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Abstract. In this paper we present asymptotic results for exit proba-
bilities of stochastic processes in the fashion of large deviations. The main
result concerns stochastic processes which satisfy the large deviation prin-
ciple with an integral type rate function. We also present results for exit
probabilities of linear diffusions and particular growth processes, and we
give two examples.
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1. INTRODUCTION

The theory of large deviations gives an asymptotic computation of small prob-
abilities on exponential scale (see, e.g., [4] as a reference on this topic). The aim of
this paper is to give asymptotic results, in the fashion of large deviations, for exit
probabilities of stochastic processes from a given domain.

In Section 2 we prove an asymptotic result for exit probabilities of stochastic
processes {Xε : ε > 0} which satisfy the large deviation principle with an integral
type rate function. Integral type rate functions appear in some well-known results
in literature as Mogulskii’s theorem (see, e.g., [4], Theorem 5.1.2) and Theorem 1.2
in [3]. In the proof we combine asymptotic results for up-crossing and down-
crossing probabilities; the result for up-crossing probabilities has some analogies
with Lemma 1 in [9] for scaled partial sums processes. We also discuss the concept
of most likely path for the exit (see, e.g., Lemma 4.2 in [8]; see also [11], p. 45).

∗ The financial support of the Research Grant PRIN 2008 Probability and Finance is gratefully
acknowledged.

∗∗ The financial support of the Research Grant PRIN 2008 Probability and Finance is gratefully
acknowledged.



26 M. Abundo et al.

In Section 3 we prove an asymptotic result for exit probabilities of stochastic
processes which can be derived from adequate transformations of time and state
of other stochastic processes satisfying the large deviation principle with an inte-
gral type rate function (as happens for the results in Section 2). In particular, we
show how this result can be applied to exit probabilities of linear diffusions and
of growth processes. In this way we can recover some known results of Freidlin–
Wentzell theory for small noise diffusions; see, e.g., [7] (Chapter 4, Section 1)
for the connections with large deviations. Finally, in Section 4, we illustrate some
consequences for the most likely paths, and we present two examples.

2. RESULTS BASED ON INTEGRAL TYPE RATE FUNCTIONS

We start by recalling some preliminaries on large deviations. A family {Xε :
ε > 0} of Ω-valued random variables, where Ω is a topological space, satisfies the
large deviation principle (LDP from now on) with rate function I if the function
I : Ω→ [0,∞] is lower semi-continuous; we have the lower bound

lim inf
ε→0

ε logP (Xε ∈ G)  − inf
ω∈G

I(ω)

for all open sets G, and the upper bound

lim sup
ε→0

ε logP (Xε ∈ F ) ¬ − inf
ω∈F

I(ω)

for all closed sets F . Moreover, a rate function I is said to be good if all its level
sets

{
{ω ∈ Ω : I(ω) ¬ η} : η  0

}
are compact. In what follows we consider

Ω = C[t0, T ] for 0 ¬ t0 < T <∞, i.e. the family of all continuous functions on
[t0, T ], equipped with the topology of the uniform convergence. Thus we consider
families of continuous stochastic processes

{
Xε = {Xε(t) : t ∈ [t0, T ]} : ε > 0

}
.

The main result in this section is Theorem 2.1 which concerns exit probabil-
ities of continuous stochastic processes {Xε : ε > 0} which satisfy the LDP with
an integral type rate function. So we start with the definition of integral type rate
function. Moreover, in view of the applications of Theorem 2.1 in the next section,
the next Lemma 2.1 provides a class of examples where the LDP holds with an in-
tegral type rate function: references for this lemma are Theorems 5.6.12 and 4.2.13
in [4], together with Theorem 4.2.13 in [4] concerning the concept of exponential
equivalence (see, e.g., Definition 4.2.10 in [4]).

DEFINITION 2.1 (Integral type rate function). A rate function IJ,x0,t0,T is said
to be an integral type rate function if it is defined by

IJ,x0,t0,T (f) =


T∫
t0

J
(
ḟ(t)

)
dt if f ∈ AC[t0, T ] and f(t0) = x0,

∞ otherwise,
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where 0 ¬ t0 < T <∞; AC[t0, T ] is the family of all absolutely continuous func-
tions on [t0, T ]; ḟ is the almost everywhere derivative of f ∈ AC[t0, T ]; the func-
tion J : R→ [0,∞) is convex and there exists a unique x ∈ R such that J(x) = 0.

