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Abstract. There are two platforms for analyzing stochastic processes:
time domain and spectral domain. For periodically correlated processes both
of these analyses have been discussed through invoking their close tie with
multivariate stationary processes. In this note we present a direct approach
to the spectral properties of periodically correlated processes.
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1. INTRODUCTION AND NOTATION

A second order stochastic process is a sequence of complex random variables
with mean zero and finite second moments. Since we are interested only in corre-
lation properties of a stochastic sequence, we adopt a slightly more general defini-
tion, however, we will keep labeling them stochastic to point to its origin.

DEFINITION 1.1. Let H be a complex Hilbert space with an inner product
(·, ·)H. A stochastic sequence is a sequence

(
X(n)

)
of elements of H indexed

by the set of all integers Z . The correlation function of the sequence
(
X(n)

)
is

the function on Z2 defined by RX(m,n) =
(
X(m), X(n)

)
H. Two stochastic se-

quences,
(
X(n)

)
inH and

(
Y (n)

)
in a possibly different Hilbert spaceK, are said

to be equivalent if RX(m,n) = RY (m,n) for every m,n ∈ Z .

Historically, there are two platforms of analysis for stochastic sequences: time
domain and spectral domain. Time domain analysis deals with studying properties
of a sequence through its geometry, while spectral domain analysis is the study of
properties of a sequence through properties of its spectrum. The milestone of the
spectral analysis is to represent the process as a treatable family of functions in
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some function space related to the spectrum of the process. The notion of a spec-
trum stems from the fact that every bounded function R(m,n) on Z2 is, in some
sense, a mixture of fundamental harmonics e−i(mu−nv), m,n ∈ Z . Intuitively, the
spectrum of

(
X(n)

)
at frequency (u, v) ∈ [0, 2π)2 represents the degree that the

component e−i(mu−nv) contributes to the function RX(m,n). Mathematically, the
spectrum of

(
X(n)

)
is an “object” (e.g. function, measure, or Schwartz distribu-

tion in general) on [0, 2π)2 whose Fourier transform is RX(m,−n). A stochastic
sequence

(
X(n)

)
is strongly harmonizable if this “object” is a measure, that is, if

there is a measure Γ such that

(1.1) RX(m,n) =
2π∫
0

2π∫
0

e−i(mu−nv)Γ(du, dv), m, n ∈ Z.

The time domain analysis of a harmonizable sequence aims at deriving properties
of the sequence from the properties of the measure Γ.

Both stationary and periodically correlated sequences are strongly harmoniz-
able. The case of stationary

(
X(n)

)
is especially pleasant because its spectral

measure Γ is supported on the diagonal of the square [0, 2π)2. In this case the
measure F (∆) = Γ(∆ ×∆) is referred to as the spectral measure of the station-
ary sequence

(
X(n)

)
. A basic tool for spectral analysis of stationary sequences

is an observation that if
(
X(n)

)
is stationary and its spectral measure has a fac-

torization F (du) = |h(u)|2µ(du), then
(
X(n)

)
can be viewed as the trajectory

x(n) = e−in·h(·) in L2
(
[0, 2π), µ; C

)
of the function h under the unitary group of

multiplication by e−in·. This observation opens doors to huge variety of analytic
tools available in harmonic analysis.

The main purpose of this paper is to propose an analogous spectral represen-
tation for periodically correlated (PC) sequences. This will be proceeded by con-
structing a simultaneous factorization of all the measures comprising the spectrum
of the PC sequence.

PC sequences arise from multivariate stationary sequences by arranging the
elements of the latter in one sequence. Because of this relation, one can therefore
wonder why we need to study PC sequences separately. In fact, there are ample
reasons to do this, the main being that prediction technique of multivariate station-
ary sequences does not address the question of the space-time prediction, that is,
prediction of, say, element Xk(n) given all the past values until moment n− 1 and
the values Xj(n) for j < k. For that reason PC theory developed its own technique
which we briefly summarize in Section 2.

