PROBABILITY AND MATHEMATICAL STATISTICS Vol. 32, Fase. 2 (2012), pp. 215–225

ON ELEMENTARY CHARACTERIZATIONS OF THE α -MODIFIED POISSON DISTRIBUTION

BY

KATARZYNA STELIGA (LUBLIN) AND DOMINIK SZYNAL (STALOWA WOLA)

Abstract. In this article we give a characterization of α -modified Poisson distributions extending Chatterji's result. Moreover, we consider the α -modified Poisson distributions of type j which are known as Delaporte distributions.

2000 AMS Mathematics Subject Classification: Primary: 60E05; Secondary: 62E10.

Key words and phrases: Poisson distribution, α -modified Poisson distribution, α -modified binomial distribution, Delaporte distribution, Riordan α symbol.

1. INTRODUCTION

There is an extensive literature on characterizations of the Poisson distribution. Feller [5] pointed out that if X and Y are independent Poisson random variables, then the conditional distribution of X given X + Y is binomial. More precisely, if X and Y are independent random variables and

$$X \sim P(\lambda), \quad P[X = k] = e^{-\lambda} \frac{\lambda^k}{k!}, \quad Y \sim P(\mu), \quad P[Y = k] = e^{-\mu} \frac{\mu^k}{k!}, \\ k = 0, 1, 2, \dots; \ \lambda > 0, \ \mu > 0,$$

then for each $t \ge 0$

$$P[X = k|X + Y = t] = \binom{t}{k} p^k (1-p)^{t-k}, \quad 0 \le k \le t,$$

with $p = \lambda/(\lambda + \mu)$. We note that these conditional distributions depend only on the ratio $\lambda/(\lambda + \mu)$.

Chatterji [3] dealt with the inverse problem. He showed that if X and Y are independent random variables such that

$$P[X = i] = f(i), \quad P[Y = i] = g(i),$$

where f(i) > 0, g(i) > 0, $\sum_{i=0}^{\infty} f(i) = \sum_{i=0}^{\infty} g(i) = 1$, and if for each $t \ge 0$

$$P[X = k|X + Y = t] = \begin{cases} \binom{t}{k} p_t^k (1 - p_t)^{t-k}, & 0 \le k \le t \\ 0, & k > t, \end{cases}$$

then $p_t \equiv p, \ t = 0, 1, 2, ...,$ and

$$f(i) = e^{-\theta\delta} \frac{(\theta\delta)^i}{i!}, \quad g(i) = e^{-\theta} \frac{\theta^i}{i!},$$

where $\delta = p/(1-p)$ and $\theta > 0$ is arbitrary.

We extend Chatterji's characterization of Poisson distributions to a characterization of α -modified Poisson distributions. Moreover, we extend this characterization to α -modified Poisson distributions of type j. These are known as Delaporte distributions, and are widely applied in actuarial investigations (cf. Delaporte [4], Willmot and Sundt [13], Johnson et al. [6], Murat and Szynal [8], Sundt and Vernic [12]). Another characterization of one-parametric α -modified Poisson distribution was discussed by Steliga and Szynal in [11].

First we recall the definitions of α -modified binomial distributions and α modified Poisson distributions introduced by Berg and Jaworski [1]. A random variable X is said to have an α -modified binomial distribution $(X \sim MB(N, p, \phi))$ if the following holds:

(1.1)
$$P[X = x] = \binom{N}{x} \frac{(p + \alpha \phi)^{x} q^{N-x}}{(1 + \alpha \phi)^{N}}, \quad x = 0, 1, \dots, N,$$

where q = 1 - p, $\phi \ge 0$, $p + \phi \ge 0$, are parameters, and $\alpha_k \equiv \alpha^k = k!$, $k \in \mathbb{N}$, is Riordan's symbol. For p > 0 and $\phi = 0$, (1.1) reduces to the common binomial distribution.