LEMMA 2.1. Let µ ∈ R and σ ∈ (0,∞) be arbitrarily fixed and let Jµ,σ be
defined by Jµ,σ(x) = (x− µ)2/(2σ2). Let B be a standard Brownian motion on
[t0, T ] for 0 ¬ t0 < T < ∞, let f : [t0, T ] → R be a continuous function, and
assume that xε0 → x0 as ε → 0. Then the family of stochastic processes

{
Xε =

{Xε(t) : t ∈ [t0, T ]} : ε > 0
}

defined by

Xε(t) = xε0 + µ(t− t0) + εf(t) +
√
εσB(t− t0)

satisfies the LDP with good integral type rate function IJµ,σ,x0,t0,T .

The proof of Theorem 2.1 will easily follow from Propositions 2.1 and 2.2
which concern up-crossing and down-crossing probabilities, respectively. In view
of what follows, we introduce some symbols. Let Z = {Z(t) : t ∈ [t0, T ]} be a
continuous stochastic process, and consider the exit probability

ΨZ(t0, T ; b(−), b(+)) = P
({
∃t ∈ [t0, T ] : Z(t) /∈

(
b(−)(t), b(+)(t)

)})
in the time interval [t0, T ], where b(−), b(+) : [t0, T ]→ R are two continuous barri-
ers such that b(−)(t) < b(+)(t) for all t ∈ [t0, T ]. Similarly, for a given continuous
barrier b : [t0, T ]→ R, we shall consider the up-crossing probability Ψ↑Z(t0, T ; b)

= P
(
{∃t ∈ [t0, T ] : Z(t)  b(t)}

)
and the down-crossing probability Ψ↓Z(t0, T ; b)

= P
(
{∃t ∈ [t0, T ] : Z(t) ¬ b(t)}

)
.

PROPOSITION 2.1. Let
{
Xε = {Xε(t) : t ∈ [t0, T ]} : ε > 0

}
be a family of

continuous stochastic processes for 0 ¬ t0 < T <∞, which satisfies the LDP with
an integral type rate function IJ,x0,t0,T . Furthermore, let b : [t0, T ]→ R be a con-
tinuous function such that:

(H1 ↑): x0 < b(t0);
(H2 ↑): inf

t0<t¬T
(t− t0)J

(
(b(t)− x0)/(t− t0)

)
is attained at some t∗∈(t0, T ].

Then

lim
ε→0

ε logΨ↑Xε(t0, T ; b) = − inf
t0<t¬T

(t− t0)J

(
b(t)− x0
t− t0

)
.

P r o o f. We have to prove the upper bound

(2.1) lim sup
ε→0

ε logΨ↑Xε(t0, T ; b) ¬ − inf
t0<t¬T

(t− t0)J

(
b(t)− x0
t− t0

)
and the lower bound

(2.2) lim inf
ε→0

ε logΨ↑Xε(t0, T ; b)  − inf
t0<t¬T

(t− t0)J

(
b(t)− x0
t− t0

)
.
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We start with the proof of (2.1). Let us consider the closed set

Eb = {f ∈ C[t0, T ] : there exists t ∈ [t0, T ] such that f(t)  b(t)}.

Then we have

(2.3) lim sup
ε→0

ε logΨ↑Xε(t0, T ; b) ¬ − inf{IJ,x0,t0,T (f) : f ∈ Eb}

by the upper bound for the closed sets in the LDP of {Xε : ε > 0}. We have to
compute the right-hand side in (2.3). We can restrict our attention to any absolutely
continuous functions f ∈ Eb such that f(t0) = x0. Firstly, since f(t0) = x0 <
b(t0) by (H1 ↑), there exists tf ∈ (t0, T ] such that f(tf ) = b(tf ). Then we have

(2.4) IJ,x0,t0,T (f) 
tf∫
t0

J
(
ḟ(t)

)
dt  (tf − t0)J

(
b(tf )− x0
tf − t0

)
by Jensen’s inequality. Now consider the function f∗ : [t0, T ]→ R defined by

(2.5) f∗(t) =

x0 +
b(t∗)− x0
t∗ − t0

(t− t0) if t0 ¬ t ¬ t∗,

b(t∗) + x(t− t∗) if t∗ < t ¬ T (and t∗ < T ),

where t∗ is as in (H2 ↑). Then, by (2.4) and (H2 ↑), we obtain

IJ,x0,t0,T (f)  inf
t0<t¬T

(t− t0)J

(
b(t)− x0
t− t0

)
= (t∗ − t0)J

(
b(t∗)− x0
t∗ − t0

)
= IJ,x0,t0,T (f∗),

where the latter equality can be easily checked. In conclusion, since f∗ ∈ Eb, we
have

(2.6) inf{IJ,x0,t0,T (f) : f ∈ Eb} = inf
t0<t¬T

(t− t0)J

(
b(t)− x0
t− t0

)
,

and (2.1) holds by (2.3) and (2.6).
Now we prove (2.2). Let us consider the open set

E◦∗ = {f ∈ C[t0, T ] : f(t∗) > b(t∗)}.