In this paper R and C will denote the sets of real and complex numbers,
respectively, Z and N will be the sets of integers and positive integers, and H
and K will denote separable complex Hilbert spaces. By Cn we understand the
space of row vectors a = [a1, a2, . . . , an] with complex coordinates. If a ∈ Cn
then a∗ will denote a column vector with components ak. If T ∈ N is fixed, then
for every m ∈ Z , q(m) and ⟨m⟩ will stand for the quotient and the remainder
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in division of m by T , ⟨m⟩ ∈ {0, . . . , T − 1}, respectively. With this notation
m = q(m)T + ⟨m⟩.

A sequence
(
p(n)

)
inH is said to be T -periodic (T ∈ N ) if p(n+ T ) = p(n)

for every n ∈ Z . The discrete Fourier transform of a T -periodic sequence
(
p(n)

)
is the T -periodic sequence

(
P (n)

)
defined by

P (n) =
1

T

T−1∑
k=0

e−2πink/T p(k).

Clearly, p(n) =
∑T−1

k=0 e2πink/TP (k). The latter operation is referred to as the
inverse discrete Fourier transform.

In this paper we will be dealing with complex functions on R which are peri-
odic with period 2π. It is convenient to identify them with complex functions on the
interval [0, 2π) regarded as a group with addition modulo 2π. In order to remember
this we will often call [0, 2π) to be a circle and, consequently, its subintervals will
be called arcs. All sets referred in the paper will be assumed Borel, all measures
in the paper will be complex Borel measures on the circle [0, 2π), unless is clearly
stated otherwise, and all functions will be assumed Borel measurable. A measure
ν on [0, 2π) is said to be 2π/T -invariant if ν(∆) = ν(∆ + 2π/T ) for every Borel
subset ∆. Given a measure ν, L2(ν, Cn) will denote the Hilbert space of Cn-valued
Borel functions f on [0, 2π) (or 2π-periodic functions on R) such that

(1.2) ∥f∥2 =
2π∫
0

f(t)f(t)∗ν(dt) <∞.

If ν = dt is the Lebesgue measure, we simply write L2(Cn) instead of L2(dt, Cn).
A stochastic sequence was defined at the beginning of this section. Although

we will be dealing with only one-variate periodically correlated sequences we need
to introduce the notion of multivariate stochastic sequence. A T -variate stochastic
sequence in H (T ∈ N ) is a sequence of (column) vectors X(n) = [Xk(n)], n ∈
Z , of the length T with components in H. The correlation function of

(
X(n)

)
is

the T ×T -matrix valued function R(m,n) = [Rk,j(m,n)] with entries Rk,j(m,n)
=

(
Xk(m), Xj(n)

)
H, k, j = 1, . . . , T , m,n ∈ Z . A T -variate stochastic

sequence
(
X(n)

)
is stationary if R(m,n) depends on n−m, that is, R(m,n) =

K(m − n). In the sequel the phrase the correlation function of a stationary se-
quence will refer to the function K(n) rather than to R(m,n). For every T -variate
stationary sequence

(
X(n)

)
there is a unique T ×T -matrix valued measure F (du)

= [F k,j(du)] on the interval [0, 2π), called the spectral measure of the stationary
sequence

(
X(n)

)
, such that

(1.3) Kk,j(n) =
2π∫
0

e−inuF k,j(du), k, j = 1, . . . , T, n ∈ Z.

More about finite-dimensional stationary sequences can be found in [5].
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2. PRIMER ON PC SEQUENCES

Let T be a fixed positive integer andH be a complex Hilbert space.

DEFINITION 2.1. A stochastic sequence
(
X(n)

)
in H is called periodically

correlated with period T (or T -PC) if RX(m,n) = RX(m + T, n + T ) for
all m,n ∈ Z or, equivalently, if for every n ∈ Z the lag n correlation function
RX(n+ r, r) is T -periodic in r.

Write

(2.1) aj(n) =
1

T

T−1∑
r=0

e−2πijr/TRX(n+ r, r).

For a fixed n, aj(n), j ∈ Z , is the discrete Fourier transform of a periodic se-
quence RX(n+ r, r), r ∈ Z , and hence aj(n) is T -periodic in j and R(n+ r, r) =∑T−1

j=0 e2πijr/Taj(n).
There is an obvious relation between T -PC and T -variate stationary sequences.

