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ON INDISTINGUISHABILITY OF QUANTUM STATES
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Abstract. In this paper we shall study quantum ancillary statistics. For
a given quantum measurement M we will define the indistinguishability
relation of states in the following way: Two states are indistinguishable by
M if they generate withM the same probability measure. For such a relation
the equivalence classes will be described. At the end we will give some
elementary examples of informationally complete measurements that arise
from the theorems characterizing the indistinguishability relation.
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1. INTRODUCTION

LetH be a separable Hilbert space. Denote by S(H) the set of quantum states
onH (i.e. positive operators ρ ∈ L(H) such that trρ = 1) and byB(R) the Borel σ-
field of subsets of R. LetM : B(R)→ L(H) be a positive operator valued measure
(semi-spectral measure). We shall often call such a measure a quantum random
variable or a quantum measurement in

(
B(R),H

)
. For a fixed state ρ ∈ S(H), the

mapping given by the formula

B(R) ∋ E 7→ tr
(
M(E)ρ

)
is a genuine probability distribution of a quantum random variable M.

Define a relation of indistinguishability via measurement M , denoted by ≃M ,
as follows:

(1.1) ∀ρ1,ρ2∈S(H) ρ1 ≃M ρ2 ⇐⇒ ∀B∈B(R) trM(B)ρ1 = trM(B)ρ2.

It is clear that ≃M is an equivalence relation and that ρ1 and ρ2 are equivalent if
and only if the probability distributions of the quantum random variable M are
the same in both considered states. For a given family of states {ρθ : θ ∈ Θ}, the
measurement M for which ρθ lie in the same equivalence class of the relation ≃M
for any θ is called a quantum ancillary statistic [3]. The purpose of this paper
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is to describe the equivalence classes of this relation. More precisely, for a given
measurement M we shall describe [ρ]/≃M

for any ρ in a certain subclass of S(H).
In the first part of this paper we shall present a characterization of [ρ]/≃M

for pure (vector) states (projections) ρ in the general case. Then we shall outline
methods needed, and problems that occur, while trying to generalize the results
from the first section to mixed states.

At the end we will recall some results in the dimension two and introduce some
elementary constructions of informationally complete measurements which arise
when characterization of the indistinguishability of quantum states in dimension
two is taken into consideration. The example working in an arbitrary dimension
will be given.

Similar issues as well as the background for our approach may be found, for
instance, in [7], [4] or [9].

2. THE EQUIVALENCE CLASSES OF INDISTINGUISHABILITY RELATION
IN THE GENERAL CASE

Denote by S ′(H) the set of pure states onH (i.e. one-dimensional projections
on H). We shall start with considering the relation ≃ |S ′(H) × S ′(H). The fol-
lowing notation will be used: if ⋆ is a pure state then [⋆]≃M means the equivalence
class of the relation of indistinguishability defined on S ′(H)×S ′(H), otherwise it
means the equivalence class of ≃M defined in the Introduction. Let Π = {Πi}∞i=1

be a projective (simple) measurement (i.e. a spectral measure Π : B(R)→ L(H)
such that Πi = Π(Bi) for some Borel decomposition {Bi} of R). Furthermore, we
have H =⊕∞

n=1
Hn, where Hi = Ran(Πi). Let Ũ : Hi → Hi be isometries for

all i. Extend the operators Ũi to isometries on H trivially: If H ∋ ϕ = ϕi + ϕ⊥i ,
where ϕi ∈ Hi, ϕ⊥i ∈ H⊥i , then

Uiϕ = Ũiϕi + ϕ⊥i .

Define an operator U : H → H by the formula

(2.1) U =
∞∏
i=1

Ui.

Note that the product in (2.1) is strongly convergent. It is also easy to check that
U is an isometry on H. Denote the set of such operators by UΠ. Let us state an
elementary fact that follows from the definition of the probability distribution of
the measurement Π:

LEMMA 2.1. Let ϕ ∈ H be a pure state and Π = {Πi}∞i=1 be a simple mea-
surement consisting of the projections Πi onto subspacesHi ⊂ H. Then

(2.2) [ϕ]≃Π = {Uϕ : U ∈ UΠ}.
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Note that in the formulation of the above lemma unitary operators instead of
isometries may be taken.