We mention here that Chakraborty in [2] introduced a new class of α -modified binomial distributions. He considered, among other things, α -modified binomial distributions $(X \sim MB(N, p, q, \phi))$ defined by

(1.2)
$$P[X = x] = \binom{N}{x} \frac{(p + \alpha \phi)^{x} q^{N-x}}{(q + p + \alpha \phi)^{N}}, \quad x = 0, 1, \dots, N,$$

where in this case $q + p \neq 1$ is allowed, $\phi \ge 0$, $p + \phi \ge 0$, q > 0. We shall use the formulae (1.1) and (1.2) in the form

(1.3)
$$P[X=x] = \binom{N}{x} \frac{(p+\alpha\phi)^{x}q^{N-x}}{1+\sum_{i=1}^{N}N!((N-i)!)^{-1}\phi^{i}}, \quad x=0,1,\ldots,N,$$

and

D[X]

(1.4)
$$P[X = x] =$$

= $\binom{N}{x} \frac{(p + \alpha \phi)^{x} q^{N-x}}{(q+p)^{N} + \sum_{i=1}^{N} N! ((N-i)!)^{-1} \phi^{i} (q+p)^{N-i}}, \quad x = 0, 1, \dots, N$

A random variable X is said to have an α -modified Poisson distribution $(X \sim MP(\lambda, \psi))$ if

$$P[X = x] = \frac{(\lambda + \alpha \psi)^x}{x!} (1 - \psi) e^{-\lambda}, \quad x = 0, 1, 2, \dots,$$

where $\lambda > 0$ and ψ are parameters such that $\lambda + \psi \ge 0$, $|\psi| < 1$.

It is easy to verify that if $X \sim MP(\lambda_x, \psi)$, $Y \sim P(\lambda_y)$, and X and Y are independent, then for each $t \ge 0$

$$P[X = k|X + Y = t] = {t \choose k} \frac{(\lambda_x + \alpha \psi)^k \lambda_y^{t-k}}{(\lambda_x + \lambda_y + \alpha \psi)^t}$$
$$= {t \choose k} \frac{(p + \alpha \phi)^k (1 - p)^{t-k}}{(1 + \alpha \phi)^t}$$
$$= {t \choose k} \frac{(p + \alpha \phi)^k (1 - p)^{t-k}}{1 + \sum_{i=1}^t t! ((t - i)!)^{-1} \phi^i}$$

with $p = \lambda_x/(\lambda_x + \lambda_y)$ and $\phi = \psi/(\lambda_x + \lambda_y)$, i.e. the conditional distribution of X given X + Y has the α -modified binomial distribution $(MB(t, p, \phi))$.

We say that a random variable X has an α -modified discrete distribution with a support in $\mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, ...\}$ if its probability function depends on the α -Riordan symbol.

2. MAIN RESULT

Let C_{α} denote the class of random variables X such that $0 < P[X = k] = f_{\alpha}(k)$, $k = 0, 1, 2, \ldots$, and $\sum_{k=0}^{\infty} f_{\alpha}(k) = 1$, and C denote the class of random variables Y such that P[Y = l] = g(l) > 0, $l = 0, 1, 2, \ldots$, and $\sum_{l=0}^{\infty} g(l) = 1$.

THEOREM 2.1. Let X and Y be random variables from C_{α} and C, respectively. Suppose that X and Y are independent and for each $t \ge 0$

(2.1)
$$P[X = k | X + Y = t] = \begin{cases} \binom{t}{k} \frac{(1 - p_t)^{t-k} (p_t + \alpha \phi)^k}{1 + \sum_{i=1}^t t! ((t-i)!)^{-1} \phi^i}, & 0 \le k \le t, \\ 0, & k > t. \end{cases}$$

Then $p_t \equiv p, \ 0 , and$

(2.2)
$$f_{\alpha}(k) = \frac{1}{k!} (\lambda + \alpha \psi)^k (1 - \psi) e^{-\lambda}, \quad g(k) = \frac{\theta^k}{k!} e^{-\theta},$$

where $\lambda = \theta p/(1-p), \ \psi = \theta \phi/(1-p), \ |\psi| < 1, and \ \theta > 0$ is arbitrary.