LEMMA 2.1. If
(
X(n)

)
inH is T -PC, then the T -variate sequence

(2.2) X(n) = [Xk(n)], where Xk(n) = X(nT + k − 1), k = 1, . . . , T,

is stationary. Conversely, if X(m) = [Xk(m)] is a T -variate stationary sequence
in H, then the sequence X(m) = X⟨m⟩+1

(
q(m)

)
, m ∈ Z, is periodically corre-

lated with period T .

Given a T -PC sequence
(
X(n)

)
, the T -variate stationary sequence X(m) =

[Xk(m)] defined in (2.2) will be called its associated block sequence.
An analysis of PC sequences is based on the observation that a PC sequence

is a unitary deformation of a periodic sequence. Namely, for every T -PC sequence(
X(m)

)
inH one can find a Hilbert space K ⊇ H, a unitary operator V in K, and

a T -periodic function
(
p(m)

)
in K such that

(2.3) X(m) = V mp(m), m ∈ Z.

If we define Zj+1(m) = V mP (j), j = 0, . . . , T − 1, m ∈ Z , where
(
P (j)

)
is

the discrete Fourier transform of
(
p(k)

)
, then Z(m) = [Zk(m)] is a T -variate

stationary sequence and

(2.4) X(m) =
1

T

T−1∑
j=0

e−2πijm/TZj+1(m).

Although
(
Z(m)

)
depends on the choice of V and K (which can be chosen in
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many different ways), the representation (2.4) turns out to be a very useful tool in
analysis of PC sequences. In particular, it yields the following fundamental prop-
erty of PC sequences.

THEOREM 2.1 (Gladyshev). Let
(
X(m)

)
be a PC sequence with period T .

Then
(
X(m)

)
is strongly harmonizable and its spectrum Γ sits on the union L =∪T−1

j=0 Lj of T lines

Lj = {(u, v) ∈ [0, 2π)2 : v = u+ 2πj/T}, j = 0, . . . , T − 1,

parallel to the main diagonal of the torus [0, 2π)2.

Remember that the addition in [0, 2π) is modulo 2π. If now we define γj(∆) =
Γj(∆ × [∆ + 2πj/T ]), where Γj is the restriction of Γ to the line Lj , then it is
easy to see that

(2.5) aj(n) =
2π∫
0

e−intγj(dt), n ∈ Z, j = 0, . . . , T − 1.

The measures γj , j = 0, . . . , T − 1, will be referred to as the spectral mea-
sures, or just the spectrum, of the T -PC sequence

(
X(n)

)
.

The theory of PC sequences began with Gladyshev’s paper [1] and was fully
developed in a series of works by Hurd. For proofs, bibliography, and more infor-
mation about PC sequences we refer the reader to [2].

3. SPECTRAL REPRESENTATION OF A PC SEQUENCE

Let T be a fixed positive integer. The aim of this section is to prove the fol-
lowing two theorems.

THEOREM 3.1 (Factorization). A family of measures γj , j = 0, . . . , T − 1,
is a spectrum of a PC sequence if and only if there exist a 2π/T -invariant non-
negative measure ν and a function f ∈ L2(ν, CT ) such that, for every j ∈ Z and
every Borel ∆,

(3.1) γj(∆) =
1

T

∫
∆

f(t)f(t+ 2πj/T )∗ν(dt).

We want to emphasize that there is a single function f which generates all γj’s.
However, neither ν nor f are unique. In the sequel any function f ∈ L2(ν, CT )
satisfying (3.1) will be referred to as a factor of measures (γj) with respect to ν.

THEOREM 3.2 (Representation). Let
(
X(m)

)
be a T -PC sequence in H and

let γj , j = 0, . . . , T − 1, be its spectrum. Further, let ν be a 2π/T -invariant mea-
sure on [0, 2π) and f be a factor of measures (γj) with respect to ν (see Theo-
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rem 3.1 above). Then the L2(ν, CT )-valued sequence
(
x(m)

)
defined by

(3.2) x(m)(u) =
1

T

T−1∑
j=0

e−im(u+2πj/T )f(u+ 2πj/T ), u ∈ [0, 2π), m ∈ Z,

is equivalent to the sequence
(
X(m)

)
.

The proofs of the two theorems are interlaced and we split them into a few
lemmas. The main idea of the construction presented below stems from [4].