Then we have

lim inf
ε→0

ε logΨ↑Xε(t0, T ; b)  lim inf
ε→0

ε logP
(
Xε(t∗) > b(t∗)

)
 − inf{IJ,x0,t0,T (f) : f ∈ E◦∗},

(2.7)
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where the first inequality holds by construction, and the second one holds by the
lower bound for the open sets in the LDP of {Xε : ε > 0}. For η > 0 we define
the function f

(η)
∗ which is a slight modification of f∗ presented above for the proof

of (2.1):

f
(η)
∗ (t) =

x0 +
b(t∗) + η − x0

t∗ − t0
(t− t0) if t0 ¬ t ¬ t∗,

b(t∗) + η + x(t− t∗) if t∗ < t ¬ T (and t∗ < T ).

Then f
(η)
∗ ∈ E◦∗ , and therefore

inf{IJ,x0,t0,T (f) : f ∈ E◦∗} ¬ IJ,x0,t0,T (f
(η)
∗ ) = (t∗ − t0)J

(
b(t∗) + η − x0

t∗ − t0

)
.

Finally, we recall that J is continuous because it is a real finite-valued convex
function defined on an open interval (see, e.g., [14], Theorem 3.2) and, letting η go
to zero, we obtain

inf{IJ,x0,t0,T (f) : f ∈ E◦∗} ¬ (t∗ − t0)J

(
b(t∗)− x0
t∗ − t0

)
= inf

t0<t¬T
(t− t0)J

(
b(t)− x0
t− t0

)
.

(2.8)

In conclusion, (2.2) holds by (2.7) and (2.8). �

PROPOSITION 2.2. Let
{
Xε = {Xε(t) : t ∈ [t0, T ]} : ε > 0

}
be a family of

continuous stochastic processes for 0 ¬ t0 < T <∞, which satisfies the LDP with
an integral type rate function IJ,x0,t0,T . Furthermore, let b : [t0, T ]→ R be a con-
tinuous function such that:

(H1 ↓): b(t0) < x0;
(H2 ↓): inf

t0<t¬T
(t− t0)J

(
(b(t)− x0)/(t− t0)

)
is attained at some t∗ ∈ (t0, T ].

Then

lim
ε→0

ε logΨ↓Xε(t0, T ; b) = − inf
t0<t¬T

(t− t0)J

(
b(t)− x0
t− t0

)
.

P r o o f. It is similar to the proof of Proposition 2.1, and therefore omitted. �

THEOREM 2.1. Let
{
Xε = {Xε(t) : t ∈ [t0, T ]} : ε > 0

}
be a family of con-

tinuous stochastic processes for 0 ¬ t0 < T <∞, which satisfies the LDP with an
integral type rate function IJ,x0,t0,T . Furthermore, let b(−), b(+) : [t0, T ]→ R be
continuous functions such that:

(H1): b(−)(t0) < x0 < b(+)(t0);
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(H2): inf
t0<t¬T

(t − t0)J
(
(b(±)(t)− x0)/(t− t0)

)
is attained at some t

(±)
∗ ∈

(t0, T ].

Then

lim
ε→0

ε logΨXε(t0, T ; b(−), b(+))

= − min
b∈{b(+),b(−)}

{
inf

t0<t¬T
(t− t0)J

(
b(t)− x0
t− t0

)}
.

P r o o f. Firstly we have

Ψ↓Xε(t0, T ; b(−)),Ψ
↑
Xε(t0, T ; b(+)) ¬ ΨXε(t0, T ; b(−), b(+)),

and we obtain

(2.9) max{lim inf
ε→0

ε logΨ↓Xε(t0, T ; b(−)), lim inf
ε→0

ε logΨ↑Xε(t0, T ; b(+))}

¬ lim inf
ε→0

ε logΨXε(t0, T ; b(−), b(+)).