Let now H be finite dimensional. We are now ready to consider a mixed state
ρ ∈ S(H) with the following spectral decomposition:

ρ =
N∑
i=1

λiΠϕi , N ¬ dimH,

where Πϕi are projections into lin{ϕi} for some state vectors ϕi. Let

Φ =
N∑
i=1

√
λiϕi ⊗ ϕi ∈ H ⊗H

be the purification of ρ (see [5] and [8]). Thus, for any A ∈ L(H) we have
tr ρA = ⟨Φ, (A⊗ I)Φ⟩. That means that the measurement Π⊗ I := {Πi ⊗ I}i∈N
is equivalent to the measurement Π in the way that for all i ∈ N we have

µΦ(i) = ⟨Φ, (Πi ⊗ I)Φ⟩
= tr ρΠi = µρ(i).

In other words, the probability distribution of Π⊗ I in state Φ is the same as that of
Π in state ρ. The operators Πi ⊗ I are projections onto H̃i = Hi ⊗H. Obviously,
H⊗H =⊕N

i=1
H̃i. Applying Lemma 2.1 to the above measurement gives

[Φ]/≃Π⊗I
= {UΦ : U ∈ UΠ⊗I}.

According to the Schmidt decomposition (see [5]) any state vector ψ ∈ H ⊗H is
a purification of some state from S(H). This leads to the following

LEMMA 2.2. Let H be finite dimensional and assume that ρ ∈ S(H) is a
mixed state and Π = {Πi} is a simple measurement onH consisting of projections
ontoHi. Then

[ρ]/≃Π
= {Tr2UΦ : U ∈ UΠ⊗I},

where Φ ∈ H ⊗ H is a purification of ρ and Tr2 denotes a partial trace of an
operator from L(H⊗H).

Note that the assumption dimH <∞ is only necessary to prove the existence
of the purification of a mixed state. In the following reasoning this assumption will
be omitted.

We are now ready to apply Lemma 2.1 to prove the following

THEOREM 2.1. Let M = {Mn}n∈N be a semi-spectral measure having a
countable number of outcomes and letHn be a completion of Mn(H) in the norm
defined by

⟨·, ·⟩n = ⟨·,Mn·⟩.
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Then pure states ϕ, ψ ∈ H are indistinguishable via measurement M if and only if
there exist isometries Ũn onHn such that

(2.3) ψ =
∞∑
n=1

MnŨnPnϕ,

where Pn ∈ L(H) is the orthogonal projection onto Mn(H).

P r o o f. We shall use the construction from the Naimark dilation, so that we
can apply Lemma 2.1 to the measurement M . For any n ∈ N we have

H = ker(Mn)⊕Mn(H).

Furthermore, let H̃ =⊕∞
n=1
Hn and U : H → H̃ be an isometry defined as

follows: Uη = (Pnη)n∈N for any η ∈ H, where Pn ∈ L(H) is the orthogonal pro-
jection ontoMn(H). Thus, if Ẽn are projections from H̃ toH, i.e. Ẽn

(
(ηk)k∈N

)
=

(0, . . . , 0, ηn, 0, . . . ), then

(2.4) Mn = U∗ẼnU.

Since (2.4) holds, we infer that the states ϕ, ψ are indistinguishable via M if
and only if Uϕ and Uψ are indistinguishable via Ẽ. Indeed,

µϕ(n) = ⟨ϕ,Mnϕ⟩ = ⟨ϕ,U∗ẼnUϕ⟩

= ⟨Uϕ, Ẽn(Uϕ)⟩

and, similarly,
µψ(n) = ⟨Uψ, Ẽn(Uψ)⟩.

Hence, by Lemma 2.1, ϕ ∈ [ψ]/≃M
if and only if there exists Ũ ∈ U

Ẽ
such that

(2.5) Uψ = ŨUϕ.

Since U is an isometry, U∗U = I . Therefore, we conclude that if ϕ, ψ are indistin-
guishable via M , then

(2.6) ψ = U∗ŨUϕ.