Given a measure µ on the interval [0, 2π), let µ/T denote the measure on
[0, 2π) defined by

(3.3) µ/T (∆) =
T−1∑
k=0

µk(∆ ∩ Ik),

where Ik =
[
2πk/T, 2π(k + 1)/T

)
and µk is a measure supported on Ik defined

by the formula
µk(∆) = (1/T )µ

(
T (∆ ∩ Ik)

)
.

In simple words, to obtain µ/T we compress µ to the arc I0, divide it by T , repli-
cate on consecutive arcs Ik, k = 0, 1, . . . , T − 1, and then add them up. Remember
that the multiplication in [0, 2π) is modulo 2π, so the precise meaning of the sym-
bol T∆ is T∆ = {t ∈ [0, 2π) : t = Tu modulo 2π, u ∈ ∆}. Below are obvious
properties of the measure µ/T .

LEMMA 3.1. Let µ be a nonnegative measure on [0, 2π) and let µ/T be as
above. Then µ/T is 2π/T -invariant and for any f ∈ L2(µ, Cm), m ∈ N ,

(3.4)
2π∫
0

f(u)µ(du) =
2π∫
0

f(Tu)µ/T (du).

Consequently, the mapping S : (Sf)(u) = f(Tu) is an isometry from L2(µ, Cm)
into L2(µ/T , Cm). The range of S consists of all 2π/T -periodic functions g ∈
L2(µ/T , Cm). Moreover, for every 2π/T -invariant measure ν on [0, 2π) there is a
measure µ such that ν = µ/T .

P r o o f. If f = 1∆, then, using the notation above,

2π∫
0

1∆(Tu)µ/T (du) =
T−1∑
k=0

µk(∆/T + 2πk/T ) = µ(∆) =
2π∫
0

1∆(u)µ(du),

which implies (3.4). Consequently, ∥Sf∥2L2(µ/T ,Cm) = ∥f∥
2
L2(µ,Cm). Obviously,

every 2π/T -periodic function g ∈ L2(µ/T , Cm) is of the form g(u) = f(Tu),
where f(u) = g(u/T ), u ∈ [0, 2π), and f ∈ L2(µ, Cm). If ν is 2π/T -invariant
and we define µ(∆) = ν(∆/T ), then µ/T = ν. �
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Let
(
X(n)

)
be a T -PC sequence and let F = [F j,k] be the spectral measure

of the multivariate sequence X(n) = [Xk(n)], n ∈ Z, associated with
(
X(n)

)
as in Lemma 2.1. Suppose that all (F j,k) are absolutely continuous with respect
to a nonnegative measure µ (for example, one can take µ =

∑T−1
k=0 F k,k). Denote

f(t) = [f j,k(t)] to be the Radon–Nikodym derivative of F with respect to µ. Since
f(t) is nonnegative definite µ-a.e., there exists a T × T -matrix valued Borel mea-
surable function h(t) such that h(t)h(t)∗ = f(t) µ-a.e. If now hk(t) denotes the
k-th row of h(t), k = 1, . . . , T , then hk ∈ L2(µ, CT ) and

(3.5) f j,k(t) = hj(t)
(
hk(t)

)∗
µ-a.e.

In the sequel, functions hk ∈ L2(µ, CT ) that satisfy (3.5) will be referred to as fac-
tors of F with respect to µ. The equation (3.5) shows that the sequence X(n) =
[Xk(n)] is equivalent to the L2(µ, CT )-valued sequence h(n) = [hk(n)] defined
as hk(n)(·) = e−in·hk(·), k = 1, . . . , T, n ∈ Z . Remembering that X(m) =
X⟨m⟩+1

(
q(m)

)
(see Lemma 2.1) we infer that the PC sequence

(
X(m)

)
is equiv-

alent to the sequence
(
h(m)

)
in L2(µ, CT ) given by

(3.6) h(m)(·) = e−iq(m)·h⟨m⟩+1(·), m ∈ Z.

This representation turns out to be difficult to work with and we propose its certain
modification.