Proof. By the independence of X and Y we have

$$P[X = k | X + Y = t] = \frac{P[X = k]P[Y = t - k]}{P[X + Y = t]}$$
$$= \frac{f_{\alpha}(k)g(t - k)}{\sum_{i=0}^{t} f_{\alpha}(i)g(t - i)}.$$

Hence for $0 \leq k \leq t$ we get

(2.3)
$$\frac{f_{\alpha}(k)g(t-k)}{\sum_{i=0}^{t} f_{\alpha}(i)g(t-i)} = {\binom{t}{k}} \frac{(1-p_{t})^{t-k}(p_{t}+\alpha\phi)^{k}}{1+\sum_{i=1}^{t} t! ((t-i)!)^{-1} \phi^{i}} \\ = {\binom{t}{k}} \frac{(1-p_{t})^{t-k} \sum_{i=0}^{k} k! ((k-i)!)^{-1} p_{t}^{k-i} \phi^{i}}{1+\sum_{i=1}^{t} t! ((t-i)!)^{-1} \phi^{i}}$$

and

$$(2.4) \quad \frac{f_{\alpha}(k-1)g(t-k+1)}{\sum_{i=0}^{t} f_{\alpha}(i)g(t-i)} = {\binom{t}{k-1} \left((1-p_{t})^{t-k+1} \sum_{i=0}^{k-1} \frac{(k-1)!}{(k-1-i)!} p_{t}^{k-1-i} \phi^{i}\right) \left(1 + \sum_{i=1}^{t} \frac{t!}{(t-i)!} \phi^{i}\right)^{-1}},$$

which for $t \geqslant 1$ and $1 \leqslant k \leqslant t$ leads us to the recursion

(2.5)
$$\frac{f_{\alpha}(k)g(t-k)}{f_{\alpha}(k-1)g(t-k+1)} = \frac{t-k+1}{k} \frac{1}{1-p_t} \left(\sum_{i=0}^k \frac{k!}{(k-i)!} p_t^{k-i} \phi^i \right) \left(\sum_{i=0}^{k-1} \frac{(k-1)!}{(k-1-i)!} p_t^{k-1-i} \phi^i \right)^{-1}$$

and for $0 \leq k \leq t, t \ge 0$, we obtain

(2.6)
$$f_{\alpha}(k)g(t-k) = \binom{t}{k} \frac{\sum_{i=0}^{k} k! ((k-i)!)^{-1} p_t^{k-i} \phi^i}{(1-p_t)^k} g(t) f_{\alpha}(0).$$

Now, after setting k = t in (2.5), we have for $t \ge 1$

$$(2.7) \quad f_{\alpha}(t) = \frac{1}{t} \frac{1}{1 - p_t} \frac{\sum_{i=0}^{t} t! ((t-i)!)^{-1} p_t^{t-i} \phi^i}{\sum_{i=0}^{t-1} (t-1)! ((t-1-i)!)^{-1} p_t^{t-1-i} \phi^i} \frac{g(1)}{g(0)} f_{\alpha}(t-1).$$

It follows that

$$f_{\alpha}(t) = \prod_{k=1}^{t} \left(\frac{\sum_{i=0}^{k} k! ((k-i)!)^{-1} p_{k}^{k-i} \phi^{i}}{\sum_{i=0}^{k-1} (k-1)! ((k-1-i)!)^{-1} p_{k}^{k-1-i} \phi^{i}} \right) \\ \times \prod_{k=1}^{t} \left(\frac{1}{1-p_{k}} \right) \left(\frac{g(1)}{g(0)} \right)^{t} \frac{f_{\alpha}(0)}{t!}.$$

Letting $g(1)/g(0) = \theta$ we have

(2.8)
$$f_{\alpha}(t) = \prod_{k=1}^{t} \left(\frac{\sum_{i=0}^{k} k! ((k-i)!)^{-1} p_{k}^{k-i} \phi^{i}}{\sum_{i=0}^{k-1} (k-1)! ((k-1-i)!)^{-1} p_{k}^{k-1-i} \phi^{i}} \right) \times \prod_{k=1}^{t} \left(\frac{1}{1-p_{k}} \right) \theta^{t} \frac{f_{\alpha}(0)}{t!}.$$

