\varepsilon^{4}\|a+b\|^{2}\right)}
\end{aligned}
$$

It is easy to see that there exists an absolute constant M_{1} such that

$$
\sup _{a, b \in K}|m(a, b)| \leqslant M_{1} \varepsilon^{3}
$$

Consequently, there is a universal $M_{2}>0$ such that if ε is sufficiently small, then

$$
\begin{aligned}
\exp (m(a, b)) & \leqslant 1+m(a, b)+m(a, b)^{2} \\
& \leqslant 1+\frac{\varepsilon^{2}}{2}\left(\|a+\varepsilon(a+b)\|^{2}-\|a\|^{2}\right)+M_{2} \varepsilon^{6}
\end{aligned}
$$

for any $a, b \in K$. Since $\sqrt{1-x} \leqslant 1-x / 2$ for $x \in(0,1)$, the inequality (3.7) implies

$$
\begin{aligned}
2+ & 2 \varepsilon^{3}\|a\|^{2} \\
\leqslant & \left(1-\varepsilon^{4}\|a+b\|^{2} / 2\right)\left(1+\frac{\varepsilon^{2}}{2}\left(\|a+\varepsilon(a+b)\|^{2}-\|a\|^{2}\right)+M_{2} \varepsilon^{6}\right) \\
& +\left(1-\varepsilon^{4}\|a-b\|^{2} / 2\right)\left(1+\frac{\varepsilon^{2}}{2}\left(\|a+\varepsilon(a-b)\|^{2}-\|a\|^{2}\right)+M_{2} \varepsilon^{6}\right)
\end{aligned}
$$

This, after some manipulations, leads to

$$
\begin{aligned}
\|a+\varepsilon(a+b)\|^{2}+\| a+ & \varepsilon(a-b)\left\|^{2}-2\right\| a(1+\varepsilon) \|^{2} \\
& \geqslant \varepsilon^{2}\left(\|a+b\|^{2}+\|a-b\|^{2}-2\|a\|^{2}\right)-2 \varepsilon^{4} M_{3}
\end{aligned}
$$

where M_{3} is a positive constant not depending on ε, a and b. Equivalently,

$$
\begin{aligned}
& \left\|a+\frac{\varepsilon}{1+\varepsilon} b\right\|^{2}+\left\|a-\frac{\varepsilon}{1+\varepsilon} b\right\|^{2}-2\|a\|^{2}-2\left\|\frac{\varepsilon}{1+\varepsilon} b\right\|^{2} \\
& \quad \geqslant \frac{\varepsilon^{2}}{(1+\varepsilon)^{2}}\left(\|a+b\|^{2}+\|a-b\|^{2}-2\|a\|^{2}-2\|b\|^{2}\right)-2 \frac{\varepsilon^{4}}{(1+\varepsilon)^{2}} M_{3}
\end{aligned}
$$

Next, let $c \in \mathcal{B}, \gamma>0$ and substitute $a=\gamma c$; we assume that γ is small enough to ensure that $a \in K$. If we divide both sides by γ^{2} and substitute $\delta=\varepsilon(1+\varepsilon)^{-1} \gamma^{-1}$, we obtain

$$
\begin{aligned}
\|c+\delta b\|^{2} & +\|c-\delta b\|^{2}-2\|c\|^{2}-2\|\delta b\|^{2} \\
& \geqslant \delta^{2}\left(\|\gamma c+b\|^{2}+\|\gamma c-b\|^{2}-2\|\gamma c\|^{2}-2\|b\|^{2}\right)-2 \varepsilon^{2} \delta^{2} M_{3} \\
& \geqslant \delta^{2}\left(\|\gamma c+b\|^{2}+\|\gamma c-b\|^{2}-2\|\gamma c\|^{2}-2\|b\|^{2}\right)-2 \delta^{4} M_{3}
\end{aligned}
$$