LEMMA 3.2. Let
(
X(m)

)
be a T -PC sequence and µ and hk be as above. Set

ν = µ/T , and for every u ∈ [0, 2π), m ∈ Z, and k = 1, . . . , T, define

gk(u) = hk(Tu),(3.7)

f(u) =
T−1∑
k=0

eikugk+1(u),(3.8)

x(m)(u) =
1

T

T−1∑
j=0

e−im(u+2πj/T )f(u+ 2πj/T ).(3.9)

Then
(
x(m)

)
is a sequence in L2(ν, CT ) equivalent to the sequence

(
X(m)

)
.

P r o o f. Since
(
X(m)

)
is equivalent to the L2(µ, CT )-valued sequence(

h(m)
)

defined in (3.6) and the mapping S from Lemma 3.1 is an isometry from
L2(µ, CT ) into L2(ν, CT ), we conclude that

(
X(m)

)
is equivalent to an L2(ν, CT )-

valued sequence x(m) = S
(
h(m)

)
. Because q(m)T = m− ⟨m⟩,

(3.10) x(m)(u) = S
(
h(m)

)
= e−imuei⟨m⟩ug⟨m⟩+1(u),

where gk = S(hk). Write p(k)(u) = eikugk+1(u), k = 0, . . . , T − 1. Because
each gk+1 is 2π/T -periodic, the inverse discrete Fourier transform

(
P (j)

)
of

(
p(k)

)
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takes the form

P (j)(u) =
T−1∑
k=0

e2πikj/T p(k)(u) =
T−1∑
k=0

eik(u+2πj/T )gk+1(u)

=
T−1∑
k=0

eik(u+2πj/T )gk+1(u+ 2πj/T ) = f(u+ 2πj/T ), j ∈ Z.

Therefore, for any k = 0, . . . , T − 1,

eikugk+1(u) = p(k)(u) =
1

T

T−1∑
j=0

e−2πikj/TP (j)(u)(3.11)

=
1

T

T−1∑
j=0

e−2πikj/T f(u+ 2πj/T ).

In particular,

ei⟨m⟩ug⟨m⟩+1(u) =
1

T

T−1∑
j=0

e−2πi⟨m⟩j/T f(u+ 2πj/T )

=
1

T

T−1∑
j=0

e−2πimj/T f(u+ 2πj/T ).

Substituting the above to (3.10) gives (3.9). �

In what follows we will study properties of sequences of the form (3.9).

LEMMA 3.3. Let ν be a 2π/T -invariant measure on [0, 2π) and f ∈L2(ν, CT ).
Define

(3.12) x(m)(u) =
1

T

T−1∑
j=0

e−im(u+2πj/T )f(u+ 2πj/T ), u ∈ [0, 2π),m ∈ Z.

Then:
1.

(
x(m)

)
be a T -PC sequence in L2(ν, CT ).

2. Define ξ(∆) = (1/T )
∑T−1

j=0 1∆(u + 2πj/T )f(u + 2πj/T ). Then ξ is a
vector measure in L2(ν, CT ) and for every m ∈ Z

(3.13) x(m) =
2π∫
0

e−imtξ(dt).

3. The spectrum (γp) of
(
x(m)

)
is given by

(3.14) γp(∆) =
1

T

∫
∆

f(t)f(t+ 2πp/T )∗ν(dt).
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4. If x(n) = [xk(n)] is the block sequence generated by
(
x(n)

)
, xk+1(n) =

x(nT + k), then its spectral measure F is absolutely continuous with respect to
the measure µ defined as µ(∆) = ν(∆/T ), and its Radon–Nikodym derivatives
admit factorizations

(3.15)
dF j,k

dµ
(u) = hj(u)hk(u)∗,

where

hk+1(u) =
1

T

T−1∑
p=0

e−ik(u/T+2πp/T )f(u/T + 2πp/T ) µ-a.e.

P r o o f. 1. The lag m correlation function of
(
x(m)

)
,

Rx(m+ k, k) =

1

T 2

2π∫
0

e−imu

[ T−1∑
j=0

T−1∑
l=0

e−2πi(m+k)j/T e2πikl/T f

(
u+

2πj

T

)
f

(
u+

2πl

T

)∗]
ν(du),

is clearly T -periodic in k, and hence the sequence
(
x(m)

)
is T -PC.