We also have

ΨXε(t0, T ; b(−), b(+)) ¬ Ψ↓Xε(t0, T ; b(−)) + Ψ↑Xε(t0, T ; b(+)),

and we get

(2.10) lim sup
ε→0

ε logΨXε(t0, T ; b(−), b(+))

= max{lim sup
ε→0

ε logΨ↓Xε(t0, T ; b(−)), lim sup
ε→0

ε logΨ↑Xε(t0, T ; b(+))}

by Lemma 1.2.15 in [4]. Then, by (2.9) and (2.10), we complete the proof noting
that we have

lim
ε→0

ε logΨ↑Xε(t0, T ; b(+)) = − inf
t0<t¬T

(t− t0)J

(
b(+)(t)− x0

t− t0

)
,

lim
ε→0

ε logΨ↓Xε(t0, T ; b(−)) = − inf
t0<t¬T

(t− t0)J

(
b(−)(t)− x0

t− t0

)
by Propositions 2.1 and 2.2, respectively. �

REMARK 2.1. The assumptions (H2↑) and (H2↓) in Propositions 2.1 and 2.2
and the assumption (H2) in Theorem 2.1 could be avoided by assuming that

lim
x→∞

J(x)

x
=∞, lim

x→−∞

J(x)

−x
=∞ and lim

|x|→∞

J(x)

|x|
=∞,

respectively. If we assume that J is coercive, i.e. lim|x|→∞ J(x)/|x| =∞, the rate
function IJ,x0,t0,T in Definition 2.1 is good; also, if IJ,x0,t0,T is good, the function
J must be coercive.
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We conclude this section with a brief discussion on the concept of most likely
path for the exit, and we refer to the framework of Theorem 2.1. Let us consider
the set Eb(−),b(+)

:= E↑b(+)
∪E↓b(−)

, where E↑b(+)
is the set Eb in the proof of Propo-

sition 2.1 with b(+) in place of b, and

E↓b(−)
= {f ∈ C[t0, T ] : there exists t ∈ [t0, T ] such that f(t) ¬ b(−)(t)}.

Note that Eb(−),b(+)
is closed because E↑b(+)

and E↓b(−)
are closed sets. Then f∗ ∈

Eb(−),b(+)
is said to be a most likely path if

IJ,x0,t0,T (f∗) = inf{IJ,x0,t0,T (f) : f ∈ Eb(−),b(+)
}.

Note that if the rate function IJ,x0,t0,T is good and

inf{IJ,x0,t0,T (f) : f ∈ Eb(−),b(+)
} <∞,

then the infimum is attained because Eb(−),b(+)
is a closed set. In general, we do

not have a unique most likely path and f∗ is a most likely path if and only if it is
defined by (2.5), where: b ∈ {b(+), b(−)} is such that

inf
t0<t¬T

(t− t0)J

(
b(t)− x0
t− t0

)
= min

{
inf

t0<t¬T
(t− t0)J

(
b(+)(t)− x0

t− t0

)
, inf
t0<t¬T

(t− t0)J

(
b(−)(t)− x0

t− t0

)}
;

t∗ = t
(+)
∗ if b∗ = b(+) or t∗ = t

(−)
∗ if b∗ = b(−), where t

(±)
∗ are the values in (H2)

in Theorem 2.1. Note that we have a unique most likely path f∗ if and only if we
have a unique choice of b∗ and t∗ as above.

It is interesting to remark that if f∗ is the unique minimizing point in Eb(−),b(+)
,

then
lim
ε→0

P
(
Xε ∈ Aη(f∗)|Xε ∈ Eb(−),b(+)

)
= 0,

where Aη(f∗) = {g ∈ C[t0, T ] : supt∈[t0,T ] |g(t) − f∗(t)|  η} and η > 0. This
can be checked following the lines of the proof of Lemma 4.2 in [8] (here we have
some differences) and noting that Theorem 2.1 provides the limit

lim
ε→0

ε logP (Xε ∈ Eb(−),b(+)
) = −IJ,x0,t0,T (f∗).

In conclusion, the unique minimizing function f∗ has the following appealing in-
terpretation: conditionally on the exit of the stochastic processes {Xε : ε > 0} for
ε close to zero, with overwhelming probability this occurs via a path that is close
to f∗.
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3. APPLICATIONS FOR SOME FAMILIES OF DIFFUSIONS

In this section we prove an asymptotic result for exit probabilities of stochas-
tic processes {Y ε : ε > 0} which can be derived from adequate transformations of
time and state of other stochastic processes {Xε : ε > 0} satisfying the assump-
tions of Theorem 2.1 (more precisely, they are as in Lemma 2.1). In particular, we
show how this result can be applied to exit probabilities of linear diffusions and of
growth processes.