Similarly, after setting k = 1 in (2.5) we have

$$g(t) = \frac{1}{t} \frac{1 - p_t}{p_t + \phi} \frac{f_{\alpha}(1)}{f_{\alpha}(0)} g(t - 1),$$

which gives (after letting t = 1)

$$\frac{f_{\alpha}(1)}{f_{\alpha}(0)} = \theta \frac{p_1 + \phi}{1 - p_1}.$$

Thus

$$g(t) = \frac{1}{t} \frac{1 - p_t}{p_t + \phi} \theta \frac{p_1 + \phi}{1 - p_1} g(t - 1) = \frac{g(t - 1)}{t} \theta \frac{p_1 + \phi}{1 - p_1} \left(\frac{p_t + \phi}{1 - p_t}\right)^{-1},$$

which leads to

(2.9)
$$g(t) = \frac{g(0)}{t!} \theta^t \frac{(p_1 + \phi)^t}{(1 - p_1)^t} \left(\prod_{k=1}^t \frac{p_k + \phi}{1 - p_k}\right)^{-1}, \quad t \ge 1.$$

Now from (2.6) we have

$$f_{\alpha}(k+1)g(t-k-1) = {\binom{t}{k+1}} \frac{\sum_{i=0}^{k+1} (k+1)! ((k+1-i)!)^{-1} p_t^{k+1-i} \phi^i}{(1-p_t)^{k+1}} g(t) f_{\alpha}(0),$$

which implies for $k+1\leqslant t$

$$(2.10) \quad \frac{g(t-k)}{g(t-k-1)} = \frac{k+1}{t-k} \frac{\sum_{i=0}^{k} k! ((k-i)!)^{-1} p_t^{k-i} \phi^i}{\sum_{i=0}^{k+1} (k+1)! ((k+1-i)!)^{-1} p_t^{k+1-i} \phi^i} (1-p_t) \frac{f_\alpha(k+1)}{f_\alpha(k)}.$$

But from (2.7) (letting t = k + 1) we get

$$\frac{f_{\alpha}(k+1)}{f_{\alpha}(k)} = \frac{1}{k+1} \frac{\theta}{1-p_{k+1}} \frac{\sum_{i=0}^{k+1} (k+1)! ((k+1-i)!)^{-1} p_{k+1}^{k+1-i} \phi^i}{\sum_{i=0}^{k} k! ((k-i)!)^{-1} p_{k+1}^{k-i} \phi^i},$$

so from (2.10) we have

$$(2.11) g(t-k) = \frac{\theta}{t-k}g(t-k-1)\frac{1-p_t}{1-p_{k+1}} \\ \times \frac{\sum_{i=0}^k k! ((k-i)!)^{-1} p_t^{k-i} \phi^i}{\sum_{i=0}^{k+1} (k+1)! ((k+1-i)!)^{-1} p_t^{k+1-i} \phi^i} \\ \times \frac{\sum_{i=0}^{k+1} (k+1)! ((k+1-i)!)^{-1} p_{k+1}^{k+1-i} \phi^i}{\sum_{i=0}^k k! ((k-i)!)^{-1} p_{k+1}^{k-i} \phi^i}.$$

From Panjer's recurrence relation (cf. Klugman et al. [7], Panjer and Willmot [9]) we conclude that, for m = t - k, g(m) in (2.11) is a probability distribution if

$$(2.12) \quad \frac{1-p_t}{1-p_{k+1}} \frac{\sum_{i=0}^k k! ((k-i)!)^{-1} p_t^{k-i} \phi^i}{\sum_{i=0}^{k+1} (k+1)! ((k+1-i)!)^{-1} p_t^{k+1-i} \phi^i} \\ \times \frac{\sum_{i=0}^{k+1} (k+1)! ((k+1-i)!)^{-1} p_{k+1}^{k+1-i} \phi^i}{\sum_{i=0}^k k! ((k-i)!)^{-1} p_{k+1}^{k-i} \phi^i} = 1.$$