Note that
Uϕ = (Pkϕ)k∈N

and recall that Ũ is of the form

Ũ = Ũ1Ũ2 . . . ,
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where Ũk are isometries acting nontrivially only onHn. Hence

ŨUϕ = (ŨkPkϕ)k∈N.

What is left is to compute U∗. Let χ ∈ H and η = (ηn)n∈N ∈ H̃ . We have

⟨(ηn), Uχ⟩ = ⟨(ηn), (Pnχ)⟩ =
∑
n∈N
⟨ηn, Pnχn⟩n

=
∑
n∈N
⟨ηn,MnPnχ⟩ =

∑
n∈N
⟨ηn,Mnχ⟩

=
∑
n∈N
⟨Mnηn, χ⟩ =

⟨ ∑
n∈N

Mnηn, χ
⟩
.

Hence
U∗(ηn)n∈N =

∑
N∈N

Mnηn.

Therefore
U∗ŨUϕ =

∑
n∈N

MnŨnPnϕ.

Thus we conclude that the condition (2.3) is necessary for indistinguishability
via M . Note that the mentioned condition is also sufficient, as the mapping U∗

is injective on U(H). Indeed, if Uξ ∈ kerU∗ for some ξ ∈ H, then

0 =
∞∑
n=1

MnUξ =
∞∑
n=1

MnPnξ =
∞∑
n=1

Mnξ = ξ.

Therefore, the equations (2.5) and (2.6) are equivalent, which yields the sufficiency
of (2.3). �

Consider once again the equation (2.5). It yields that the states ϕ, ψ are indis-
tinguishable via M if and only if the equation

(2.7) ∥Pnϕ∥n = ∥Pnψ∥n

holds for any n ∈ N. Recall that the characterization of indistinguishability of pure
states for a simple measurement is similar, but does not involve norms defined by
different forms than inner product in H.

REMARK 2.1. Note that Theorem 2.1 can be applied to describe the equiva-
lence classes of any pure state in the case when the measurement does not have a
countable number of outcomes. We have ϕ ≃M ψ if and only if for any countable
Borel decomposition {Bn} of the real line ϕ ≃Mn ψ, where Mn = M(Bn). The
above theorem gives ϕ ≃M ψ if and only if for any Borel decomposition {Bn} of
R there exist isometries ŨBn onHBn such that

(2.8) ψ =
∞∑
n=1

MB
n Ũ

B
nP

B
n ϕ,
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where MB
n = M(Bn), PBn ∈ L(H) is the orthogonal projection onto MB

n (HB),
andHBn denotes completion of MB

n (H) in the norm defined by

⟨·, ·⟩Bn = ⟨·,MB
n ·⟩.

A simple proof is left to the reader.

We managed to describe equivalence classes of the relation of indistinguisha-
bility via quantum measurement for pure states in the general case and for mixed
states in case of dimH <∞ and simple measurement. A question arises whether
the assumptions of Lemma 2.2 may be weakened. Note that the existence of pu-
rification played an essential role in this theorem. Therefore, the analogue of Lem-
ma 2.2 for infinite dimension cannot be shown as long as the purification in infinite
dimension is not introduced. However, it is possible to formulate a similar theo-
rem in finite dimension for a general measurement M having a countable number
of outcomes. We can state that performing measurement M on a mixed state ρ is
equivalent to performing measurementM ′ =M ⊗ I on a purification Φ of ρ. Then
the formula (2.1) can be applied. Writing down the Naimark dilation for M ′ and
applying Theorem 2.1 implies that pure states Φ,Ψ are indistinguishable via M ′ if
and only if there exist isometries Ũn onHn-completions of Mn(H)⊗H such that

Ψ =
∞∑
n=1

M ′nŨnPnΦ,

where Pn are orthogonal projections fromH⊗H into Mn(H)⊗H. Using partial
trace to get back to state ρ and measurement M leads to the following theorem:

THEOREM 2.2. Let dimH <∞ and let M be a measurement on H having a
countable number of outcomes. Under the above notation the following equation
holds:

[ρ]/≃M
=

{
Tr2

∞∑
n=1

(Mn ⊗ I)ŨnPnΦ : Ũn are isometries onHn
}
.