PROPOSITION 3.1. We consider an open interval X ⊂ R, two continuous
barriers b(−), b(+) : [t0, T ] → X such that b(−)(t) < b(+)(t) for all t ∈ [0, T ], a
family of continuous and strictly increasing functions {Bt,t0 : t ∈ [t0, T ]} such
that Bt,t0 : X → R for all t ∈ [t0, T ], a continuous and strictly increasing func-
tion ρ(·; t0) : [t0, T ]→ [0, ρ(T ; t0)] defined by ρ(t; t0) :=

∫ t

t0
θ2(v)dv for a square

integrable function θ. Moreover, let
{
Xε = {Xε(r) : r ∈ [0, ρ(T ; t0)]} : ε > 0

}
be defined by Xε(r) := xε0 + εf(r) +

√
εB(r), where xε0 := Bt0,t0(yε0) for some

yε0 such that yε0 → y0 ∈
(
b(−)(t0), b(+)(t0)

)
, f : [0, ρ(T ; t0)]→ R is a continuous

function and {B(r) : r ∈ [0, ρ(T ; t0)]} is a standard Brownian motion. Finally, let{
Y ε = {Y ε(t) : t ∈ [t0, T ]} : ε > 0

}
be defined by Y ε(t) := B−1t,t0

(
Xε

(
ρ(t; t0)

))
.

Then, if we set b̂t0(t; b) := Bt,t0
(
b(t)

)
, we have

(3.1) lim
ε→0

ε logΨY ε(t0, T ; b(−), b(+)) = −u(y0, t0),

where

u(y0, t0) := min
b∈{b(−),b(+)}

inf
t0<t¬T

(
b̂t0(t; b)− Bt0,t0(y0)

)2
2ρ(t; t0)

.

P r o o f. Firstly we note that {Xε : ε > 0} satisfies the assumptions of Lem-
ma 2.1 with µ = 0 and σ = 1, and with [0, ρ(T ; t0)] in place of [t0, T ]. Moreover,
for each fixed ε > 0, we have

ΨY ε(t0, T ; b(−), b(+))

= P
({
∃t ∈ [t0, T ] : B−1t,t0

(
Xε

(
ρ(t; t0)

))
/∈
(
b(−)(t), b(+)(t)

)})
= P

({
∃r∈ [0, ρ(T ; t0)] :Xε(r) /∈

(
b̂t0

(
ρ−1(r; t0); b(−)

)
, b̂t0

(
ρ−1(r; t0); b(+)

))})
= ΨXε

(
0, ρ(T ; t0); b̂t0

(
ρ−1(·; t0); b(−)

)
, b̂t0

(
ρ−1(·; t0); b(+)

))
.

Then, by Theorem 2.1, we obtain

lim
ε→0

ε logΨY ε(t0, T ; b(−), b(+))

= − min
b∈{b(−),b(+)}

inf
0<r¬ρ(T ;t0)

rJ0,1

(
b̂t0

(
ρ−1(r; t0); b

)
− x0

r

)
,
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where x0 := Bt0,t0(y0) and J0,1 is as in Lemma 2.1. Noting that

inf
0<r¬ρ(T ;t0)

rJ0,1

(
b̂t0

(
ρ−1(r; t0); b

)
− x0

r

)
= inf

t0<t¬T

(
b̂t0(t; b)− Bt0,t0(y0)

)2
2ρ(t; t0)

,

we complete the proof. �

Linear diffusion with additive noise. Let
{
Y ε={Y ε(t) : t ∈ [t0, T ]} : ε>0

}
be defined by

dY ε(t) =
(
µ1(t)Y

ε(t) + µ0(t)
)
dt+
√
εσ(t)dB(t),

Y ε(t0) = yε0,

where yε0 → y0 as ε→ 0. We assume that

µ1(·), µ0(·) exp
(
−
·∫
t0

µ1(w)dw
)

and
(
σ(·) exp

(
−
·∫
t0

µ1(w)dw
))2

are integrable functions on [t0, T ], and that σ(·) is positive. By a known result in
the literature (see, e.g., [10], Chapter 4, Section 4, equation (4.3)), we can check
that {Y ε : ε > 0} is as in Proposition 3.1, where

X = R, xε0 = yε0, f(r) = 0, θ(v) = σ(v) exp
(
−

v∫
t0

µ1(w)dw
)
,

B−1t,t0
(̂b) = exp

( t∫
t0

µ1(v)dv
)(

b̂+
t∫
t0

µ0(v) exp
(
−

v∫
t0

µ1(w)dw
)
dv

)
.