The condition (2.12) will be fulfilled if $p_t = p_{k+1} \equiv p$ for all t and k. Hence, g(m) is a probability function of a Poisson distribution. Hence, letting $p \equiv p_k$ in (2.8), we obtain

$$f_{\alpha}(t) = \prod_{k=1}^{t} \left(\frac{\sum_{i=0}^{k} k! ((k-i)!)^{-1} p^{k-i} \phi^{i}}{\sum_{i=0}^{k-1} (k-1)! ((k-1-i)!)^{-1} p^{k-1-i} \phi^{i}} \right) \prod_{k=1}^{t} \left(\frac{1}{1-p} \right) \theta^{t} \frac{f_{\alpha}(0)}{t!}.$$

Hence

(2.13)
$$f_{\alpha}(t) = \frac{\theta^{t}}{t!} \frac{f_{\alpha}(0)}{(1-p)^{t}} \prod_{k=1}^{t} \frac{(p+\alpha\phi)^{k}}{(p+\alpha\phi)^{k-1}} = f_{\alpha}(0) \frac{\theta^{t}}{t!} \left(\frac{p+\alpha\phi}{1-p}\right)^{t}.$$

Using the condition

$$\sum_{t=0}^{\infty} f_{\alpha}(t) = 1,$$

we get

$$f_{\alpha}(0) = \exp\left(-\theta(p + \alpha\phi)/(1-p)\right).$$

Taking into account the property of the α -Riordan symbol, we have

(2.14)
$$f_{\alpha}(0) = \exp\left(-\frac{\theta p}{1-p}\right) \cdot \exp\left(-\frac{\alpha\theta\phi}{1-p}\right)$$
$$= \exp\left(-\frac{\theta p}{1-p}\right) \left[1 + \frac{1}{1!}\left(\frac{\alpha\theta\phi}{1-p}\right) + \frac{1}{2!}\left(\frac{\alpha\theta\phi}{1-p}\right)^2 + \dots\right]^{-1}$$
$$= \exp\left(-\frac{\theta p}{1-p}\right) \left(1 - \frac{\theta\phi}{1-p}\right).$$

From (2.13) and (2.14) we obtain

$$f_{\alpha}(t) = \frac{\theta^{t}}{t!} \left(\frac{p + \alpha\phi}{1 - p}\right)^{t} \exp\left(-\frac{\theta p}{1 - p}\right) \left(1 - \frac{\theta\phi}{1 - p}\right),$$

which gives

$$f_{\alpha}(k) = \frac{1}{k!} (\lambda + \alpha \psi)^{k} (1 - \psi) e^{-\lambda}$$

with $\lambda = \theta p/(1-p), \ \psi = \theta \phi/(1-p), \ |\psi| < 1$, completing the proof of (2.2).

REMARK 2.1. Berg and Jaworski [1] pointed out that if X and Y are independent random variables, X has a Poisson distribution $(X \sim P(\lambda))$ and Y has a geometric distribution $(Y \sim G(\psi))$, then the convolution of X and Y has the α -modified Poisson distribution $(MP(\lambda, \psi))$ or a Delaporte distribution. So the statement of Theorem 2.1 gives a characterization of the Delaporte distribution.

The following result generalizes Theorem 2.1.

THEOREM 2.2. Let X and Y be independent random variables from C_{α} and C, respectively. If for given $p \in (0, 1)$, $\phi \ge 0$, and for each $t \ge 1$ the following two conditions hold:

5)

$$P[X = t|X + Y = t] = \frac{(p + \alpha\phi)^{t}}{1 + \sum_{i=1}^{t} t! ((t - i)!)^{-1} \phi^{i}},$$

$$P[X = t - 1|X + Y = t] = \frac{t(p + \alpha\phi)^{t-1} (1 - p)}{1 + \sum_{i=1}^{t} t! ((t - i)!)^{-1} \phi^{i}},$$

then

(2.1)

$$f_{\alpha}(k) = \frac{1}{k!} (\lambda + \alpha \psi)^k (1 - \psi) e^{-\lambda}, \quad g(k) = \frac{\theta^k}{k!} e^{-\theta},$$

where $\lambda = \theta p/(1-p), \ \psi = \theta \phi/(1-p), \ |\psi| < 1, and \ \theta > 0$ is arbitrary.