3. ELEMENTARY EXAMPLES
OF INFORMATIONALLY COMPLETE QUANTUM MEASUREMENTS

In [1] we proved two characterizations of indistinguishability via measurement
in C2. Recall that in this case any state ρ ∈ S(C2) is of the form ρ = 1

2(I + r⃗σ⃗)
for some r⃗ ∈ R3, ∥r⃗∥ ¬ 1, where σ = (σx, σy, σz) consists of the Pauli matrices.
Moreover, due to the Radon–Nikodým theorem it can be proved easily that any
measurement M in

(
B(R),C2

)
is a measurement with density, i.e. it is of the form

(3.1) ∀B∈B(R) M(B) =
∫
B

m(ξ)ν(dξ),
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where ν is a semi-finite measure and m(ξ) ∈ S(C2) ν-a.e. Thus it follows that
m(ξ) = 1

2(I + r⃗ξσ⃗) ν-a.e. Let LM = lin{r⃗B : B ∈ B(R), ν(B) > 0}. Thus we
have R3 = LM ⊕ U, U ⊥ LM . Recall the following

THEOREM 3.1. Let ρ1, ρ2 ∈ S(C2), ρi =
1
2(I + r⃗iσ⃗), i = 1, 2. Then

ρ1 ≃M ρ2 ⇐⇒ r⃗1 − r⃗2 ∈ U.

Thus, if ρ1 ≃M ρ2, then their corresponding vectors in R3 lie in the same affine
subspace U of R3 orthogonal to LM , and hence of dimension 3− dimLM .

If dimLM = 3, then ρ1 ≃M ρ2 ⇐⇒ ρ1 = ρ2.

It leads to some easy results describing classes of equivalence of ≃M depend-
ing on the dimension of LM , which are left to the reader. Moreover, it shows that
in the case of dimH = 2, a finite number of outcomes are enough to distinguish
all states. In fact, such measurements are called informationally complete in the
sense introduced by Prugovecki in [10]. Recently, a theory of symmetric informa-
tionally complete measurements (SIC-POVM) has been developed. The measure-
ments of that kind consist of operators {dΠi}, where Πi are rank-one projections,
d = dimH and the condition Tr[ΠiΠj ] = 1/(d+ 1), i ̸= j, is fulfilled. There are
some analytic and numerical examples of such measurements for the dimensions
up to 67 (see [2]). Some constructions of SIC-POVM in particular dimensions
were introduced using group theory techniques [11]. However, the existence of
SIC-POVM for any finite dimension is still an open question.

Let now dimH = n > 2. In the following theorem we shall give an elemen-
tary example of quantum informationally complete measurement. Although it is
not symmetric, all the operators it consists of except one are of the form {dΠk} for
some rank-one projections.

THEOREM 3.2. If dimH = n, then there exists a measurement M having n2

outcomes and such that for all states ρ we have [ρ]/≃M
= ρ, i.e. M is information-

ally complete.

P r o o f. Let {φi}ni=1 be an orthonormal basis in H and {ψ0, ψ1} an ortho-
normal basis of C2. Denote by Πk orthogonal projections onto lin{φk}. For
k, l ∈ {1, . . . , n}, k ̸= l, define a partial isometry Ukl : C2 7→ H as follows:

Uklψ0 = φk,

Uklψ1 = φl.

For k, l ∈ {1, . . . , n}, k < l, let us define:

Ikl = UklU
∗
kl = Πk +Πl,

σxkl = Uklσ
xU∗kl,

σykl = Uklσ
yU∗kl,
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and
Akl : =

1

2
(Ikl + σxkl) = Ukl

1

2
(I+ σx)U∗kl,

Bkl : =
1

2
(Ikl + σykl) = Ukl

1

2
(I+ σy)U∗kl.

Easy calculations show that for any k, l∈{1, . . . , n}, k¬ l, we obtain (σxkl)
2=

Ikl = (σykl)
2. Clearly, Akl, Bkl are selfadjoint. Furthermore, we have

A2
kl =

1

4

(
I2kl + Iklσ

x
kl + σxklIkl + (σxkl)

2
)

=
1

4
(Ikl + 2σxkl + I2kl)

=
1

2
(Ikl + σxkl) = Akl.