Linear diffusion with multiplicative noise. Let
{
Y ε = {Y ε(t) : t ∈ [t0, T ]} :

ε > 0
}

be defined by

dY ε(t) = µ(t)Y ε(t)dt+
√
εY ε(t)σ(t)dB(t),

Y ε(t0) = yε0,

where yε0 → y0 ∈ (0,∞) as ε→ 0; here we consider ε > 0 small enough to have
yε0 ∈ (0,∞). We assume that µ(·) and σ2(·) are integrable functions on [t0, T ], and
that σ(·) is positive. By a known result in the literature (see, e.g., [10], Chapter 4,
Section 4, equation (4.10)), we can check that {Y ε : ε > 0} is as in Proposition 3.1,
where

X = (0,∞), xε0 = log yε0, f(r) = −r/2, θ(v) = σ(v),

B−1t,t0
(̂b) = exp

(
b̂+

t∫
t0

µ(v)dv
)
.
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Growth processes. Let
{
Y ε = {Y ε(t) : t ∈ [t0, T ]} : ε > 0

}
be defined by

dY ε(t) =
(
αY ε(t)− βY ε(t) log Y ε(t)

)
dt+
√
εσY ε(t)dB(t),

Y ε(t0) = yε0,

where yε0 → y0 ∈ (0,∞) as ε→ 0, and α, β, σ ∈ (0,∞); here we consider ε > 0
small enough to have yε0 ∈ (0,∞). Let Fε be the function defined by

Fε(t, y) :=
eβt√
εσ

(
log y +

εσ2 − 2α

2β

)
and, by using Itō’s formula (see, e.g., Theorem 4.1.2 in [12]) for Fε

(
t, Y ε(t)

)
, we

get

dFε

(
t, Y ε(t)

)
= β

eβt√
εσ

(
log Y ε(t) +

εσ2 − 2α

2β

)
dt

+
eβt√
εσ

1

Y ε(t)
dY ε(t) +

eβt

2
√
εσ

(
− 1

(Y ε(t))2

)(√
εσY ε(t)

)2
dt.

Then we have

dFε

(
t, Y ε(t)

)
=

eβt√
εσ

(
β log Y ε(t) +

εσ2

2
− α

)
dt

+
eβt√
εσ

(
α− β log Y ε(t)

)
dt+ eβtdB(t)− eβt

√
εσ

2
dt

= eβtdB(t)

and, by taking into account the initial condition Fε

(
t0, Y

ε(0)
)
= Fε(t0, y

ε
0), we

obtain

Fε

(
t, Y ε(t)

)
=

t∫
t0

eβvdB(v) + Fε (t0, y
ε
0).

Thus

eβt√
εσ

(
log Y ε(t) +

εσ2 − 2α

2β

)
=

t∫
t0

eβvdB(v) +
eβt0√
εσ

(
log yε0 +

εσ2 − 2α

2β

)
and, with some easy computations, one can check that {Y ε : ε > 0} is as in Propo-
sition 3.1, where

X =(0,∞), xε0=eβt0 log yε0, f(r)=−σ2

2β

(
exp

(
βρ−1(r; t0)

)
− exp(βt0)

)
,

θ(v)=σeβv, B−1t,t0
(̂b)=exp

(
e−βt

(
b̂+ (eβt − eβt0)

α

β

))
.
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4. MOST LIKELY PATHS AND TWO EXAMPLES

In this section we illustrate the relationship between the most likely paths for
the exit of {Y ε : ε > 0} and of {Xε : ε > 0} as in Section 3. Furthermore, we
present two examples. Example 4.1 concerns the exit probabilities of stochastic
processes from a tubular neighborhood of the limit deterministic trajectory Y 0, i.e.
the solution of the deterministic equation obtained by taking the noise term equal to
zero; this is of interest in economics where Y 0 is the equilibrium trajectory (results
of this kind can be found in [2] with applications to the issue of the efficiency
of financial market; see also [13] and [15] with applications in macroeconomics).
Example 4.2 concerns the exit probabilities of geometric Brownian motions from a
domain with positive exponential barriers; in this case we have an extension of the
content of the Remark just after Theorem 4.1 in [5] because we have non-constant
barriers.

We start with some preliminaries. The limit (3.1) can be proved for exit proba-
bilities of family of possibly n-dimensional diffusions {Y ε : ε > 0} under suitable
assumptions. This is what happens for Theorem 4.1 in [5] where we have

dY ε(t) = m
(
Y ε(t), t

)
dt+
√
ε
√

a
(
Y ε(t)

)
dB(t),

Y ε(t0) =: yε0 = y0

and {Y ε : ε > 0} satisfies the LDP (as ε → 0) with good rate function Iy0,t0,T
defined by

(4.1)

Iy0,t0,T (f) =


T∫
t0

L
(
t, f(t), ḟ(t)

)
dt if f ∈ AC[t0, T ] and f(t0) = y0,

∞ otherwise,

where

L(t, y, ẏ) =
(
ẏ −m(y, t)

)2
2a(y)

;

in such a case we have

(4.2)
u(y0, t0) = inf

{
Iy0,t0,T (f) : f(t) /∈

(
b(−)(t), b(+)(t)

)
for some t ∈ (t0, T ]

}
.