Proof. Since X and Y are independent, from (2.15) we get

(2.16)
$$\frac{f_{\alpha}(t)g(0)}{\sum_{i=0}^{t} f_{\alpha}(i)g(t-i)} = \frac{(p+\alpha\phi)^{t}}{1+\sum_{i=1}^{t} t! ((t-i)!)^{-1} \phi^{i}}$$

and

$$\frac{f_{\alpha}(t-1)g(1)}{\sum_{i=0}^{t}f_{\alpha}(i)g(t-i)} = \frac{t(p+\alpha\phi)^{t-1}(1-p)}{1+\sum_{i=1}^{t}t!((t-i)!)^{-1}\phi^{i}},$$

which leads us to

$$f_{\alpha}(t) = \frac{g(1)}{g(0)} \frac{1}{t} \frac{(p + \alpha \phi)^t}{(p + \alpha \phi)^{t-1}} \frac{1}{1-p} f_{\alpha}(t-1).$$

It then follows, by recursion, that for $t \ge 1$

(2.17)
$$f_{\alpha}(t) = \frac{\theta^{t}}{t!} \left(\frac{p + \alpha \phi}{1 - p}\right)^{t} f_{\alpha}(0),$$

where $\theta = g(1)/g(0)$. Referring now to (2.13) et seq., we infer that here also

$$f_{\alpha}(0) = \exp\left(-\frac{\theta p}{1-p}\right)\left(1-\frac{\theta \phi}{1-p}\right)$$

and

$$f_{\alpha}(t) = \frac{1}{t!} (\lambda + \alpha \psi)^t (1 - \psi) e^{-\lambda},$$

where $\lambda = \theta p/(1-p), \ \psi = \theta \phi/(1-p), \ |\psi| < 1$. Using (2.16), we get

(2.18)
$$\frac{f_{\alpha}(t)\left(1+\sum_{i=1}^{t}t!\left((t-i)!\right)^{-1}\phi^{i}\right)g(0)}{(p+\alpha\phi)^{t}} = \sum_{i=0}^{t}f_{\alpha}(i)g(t-i).$$

Putting (2.17) in (2.18) we obtain

$$(2.19) \quad \frac{\theta^{t}}{t!} \frac{g(0)}{(1-p)^{t}} \left(1 + \sum_{i=1}^{t} \frac{t!}{(t-i)!} \phi^{i} \right) \\ = \sum_{i=0}^{t} \frac{\theta^{i}}{i!} \frac{g(t-i)}{(1-p)^{i}} \left(p^{i} + \sum_{j=1}^{i} \frac{i!}{(i-j)!} \phi^{j} p^{i-j} \right).$$

Note that g(t) is the solution of (2.19) given by

$$g(m) = g(0)\frac{\theta^m}{m!}.$$

Since $\sum_{m=0}^{\infty}g(m)=1,$ we have $g(0)=e^{-\theta},$ which completes the proof. $\ \, \bullet$

3. A CHARACTERIZATION OF α -MODIFIED DISTRIBUTION OF TYPE j

Chakraborty investigated in [2] an α -modified binomial and Poisson distributions of type *j*. Recall that (cf. Chakraborty [2]) a random variable *X* is said to have an α -modified binomial distribution of type j ($X \sim MB_j(N, p, q, \phi)$) if

$$P[X = x] = \binom{N}{x} \frac{(p + \phi\alpha(j))^{x} q^{N-x}}{(q + p + \phi\alpha(j))^{N}} \\ = \binom{N}{x} \frac{(p + \phi\alpha(j))^{x} q^{N-x}}{(q + p)^{N} + \sum_{i=1}^{N} \binom{N}{i} \phi^{i} \alpha^{i}(j)(q + p)^{N-i}}, \quad x = 0, 1, \dots, N,$$

where $q + p \neq 1$, $q \ge 0$, $\phi \ge 0$, $p + \phi \ge 0$, and for i = 0, 1, ...

$$\alpha^{i}(j) = \begin{cases} \binom{i+j-1}{i}i! & \text{ for } j \ge 1, \\ 0 & \text{ for } j = 0. \end{cases}$$

We are interested here in a special case of α -modified binomial distribution of type j ($X \sim MB_j(N, p, \phi)$) defined by

$$P[X = x] = \binom{N}{x} \frac{\left(p + \phi\alpha(j)\right)^x q^{N-x}}{\left(1 + \phi\alpha(j)\right)^N}$$
$$= \binom{N}{x} \frac{\left(p + \phi\alpha(j)\right)^x q^{N-x}}{1 + \sum_{i=1}^N \binom{N}{i} \phi^i \alpha^i(j)}, \quad x = 0, 1, \dots, N,$$

where q + p = 1, $q \ge 0$, $\phi \ge 0$, $p + \phi \ge 0$.

