PROBABILITY AND MATHEMATICAL STATISTICS Vol. 32, Fasc. 1 (2012), pp. 117–130

COMPARISON THEOREMS FOR SMALL DEVIATIONS OF WEIGHTED SERIES

Leonid V. Rozovsky

Abstract: weighted series and obtain more refined versions of the known comparison results. In particular, the following consequence is obtained immediately from Theorem 2.1 of the paper.

Let a positive random variable X belong to the domain of attraction of a stable law with an index greater than one and let its distribution function be regularly varying at zero with an exponent $\beta > 0$. If $\{X_n\}_{n \ge 1}$ are independent copies of X, and $\{a_n\}$ and $\{b_n\}$ are positive summable sequences such that $\sum_{n \ge 1} |1 - a_n/b_n| < \infty$, then as $r \to 0^+$

$$\mathbf{P}\Big(\sum_{n \ge 1} a_n X_n < r\Big) \sim \Big(\prod_{n \ge 1} b_n / a_n\Big)^{\beta} \mathbf{P}\Big(\sum_{n \ge 1} b_n X_n < r\Big).$$

2000 AMS Mathematics Subject Classification: Primary: 60G50; Secondary: 60F99.

Keywords and phrases: Series of weighted i.i.d. positive random variables, small deviations, comparison theorems.

THE FULL TEXT IS AVAILABLE HERE