2. The assertion follows from the standard measure-theoretical argument.
First of all, the σ-additivity of ξ is an obvious consequence of the vector version
of Lebesgue’s convergence theorem. If ϕ =

∑
p ap1∆p is a simple scalar function,

then by definition of the integral we have

[ 2π∫
0

ϕ(t)ξ(dt)
]
(u) =

∑
p

ap ξ(∆p)(u) =
1

T

T−1∑
j=0

ϕ(u+ 2πj/T )f(u+ 2πj/T ).

The Lebesgue convergence theorem implies that the above formula holds true for
any bounded Borel function ϕ. Taking ϕ(t) = e−imt we obtain

[ 2π∫
0

e−imtξ(dt)
]
(u) =

1

T

T−1∑
j=0

e−im(u+2πj/T )f(u+ 2πj/T ) = x(m)(u).

3. Since
(
x(m)

)
is PC, it follows from Gladyshev’s theorem that it is har-

monizable. Therefore, the measure Γ in the representation (1.1) of the correlation
function Rx(m,n) of

(
x(n)

)
satisfies Γ(∆ ×D) =

(
ξ(∆), ξ(D)

)
L2(ν,CT )

. From
(3.13) we therefore infer that

Γ(∆×D) =

1

T 2

T−1∑
j=0

T−1∑
k=0

[ 2π∫
0

1∆

(
u+

2πj

T

)
1D

(
u+

2πk

T

)
f

(
u+

2πj

T

)
f

(
u+

2πk

T

)∗
ν(du)

]
.
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Note that if ∆ is small, meaning ∆ is included in an interval of the length smaller
than 2π/T , and if D = ∆+ 2πp/T for some p, then

1∆(u+ 2πj/T )1∆+2πp/T (u+ 2πk/T ) = 1[∆−2πj/T ](u)1[∆−2π(k−p)/T ](u) = 0,

except when k = j + p modulo T . Therefore, for such small ∆ we have

γp(∆) = Γ(∆× [∆ + 2πp/T ])

= (1/T 2)
T−1∑
j=0

2π∫
0

1∆(u+2πj/T )f(u+2πj/T )f
(
u+2π(p+ j)/T

)∗
ν(du).

Since ν is 2π/T invariant, each integral above equals

2π∫
0

1∆(t)f(t)f(t+ 2πp/T )∗ν(dt).

Consequently, for small ∆,

γp(∆) = (1/T )
∫
∆

f(t)f(t+ 2πp/T )∗ν(dt).

Since γp is a measure, the formula above holds for any Borel set ∆.

4. Define

(3.16) gk+1(u) = (1/T )
T−1∑
j=0

e−ik(u+2πj/T )f(u+ 2πj/T ), k = 0, . . . , T − 1.

Then, clearly, each gk+1 is 2π/T -periodic and, in terms of gk, the sequence x(m)
defined in (3.12) equals

x(m)(u) = e−iq(m)Tug⟨m⟩+1(u).

Consequently, the coordinates of the block sequence x(m) = [xk(m)] associated
with

(
x(m)

)
are

xk+1(m)(u) = x(mT + k)(u) = e−imTugk+1(u), k = 0, . . . , T − 1, m ∈ Z.

Since each function above is 2π/T -periodic and µ/T = ν, in view of Lemma 3.1
the correlation function K(m) = [Kj,k(m)] of

(
x(m)

)
equals

Kj+1,k+1(m) =
2π∫
0

e−imTugk+1(u)gj+1(u)∗ν(du)

=
2π∫
0

e−imuhk+1(u)hj+1(u)∗µ(du),
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where

hk+1(u) = gk(u/T ) = (1/T )
T−1∑
p=0

e−ik(u/T+2πp/T )f(u/T + 2πp/T ).

Therefore
dF j,k

dµ
(u) = hj(u)hk(u)∗ ν-a.e. �

P r o o f o f T h e o r e m 3.1. Suppose that (γp) is the spectrum of a T -PC
sequence

(
X(n)

)
. Let F = [F j,k] be the spectral measure of the block sequence

X(n) = [Xk(n)], n ∈ Z, associated with
(
X(n)

)
as in Lemma 2.1. Suppose that

all (F j,k) are absolutely continuous with respect to a nonnegative measure µ. Take
ν = µ/T . Then from Lemma 3.2 it follows that

(
X(n)