A random variable X is said to have an α -modified Poisson distribution of type $j (X \sim MP_j(\lambda, \psi))$ if

$$P[X = x] = \frac{1}{x!} (\lambda + \psi \alpha(j))^{x} (1 - \psi)^{j} e^{-\lambda}, \quad x = 0, 1, 2 \dots,$$

where λ and ψ are parameters such that $\lambda + \psi \ge 0$, $0 < \psi < 1$.

A random variable X is said to have a *negative binomial distribution* $(X \sim NB(j, p))$ if

$$P[X = x] = {\binom{j+x-1}{x}} p^x (1-p)^j, \quad x = 0, 1, 2, \dots,$$

where j > 0 and 0 .

It is known that if $X \sim P(\lambda)$ and $Y \sim NB(j, \psi)$ are independent, then we have $X + Y \sim MP_j(\lambda, \psi)$. This distribution is known as the *Delaporte distribution* (see the references in the Introduction). Here we give a generalization of the results in Section 2.

If a random variable X has the α -modified Poisson distribution of type j, i.e., $X \sim MP_j(\lambda_x, \psi)$, and a random variable Y has the Poisson distribution $Y \sim P(\lambda_y)$, and if additionally X and Y are independent, then

$$P[X = k | X + Y = t] = {\binom{t}{k}} \frac{\left(\lambda_x + \alpha(j)\psi\right)^k \lambda_y^{t-k}}{\left(\lambda_x + \lambda_y + \alpha(j)\psi\right)^t}$$
$$= {\binom{t}{k}} \frac{\left(p + \alpha(j)\phi\right)^k (1-p)^{t-k}}{\left(1 + \alpha(j)\phi\right)^t}$$
$$= {\binom{t}{k}} \frac{\left(p + \alpha(j)\phi\right)^k (1-p)^{t-k}}{1 + \sum_{i=1}^t {\binom{t}{i}} \phi^i \alpha^i(j)}$$

with $p = \lambda_x/(\lambda_x + \lambda_y)$ and $\phi = \psi/(\lambda_x + \lambda_y)$, i.e. the conditional distribution of X given X + Y is an α -modified binomial distribution of type j ($MB_j(t, p, \phi)$) (cf. Section 1 for j = 1).

Now we present some characterization of the α -modified Poisson distribution of type j.

We say that a random variable X has an $\alpha(j)$ -modified discrete distribution with a support in $\mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, ...\}$ if its probability function depends on $\alpha(j)$ symbol.

Let $C_{\alpha(j)}$ denote the class of random variables X such that $0 < P[X = k] = f_{\alpha(j)}(k), k = 0, 1, 2, \dots$, and $\sum_{k=0}^{\infty} f_{\alpha(j)}(k) = 1$.

THEOREM 3.1. Let X and Y be random variables from $C_{\alpha(j)}$ and C, respectively. Suppose that X and Y are independent and

$$P[X = k | X + Y = t] = \begin{cases} {\binom{t}{k}} \frac{(p_t + \alpha(j)\phi)^k (1 - p_t)^{t-k}}{1 + \sum_{i=1}^t {\binom{t}{i}} \phi^i \alpha^i(j)}, & 0 \le k \le t \\ 0, & k > t. \end{cases}$$

Then $p_t \equiv p, \ 0 , and$

$$f_{\alpha(j)}(k) = \frac{1}{k!} \left(\lambda + \alpha(j)\psi \right)^k (1-\psi)^j e^{-\lambda}, \quad g(k) = \frac{\theta^k}{k!} e^{-\theta},$$

where $\lambda = \theta p/(1-p), \ \psi = \theta \phi/(1-p), \ 0 < \psi < 1,$ and $\theta > 0$ is arbitrary.

