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Abstract. We consider a vector of numbers of clusters at different dis-
tance levels of n independent identically distributed random variables uni-
formly distributed on [a, b]. We prove asymptotic normality of this vector
when the ends a, b are known or are estimated from the sample. Basing on
these asymptotic results we propose new tests for uniformity, called clus-
ter tests. We also present results of a simulation study showing empirical
behaviour of these tests.
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1. INTRODUCTION

Let U1, U2, . . . be independent random variables, each uniformly distributed
in the unit interval [0, 1]. For each n ∈ N, let U1,n ¬ . . . ¬ Un,n be the order
statistics pertaining to the sample U1, . . . , Un. The elements of the sample are al-
most surely different, so U1,n < . . . < Un,n almost surely. Given a deterministic
threshold dn ∈ (0, 1), the sequence U1, . . . , Un breaks up into nonempty disjoint
clusters C1,n, . . . , CKn,n at level dn, where a random integer Kn ∈ {1, . . . , n} is
the number of clusters. The distance between any two neighbouring elements of
Ck,n = {UN0,n+...+Nk−1,n+1,n, . . . , UN1,n+...+Nk,n,n} is not greater than dn, k =
1, . . . ,Kn, where Nk,n = |Ck,n| is a number of elements in Ck,n and N0,n =
0, and if Kn > 1, then UN1,n+...+Nk−1,n+1,n − UN1,n+...+Nk−1,n,n > dn for k =
2, . . . ,Kn.

In the terminology of random graphs, the random variables U1, . . . , Un and
the distance level dn generate the random interval graph Gn = G(U1, . . . , Un; dn).
The vertex set of Gn is the set {1, . . . , n} representing U1, . . . , Un. Between two
different vertices i and j there is an edge if and only if |Ui − Uj | < dn, where
i, j ∈ {1, . . . , n}. In this language the number of clusters Kn is the number of
connected components.
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Godehardt and Jaworski [3] studied a uniform model for random interval
graphs on the unit interval, and derived an exact formula for the number of clusters
Kn. Apart from the exact description of Kn, the question of the asymptotic beha-
viour of Kn naturally arises, thus from now on it is assumed that dn→ 0. While
asymptotic theorems were already derived by Godehardt and Jaworski in [3], the
question was investigated further; for example, Csörgő and Wu [1] described all
possible asymptotic distributions of Kn.

Godehardt and Jaworski [3] showed that if n2dn → 0, then n −Kn → 0 al-
most surely, namely there are no edges in Gn if dn is small enough. They studied
the number of clusters of order l, l ∈ N, and the size of a cluster containing a given
element of the sample U1, . . . , Un on further dn’s. Csörgő and Wu [1] derived the
asymptotic distribution of Kn on these further dn’s.

All convergence relations are understood throughout the paper as n→∞ un-
less otherwise specified, and let D−→ denote convergence in distribution. Letting
N (µ, σ2) denote a normal random variable with mean µ ∈ R and standard devia-
tion σ > 0 and denoting by Φ(·) the distribution function of N (0, 1), Csörgő and
Wu showed, in particular, the following theorem.

THEOREM 1.1 (Csörgő and Wu [1]). (i) If ndn→ 0 and n2dn→∞, then

∆n = sup
x∈R

∣∣∣∣P( Kn − ne−ndn√
ne−ndn(1− e−ndn)

¬ x
)
− Φ(x)

∣∣∣∣
= O

(√
(ndn + εn) log

1

ndn
+

log(n
√
dn)

n
√
dn

)
,

where εn =
√

(4 log n)/n, and so (Kn − ne−ndn)/(n
√
dn)

D−→N (0, 1).

(ii) If 0 < lim infn ndn ¬ lim supn ndn <∞, then

sup
x∈R

∣∣∣∣P( Kn − ne−ndn√
ne−2ndn(endn − 1− n2d2n)

¬ x
)
− Φ(x)

∣∣∣∣ = O

(
log3/4 n

n1/4

)
,

and hence if ndn→ c ∈ (0,∞), then (Kn − ne−ndn)/
√
n
D−→N (0, σ2), where

σ2 = e−2c[ec − 1− c2].
(iii) If ndn→∞ and ne−ndn→∞, then

∆n = O

(
(ndn)

3/2

√
endn

+
√
εnndn log(ne−ndn) +

√
endn

n
log(ne−ndn)

)
,

where ∆n is as in the case (i) and εn =
√

(4 log n)/n again, and so

Kn − ne−ndn√
ne−ndn

D−→N (0, 1).
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In this paper we extend the results of Csörgő and Wu [1] to multivariate limit
theorems. We also apply them for testing uniformity on a known and unknown
interval.