Let γ and ε go to 0 so that δ remains fixed. As the result, we infer that, for any $\delta>0, b \in K$ and $c \in \mathcal{B}$,

$$
\begin{equation*}
\|c+\delta b\|^{2}+\|c-\delta b\|^{2}-2\|c\|^{2}-2\|\delta b\|^{2} \geqslant-2 \delta^{4} M_{3} \tag{3.8}
\end{equation*}
$$

Now, let N be a large positive integer and consider a symmetric random walk $\left(g_{n}\right)_{n \geqslant 0}$ over integers, starting from 0 . Let $\tau=\inf \left\{n:\left|g_{n}\right|=N\right\}$. The inequality (3.8), applied to $\delta=N^{-1}$, implies that for any $a \in \mathcal{B}$ and $b \in K$ the process

$$
\left(\xi_{n}\right)_{n \geqslant 0}=\left(\left\|a+\frac{b g_{\tau \wedge n}}{N}\right\|^{2}-\left\{\frac{\|b\|^{2}}{N^{2}}-\frac{M_{3}}{N^{4}}\right\}(\tau \wedge n)\right)_{n \geqslant 0}
$$

is a submartingale. Since $\mathbb{E}(\tau \wedge n)=\mathbb{E} g_{\tau \wedge n}^{2}$, we obtain

$$
\mathbb{E}\left(\left\|a+\frac{b g_{\tau \wedge n}}{N}\right\|^{2}-\left\{\frac{\|b\|^{2}}{N^{2}}-\frac{M_{3}}{N^{4}}\right\} g_{\tau \wedge n}^{2}\right)=\mathbb{E} \xi_{n} \geqslant \mathbb{E} \xi_{0}=\|a\|^{2}
$$

Letting $n \rightarrow \infty$ and using Lebesgue's dominated convergence theorem gives

$$
\frac{1}{2}\left(\|a+b\|^{2}+\|a-b\|^{2}\right)-\|b\|^{2}+\frac{M_{3}}{N^{2}} \geqslant\|a\|^{2}
$$

It suffices to let N go to ∞ to obtain

$$
\|a+b\|^{2}+\|a-b\|^{2} \geqslant 2\|a\|^{2}+2\|b\|^{2}
$$

We have assumed that b belongs to the unit ball K, but, by homogeneity, the above estimate extends to any $b \in \mathcal{B}$. Putting $a+b$ and $a-b$ in the place of a and b, respectively, we obtain the reverse estimate

$$
\|a+b\|^{2}+\|a-b\|^{2} \leqslant 2\|a\|^{2}+2\|b\|^{2}
$$

This implies that the parallelogram identity is satisfied, and hence \mathcal{B} is a Hilbert space.

Acknowledgments. The author would like to thank an anonymous referee for the careful reading of the first version of the manuscript and helpful suggestions.

REFERENCES

[1] D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), pp. 997-1011.
[2] D. L. Burkholder, Martingale transforms and geometry of Banach spaces, in: Proceedings of the Third International Conference on Probability in Banach Spaces, Tufts University, 1980, Lecture Notes in Math. Vol. 860 (1981), pp. 35-50.
[3] D. L. Burkholder, On the number of escapes of a martingale and its geometrical significance, in: Almost Everywhere Convergence, G. A. Edgar and L. Sucheston (Eds.), Academic Press, New York 1989, pp. 159-178.
[4] D. L. Burkholder, Explorations in martingale theory and its applications, in: École d'Eté de Probabilités de Saint-Flour XIX - 1989, Lecture Notes in Math. Vol. 1464, Springer, Berlin 1991, pp. 1-66.
[5] D. C. Cox, The best constant in Burkholder's weak- L^{1} inequality for the martingale square function, Proc. Amer. Math. Soc. 85 (1982), pp. 427-433.
[6] J. M. Lee, On Burkholder's biconvex-function characterization of Hilbert spaces, Proc. Amer. Math. Soc. 118 (2) (1993), pp. 555-559.
[7] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), pp. 326-350.

Department of Mathematics,
Informatics and Mechanics
University of Warsaw
Banacha 2
02-097 Warsaw, Poland
E-mail: ados@mimuw.edu.pl

[^0]: * Partially supported by MNiSW Grant N N201 397437.