Note that in general Iy0,t0,T is not an integral type rate function and the minimiza-
tion problem (4.2) can be solved by using standard techniques of calculus of vari-
ations. If we specialize Theorem 4.1 in [5] to one-dimensional diffusions (n = 1)
as in this paper, b(−) and b(+) have to be constant barriers (this is not the case
of Proposition 3.1). Here we allow a slight generalization on the initial condition
because we have yε0 → y0 as ε→ 0 instead of yε0 = y0.



36 M. Abundo et al.

Now, arguing as in Section 2, we say that f∗ is a most likely path if it attains
the infimum in (4.2), i.e., if f∗(t) /∈

(
b(−)(t), b(+)(t)

)
for some t ∈ (t0, T ] and

Iy0,t0,T (f∗) = inf
{
Iy0,t0,T (f) : f(t) /∈

(
b(−)(t), b(+)(t)

)
for some t ∈ (t0, T ]

}
.

It is known (see, e.g., [6], Chapter 1, Corollary 3.1) that f∗ is a solution of Euler’s
equation

(4.3)
∂L
∂y
− d

dt

∂L
∂ẏ

= 0,

where L is as in (4.1); moreover, if both sides of the equation are evaluated at(
t, y∗(t), ẏ∗(t)

)
and ẏ∗(t) has a discontinuity at some point, then the equation

(4.3) is satisfied by right-hand and left-hand derivatives. In detail, we have

L(t, y, ẏ) =
(
ẏ −

(
µ1(t)y + µ0(t)

))2
2σ2(t)

for the linear diffusions with additive noise,

L(t, y, ẏ) =
(
ẏ − µ(t)y

)2
2σ2(t)y2

for the linear diffusions with multiplicative noise, and

L(t, y, ẏ) =
(
ẏ − (αy − βy log y)

)2
2σ2y2

for the growth processes.
Finally, by referring to the framework of Proposition 3.1, we illustrate an

alternative method to find a most likely path f∗ for each family of diffusions
{Y ε : ε > 0} in this section (linear diffusions or growth processes). We set f∗(·) =
B−1·,t0

(
g∗
(
ρ(·; t0)

))
, where g∗(·) is a most likely path for {Xε : ε > 0}, i.e.

g∗(r) =

Bt0,t0(y0) +
b̂t0

(
ρ−1(r∗; t0); b∗

)
− Bt0,t0(y0)

r∗
r if r ∈ [0, r∗],

b̂t0
(
ρ−1(r∗; t0); b∗

)
if r ∈

(
r∗, ρ(T ; t0)

]
for suitable choices of b∗ ∈ {b(+), b(−)} and r∗ ∈

(
0, ρ(T ; t0)

]
. Then, for t∗ =

ρ−1(r∗; t0), we have

f∗(t) = B−1t,t0

(
g∗
(
ρ(t; t0)

))
=

B
−1
t,t0

(
Bt0,t0(y0) +

b̂t0(t∗; b∗)− Bt0,t0(y0)
ρ(t∗; t0)

ρ(t; t0)

)
if t ∈ [t0, t∗],

B−1t,t0

(
b̂t0(t∗; b∗)

)
if t ∈ (t∗, T ].
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For instance, in the case of linear diffusions with additive noise, we have

f∗(t) =



exp
( t∫
t0

µ1(v)dv
)
·
(
y0 +

b̂t0(t∗; b∗)− y0
ρ(t∗; t0)

ρ(t; t0)

+
t∫
t0

µ0(v) exp
(
−

v∫
t0

µ1(w)dw
)
dv

)
if t ∈ [t0, t∗],

exp
( t∫
t0

µ1(v)dv
)

×
(
b̂t0(t∗; b∗) +

t∫
t0

µ0(v) exp
(
−

v∫
t0

µ1(w)dw
)
dv

)
if t ∈ (t∗, T ].

It is easy to see that f∗(t0) = y0 and f∗(t∗) = b∗(t∗). Moreover, for each family of
diffusions {Y ε : ε > 0} in this section, we can check that f∗ is a solution of Euler’s
equation (4.3) and, if ḟ∗ has a discontinuity at some point (this could happen at
t = t∗), then the equation (4.3) is satisfied by right-hand and left-hand derivatives.
This shows that f∗(·) = B−1·,t0

(
g∗
(
ρ(·; t0)

))
is a most likely path for {Y ε : ε > 0}.