Thus Akl is an idempotent, and hence a projection on H. Similarly, we show
thatB2

kl=Bkl and conclude thatBkl are projections. Consequently, 0¬Akl,Bkl¬I
for all k, l ∈ {1, . . . , n}, k < l.

Note that the set
{
Akl : k, l ∈ {1, . . . , n}, k < l

}
consists of 1

2(n
2 − n) oper-

ators. Similarly, the set
{
Bkl : k, l ∈ {1, . . . , n}, k < l

}
has 1

2(n
2 − n) elements.

Clearly, 0 ¬ n−2Akl, n−2Bkl ¬ I for all k, l ∈ {1, . . . , n}, k < l. Define

P =
∑
i<j

1

n2
(Aij +Bij) +

n−1∑
k=1

1

n2
Πk.

Clearly, P is selfadjoint. We easily get

∥P∥ ¬
∑
i<j

1

n2
(∥Aij∥+ ∥Bij∥) +

n−1∑
k=1

1

n2
∥Pk∥

¬
∑
i<j

2
1

n2
+

∑
n

1

n2

= 2
1
2(n

2 − n)
n2

+
n

n2
= 1.

Therefore, σ(P ) ⊂ (−∞, 1⟩, and so σ(I−P )⊂ [0,+∞), which means that I−P
is positive.

Let us consider the measurement M consisting of the following operators:{
1

n2
A1,2, . . . ,

1

n2
A1,n,

1

n2
A2,3, . . . ,

1

n2
A2,n, . . . ,

1

n2
An−1,n,

1

n2
B1,2, . . . ,

1

n2
B1,n,

1

n2
B2,3, . . . ,

1

n2
B3,n, . . . ,

1

n2
Bn−1,n,

1

n2
P1, . . . ,

1

n2
Pn−1, I − P

}
.

Clearly, M has n2 outcomes.
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To show thatM distinguishes all states, note that the operators which the mea-
surement M consists of span the linear space L(H). Thus, if two states ρ1, ρ2 ∈
S(H), which can be identified with normalized positive functionals on L(H), are
different, they have to take different values on at least one operator from M , which
means that the probability distributions generated by (M,ρ1) and (M,ρ2) are dif-
ferent. �

We will generalize the construction above to the case of infinite-dimensional
separable Hilbert spaces. It is clear that in the infinite-dimensional case it is im-
possible that a measurement consists only of operators of the form dΠi for some
rank-one projectors Πi. Let {φn}n∈N be an orthonormal basis in H and Ijk, σxij ,
σyij , Aij , Bij , Pn be defined as in the proof of the theorem above. Now, there are
countable numbers of operators Aij , Bij and Pn, so we have to choose the nor-
malization parameters more carefully. Let f : N 7→ {(i, j) ∈ N × N : i < j} be
bijective. Define

Mn =


(3 · 2k)−1Af(k) if n = 3k for some k ∈ N,
(3 · 2k)−1Bf(k) if n = 3k − 1 for some k ∈ N,
(3 · 2k)−1Pk if n = 3k − 2 for some k ∈ N.

Clearly,Mn ­ 0 and
∑

nMn is norm convergent. Furthermore,
∥∥∑

nMn

∥∥ ¬∑
n ∥Mn∥ ¬ 1, so σ

(∑
nMn

)
⊂ (−∞, 1] and σ

(
I −

∑
nMn

)
⊂ [0,∞), which

means that I −
∑

nMn ­ 0. Let M0 = I −
∑

nMn. From the above it is easy to
show that {Mn}∞n=0 is a measurement with a countable number of outcomes.

Clearly, the system {Mn}n∈N∪0 is a basis of L(H). Thus, as in the finite-
dimensional case, if states ρ, ρ′ ∈ S(H) are different, the probability distributions
that they generate together with M are different.

The reasoning above is summarized in the following

THEOREM 3.3. For any separable Hilbert space H there exists a measure-
ment M with a countable number of outcomes such that [ρ]/≃M

= ρ for any state
ρ ∈ S(H).

The analysis of dimensions shows that the measurements constructed above
are optimal when the amount of outcomes is taken into consideration.
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