)
is equivalent to the se-

quence (3.9), and from Lemma 3.3, part 3, we conclude (3.1). Conversely, suppose
that γp, p = 0, . . . , T − 1, are given by (3.1), where ν is 2π/T -invariant. Define
the sequence

(
x(m)

)
as in (3.12). Lemma 3.3, parts 1 and 3, tells us that

(
x(m)

)
is T -PC and (γp) is its spectrum. �

P r o o f o f T h e o r e m 3.2. Suppose that the spectrum (γp) of
(
X(m)

)
satisfies (3.1), where ν is 2π/T -invariant. Let

(
x(m)

)
be given by (3.2). Then,

by Lemma 3.3, the sequences
(
x(m)

)
and

(
X(m)

)
have the same spectrum, and

hence they are equivalent. �

4. COROLLARIES AND REMARKS

In Lemmas 3.2 and 3.3 we established an explicit correspondence between
factors of the spectrum (γp) of a PC sequence and factors of the spectral measure
of its associated block sequence.

COROLLARY 4.1. Let
(
X(n)

)
be T -PC, (γp) be its spectrum, and F be the

spectral measure of its associated block sequence.
(A) Suppose that each γp is absolutely continuous with respect to a 2π/T -

invariant nonnegative measure ν and let f ∈ L2(ν, CT ) be a factor of measures
(γp) with respect to ν. Then F is absolutely continuous with respect to the measure
µ defined by µ(∆) = ν(∆/T ), and for every j, k = 0, . . . , T − 1

dF j,k

dµ
(u) = hj(u)hk(u)∗ µ-a.e.,

where hk+1(u) = (1/T )
∑T−1

p=0 e−ik(u/T+2πp/T )f(u/T + 2πp/T ).
(B) Conversely, if F is absolutely continuous with respect to a nonnegative

measure µ and hk ∈ L2(µ, CT ) are factors of F with respect to µ, then each γp is
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absolutely continuous with respect to ν = µ/T , and for every p

dγp
dν

(u) = (1/T )f(u)f(u+2πp/T )∗ ν-a.e., where f(u) =
T−1∑
k=0

eikuhk+1(Tu).

As a byproduct we have obtained an explicit, though rather complex, relation
between the spectra of the two sequences. This completes an unfinished attempt to
describe this relationship undertaken in [3].

dγp
dν

(u) =
1

T

T−1∑
k=0

T−1∑
j=0

e−2πijp/T ei(k−j)u
dF j,k

dµ
(Tu) ν-a.e.,(4.1)

dF j,k

dµ
(u) =

eiu(k−j)/T

T 2

T−1∑
p=0

T−1∑
q=0

e2πi(qk−jp)/T
dγq−p
dν

(
u

T
+

2πp

T

)
µ-a.e.(4.2)

Corollary 4.1 allows us to address the question of uniqueness of a factor f
appearing in Theorem 3.1. A T × T complex matrix U is called a partial isometry
if ∥xU∥ = ∥x∥ for all x ∈ N (U)⊥, where N (U) stands for the null space of U
defined as the set of all x ∈ CT such that xU = 0. If U is a partial isometry, then
xUU∗ = x for all x ∈ N (U)⊥.

COROLLARY 4.2. Let
(
X(n)

)
be T -PC, (γp) be its spectrum, and let ν be

a 2π/T -invariant nonnegative measure on [0, 2π) such that each γp is absolutely
continuous with respect to ν. If f1 and f2 are two factors of (γp) with respect to ν,
then there exists a 2π/T -periodic T × T -matrix function V (u) such that V (u) is
a partial isometry and f2(u) = f1(u)V (u) ν-a.e.

P r o o f. Let F be the spectral measure of the block sequence associated with(
X(m)

)
, and let (hk+1

i ), i = 1, 2, be two factors of F with respect to µ. Then the
T × T -matrix functions hi(u) = [hk+1

i (u)], i = 1, 2, satisfy

dF

dµ
(u) = h1(u)h1(u)

∗ = h2(u)h2(u)
∗ µ-a.e.