EXAMPLE 4.1. We consider the framework of Proposition 3.1 with b(±) =

Y 0 ± δ for some δ > 0. Then, by taking into account that

b̂t0(t; b(±)) = Bt,t0
(
B−1t,t0

(x0)± δ
)
,

we have

u(y0, t0) = min
a∈{1,−1}

inf
t0<t¬T

(
Bt,t0

(
B−1t,t0

(x0) + aδ
)
− x0

)2

2ρ(t; t0)
.

In particular, if we deal with the linear diffusions with additive noise, the last equal-
ity takes the form

u(y0, t0) = inf
t0<t¬T

δ2 exp
(
− 2

∫ t

t0
µ1(v)dv

)
2
∫ t

t0
σ2(v) exp

(
− 2

∫ v

t0
µ1(w)dw

)
dv

because

Bt,t0(b) = b exp
(
−

t∫
t0

µ1(v)dv
)
−

t∫
t0

µ0(v) exp
(
−

v∫
t0

µ1(w)dw
)
dv.

Moreover, if µ0, µ1 and σ are constant functions with µ1 ̸= 0, we get the limit
value in Proposition 2 in [2], i.e.

u(y0, t0) = inf
t0<t¬T

µ1δ
2 exp

(
−2µ1(t− t0)

)
σ2

(
1− exp

(
−2µ1(t− t0)

))=
µ1δ

2 exp
(
−2µ1(T − t0)

)
σ2

(
1− exp

(
−2µ1(T − t0)

)) .
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EXAMPLE 4.2. We consider geometric Brownian motions, i.e. linear dif-
fusions with multiplicative noise where µ and σ are constant functions. More-
over we consider b(±)(t) = r(±)e

γt (for t ∈ [0, T ]) for r(+), r(−) > 0 and γ ∈ R
(note that we have positive constant barriers with γ = 0). Finally, we assume that
r(−)e

γt0 < y0 < r(+)e
γt0 . Then, by taking into account that

b̂t0(t; b(±)) = log(r(±)e
γt)− µ(t− t0),

we have u(y0, t0) = minr∈{r(+),r(−)} u(y0, t0; r), where

u(y0, t0; r) := inf
t0<t¬T

(
log r + γt− µ(t− t0)− log y0

)2
2σ2(t− t0)

.

We have two cases. Firstly, if µ = γ, we get

u(y0, t0; r) = inf
t0<t¬T

(log r + µt0 − log y0)
2

2σ2(t− t0)
=

(log r + µt0 − log y0)
2

2σ2(T − t0)
.

Secondly, if µ ̸= γ, we obtain

u(y0, t0; r)

=



(log r + γT − µ(T − t0)− log y0)
2

2σ2(T − t0)
if T − t0 <

| log r − log y0 + γt0|
|γ − µ|

,

(γ − µ)2

σ2

(
| log r − log y0 + γt0|

|γ − µ|
+

log r − log y0 + γt0
γ − µ

)
if T − t0 

| log r − log y0 + γt0|
|γ − µ|

.

In particular, if T − t0  | log r − log y0 + γt0||γ − µ|−1, we have

u(y0, t0; r)

=


0 if

log r − log y0 + γt0
γ − µ

< 0,

2(γ − µ)

σ2
(log r − log y0 + γt0) if

log r − log y0 + γt0
γ − µ

> 0.

In both the cases, for D = {(y, t) ∈ [0, T )× R : b(−)(t) < y < b(+)(t)}, one can
check that u(·, ·; r) is a classical solution of the equation

− ∂

∂t0
u(y0, t0; r)−µy0

∂

∂y0
u(y0, t0; r)+

1

2
σ2y20

(
∂

∂y0
u(y0, t0; r)

)2

= 0 on D,

u(y, t; r) = 0 if y ∈ {b(+)(t), b(−)(t)} for some t ∈ [0, T ),

u(y, t; r)→ +∞ as t ↑ T, for y ∈
(
b(−)(T ), b(+)(T )

)
.
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Finally, one can check that u(·, ·) = minr∈{r(+),r(−)} u(·, ·; r) is a viscosity solu-
tion of the same PDE because it is the minimum between two classical solutions.
This can be checked by referring to the concept of viscosity solution (see, e.g., [1],
pp. 4 and 5).

Acknowledgments. We thank Carlo Sinestrari for useful discussions on the
concept of viscosity solutions, and an anonymous referee for useful suggestions
which led to an improvement of the presentation of the paper.
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