Proof. The proof is analogous to that of Theorem 2.1. ■

The following theorem contains a characterization of the Delaporte distribution.

THEOREM 3.2. Let X and Y be independent random variables from $C_{\alpha(j)}$ and C, respectively. If

$$P[X = t | X + Y = t] = \frac{\left(p + \alpha(j)\phi\right)^{t}}{1 + \sum_{i=1}^{t} {t \choose i} \phi^{i} \alpha^{i}(j)}, \quad t \ge 1, \ 0
$$P[X = t - 1 | X + Y = t] = \frac{t\left(p + \alpha(j)\phi\right)^{t-1}(1 - p)}{1 + \sum_{i=1}^{t} {t \choose i} \phi^{i} \alpha^{i}(j)},$$$$

then

$$f_{\alpha(j)}(k) = \frac{1}{k!} \left(\lambda + \alpha(j)\psi\right)^k (1-\psi)^j e^{-\lambda}, \quad g(k) = \frac{\theta^k}{k!} e^{-\theta},$$

where $\lambda = \theta p/(1-p)$, $\psi = \theta \phi/(1-p)$, $0 < \psi < 1$, and $\theta > 0$ is arbitrary.

Proof. The proof is similar to that of Theorem 2.2. ■

Theorems 2.1 and 2.2 are special cases of Theorems 3.1 and 3.2 for j = 1, respectively.

Acknowledgments. We thank very much our friend Kerwin Morris from Adelaide University for his mathematical and English suggestions.

REFERENCES

- [1] S. Berg and J. Jaworski, *Modified binomial and Poisson distributions with application in random mapping theory*, J. Statist. Plann. Inference 18 (1988), pp. 313–322.
- [2] S. Chakraborty, On some new α-modified binomial and Poisson distributions and their applications, Comm. Statist. Theory Methods 37 (2008), pp. 1755–1769.
- [3] S. D. Chatterji, Some elementary characterizations of the Poisson distribution, Amer. Math. Monthly 70 (1963), pp. 958–964.
- [4] P. Delaporte, Quelques problèmes de statistique mathématique posés par l'assurance automobile et le bonus pour non sinistre, Bull. Trimest. Inst. Actuaires Fr. 227 (1959), pp. 87–102.
- [5] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, second edition, Wiley, New York 1957.
- [6] N. Johnson, S. Kotz, and A. Kemp, Univariate Discrete Distributions, second edition, Wiley, New York 1992.
- [7] S. A. Klugman, H. H. Panjer, and G. E. Willmot, Loss Models: From Data to Decisions, Wiley, New York 1998.
- [8] M. Murat and D. Szynal, Moments of counting distributions satisfying recurrence relations, Mat. Stosow. 1 (42) (2000), pp. 92–129.
- [9] H. H. Panjer and G. E. Willmot, Insurance Risk Models, Society of Actuaries, 1992.
- [10] J. Riordan, Combinatorial Identities, Wiley, New York 1968.
- [11] K. Steliga and D. Szynal, Note on a characterization of α-modified and truncated Poisson distribution, Int. J. Pure Appl. Math. 67, No. 2 (2011), pp. 141–147.
- [12] B. Sundt and R. Vernic, Recursions for Convolutions and Compound Distributions with Insurance Applications, Springer, Berlin-Heidelberg 2009.
- [13] G. E. Willmot and B. Sundt, *On evaluation of the Delaporte distribution and related distributions*, Scand. Actuar. J. (1989), pp. 101–113.

Department of Mathematics Faculty of Economics Maria Curie-Skłodowska University pl. Marii Curie-Skłodowskiej 5 20-031 Lublin, Poland *E-mail*: katarzyna.steliga@gmail.com Wydział Zamiejscowy KUL (Department of Economics) ul. Ofiar Katynia 6 37-450 Stalowa Wola, Poland *E-mail*: szynal@poczta.umcs.lublin.pl

Received on 20.12.2011; revised version on 25.9.2012