It is known that a matrix factor of a nonnegative definite matrix is unique up to
multiplication by a partial isometry. It follows that there exists a T × T -matrix
function U(u) such that U(u) is a partial isometry and h2(u) = h1(u)U(u) µ-a.e.
The later equation says that hj+1

2 (u) = hj+1
1 (u)U(u), j = 0, . . . , T − 1. In view

of the correspondence described in Corollary 4.1 we have

f2(u) =
T−1∑
k=0

eikuhk+1
2 (Tu) =

T−1∑
k=0

eikuhk+1
1 (Tu)U(Tu) = f1(u)V (u)

with V (u) = U(Tu). �
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If a measure ϱ on [0, 2π) is absolutely continuous with respect to the Lebesgue
measure dt, then we shortly say that ϱ is absolutely continuous. If this is the
case then the Radon–Nikodym derivative (dϱ/dt)(u) = ϱ′(u) will be called the
density of ϱ and will be denoted by ϱ′. The spectrum (γp) of a PC is said to
be absolutely continuous if all γp’s are absolutely continuous. Since |γp(∆)|2 ¬
γ0(∆)γ0(∆ + 2πp/T ), for absolute continuity of (γp) it is enough that the di-
agonal measure γ0 is absolutely continuous. Note that the Lebesgue measure is
2π/T -invariant for every T ∈ N . Moreover, if µ is the Lebesgue measure then
µ/T is also, and vice versa, if ν is the Lebesgue measure then µ(∆) = Tν(∆/T )
is also. As an immediate consequence of relations (4.1) and (4.2) we obtain

COROLLARY 4.3. A T -PC sequence
(
X(n)

)
has an absolutely continuous

spectrum iff the spectrum of its associated block sequence is absolutely continuous.

Now we can state the absolute continuous version of Theorem 3.1.

THEOREM 4.1. Suppose that
(
X(m)

)
is T -PC with absolutely continuous

spectrum (γp) and let γ′p(t) denote the density of γp. Then there exists a function
f ∈ L2(CT ) such that for every p ∈ Z

(4.3) γ′p(u) = (1/T )f(u)f(u+ 2πp/T )∗ du-a.e.

The last theorem in this paper links properties of f with regularity properties of
the sequence

(
X(m)

)
in exactly the same way as for stationary sequences. Recall

that a stochastic sequence
(
X(m)

)
inH is called regular if

∩
n∈ZMX(n) = {0},

where MX(n) is the closed subspace of H spanned by the set {X(m) : m ¬ n}.
A function f ∈ L2(Cn) is called analytic if its Fourier transform is supported on
the set of nonnegative integers, that is, if its Fourier coefficients

f̂(n) = (1/2π)
2π∫
0

e−intf(t)dt

are zero for all n < 0. It what follows, by L2
r(CT ), r ∈ Z , we denote the subspace

of L2(CT ) consisting of all functions for which f̂(n) = 0 for all n < r. With this
notation L2

0(CT ) is the space of analytic functions and L2
r(CT ) = eir·L2

0(CT ).

THEOREM 4.2. A T -PC sequence
(
X(m)

)
is regular if and only if its spec-

trum is absolutely continuous and a function f in (4.3) can be chosen analytic.

P r o o f. It is well known that a T -variate stationary sequence is regular iff
its spectral measure is absolutely continuous and its spectral density f(t) admits
an analytic factor, i.e. there is a T × T -matrix valued function h(t) whose rows
hk(t) are analytic and such that h(t)h(t)∗ = f(t) (see, for example, [5]). Suppose
first that

(
X(m)

)
is regular. Then its block sequence is also regular, and hence in

Lemma 3.2 we can choose µ to be the Lebesgue measures and functions hk and
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gk to be analytic. Consequently, ν = µ/T is the Lebesgue measure and the func-
tion f in (3.8), which by Lemma 3.3 is a factor of the spectrum of

(
X(m)

)
, is

analytic. Conversely, suppose that there exists an analytic f ∈ L2
0(CT ) that satis-

fies (4.3). Let
(
x(m)

)
be defined by (3.12). Then by Lemma 3.3, part 3,

(
x(m)

)
is equivalent to the sequence

(
X(m)

)
. Since the past Mx(−n) of

(
x(m)

)
is a

subspace of L2
n(CT ), the intersection

∩
n∈ZMx(n) ⊆

∩
n∈Z L

2
n(CT ) = {0}, and

hence
(
x(n)

)
, and so

(
X(n)

)
, is regular. �
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