In Section 2 we collect multivariate limit theorems. Subsection 2.1 aims at
proving the multivariate version of Theorem 1.1, hoping that we can obtain more
information about the sample. The next subsection contains the extension of this
theorem to random variables with the uniform distribution on an arbitrary inter-
val [a, b], a, b ∈ R, a < b. In Subsection 2.3 we investigate what happens to the
asymptotic distribution when the sample comes from the uniform distribution on
an unknown interval. Statistical applications are given in Section 3, where we also
use the multivariate theorem to test for uniformity on the unit interval [0, 1] and
we perform some power investigation. We also suggest a test for uniformity on an
unknown interval and present a simulation study to evaluate the power of this test.

2. THEORETICAL RESULTS

2.1. Asymptotic distribution of joint cluster counts from the uniform distri-
bution on the unit interval. As was said above, Csörgő and Wu [1] showed that
Kn is asymptotically normal for three cases of distance level rates of convergence
to zero. Here we are interested in the joint behaviour of Kn’s for a sequence of
different distance levels coming from these three cases.

Set J ­ 1 and let dn1 ¬ dn2 ¬ . . . ¬ dnJ be distance levels satisfying one of
the following conditions:

(i) ndnj → 0, n2dnj →∞;
(ii) 0 < lim infn ndnj ¬ lim supn ndnj <∞;

(iii) ndnj →∞, ne−ndnj →∞.
Let Knj(dnj) be numbers of clusters as described in Section 1 corresponding

to the distance levels dnj , j = 1, . . . , J . Set mnj = ne−ndnj ,

(2.1) σ2nj = e−2ndnj (endnj − 1− n2d2nj),

and

(2.2) Kn =
1√
n

(
Kn1(dn1)−mn1

σn1
, . . . ,

KnJ(dnJ)−mnJ

σnJ

)
.

Then we have

THEOREM 2.1. Under the above notation, the assumptions (i)–(iii), and

(2.3) e−ndni−ndnj (endni − 1− n2dnidnj)/σniσnj → sij

for all 1 ¬ i < j ¬ J, we have

(2.4) Kn
D−→ N (0,Σ),

where Σ = (sij) with sjj = 1 for all j = 1, . . . , J and sij , i ̸= j, given by (2.3).
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Note that the matrix Σ is, in general, nonnegative definite and the limiting
normal distribution may be degenerate, i.e. concentrated on some linear subspace
of RJ .

P r o o f. We start with some general statements.
Let (gn) be a sequence of measurable functions on R and X1, X2, . . . be

a sequence of i.i.d. random variables such that E
(
gn(Xr)

)
=0, E

(
g2n(Xr)

)
=1,

and E
(
|gn(Xr)|3

)
= o(
√
n). Then the triangular array Znr = gn(Xr),

r = 1, . . . , n, n = 1, 2, . . ., fulfills the Liapunov condition, and hence
(Zn1 + . . .+ Znn)/

√
n
D−→ N (0, 1).

Using the above statement and the Cramér–Wold device we have the following
multivariate CLT.

PROPOSITION 2.1. Let J ­ 1 be a natural number and {gnj(x),
j = 1, . . . , J, n = 1, 2, . . .} be a collection of measurable functions. Suppose
X1, X2, . . . is a sequence of i.i.d. random variables such that E

(
gnj(Xr)

)
= 0, E

(
g2nj(Xr)

)
= sjj = 1, E

(
|gnj(Xr)|3

)
= o(
√
n) for every j, and

E
(
gni(Xr)gnj(Xr)

)
→ sij for every i ̸= j. Then the triangular array

Zn1, . . . , Znn, n = 1, 2, . . . , of random vectors Znr =
(
gn1(Xr), . . . , gnJ(Xr)

)
in RJ satisfies

(Zn1 + . . .+ Znn)/
√
n
D−→ N (0,Σ),

where Σ = (sij).

The proof of Theorem 2.1 is a straightforward application of Proposition 2.1
and the argument given in Section 2.2 of Csörgő and Wu [1]. To see this, denote
by Y1, Y2, . . . a sequence of i.i.d. exponentially distributed random variables with
P (Y1 > x) = 1− F (x) = e−x and put for j = 1, . . . , J (cf. the definition of Vjn
in [1], p. 407)

Znrj =
(
ndnje

−ndnj (1− Yr)− [I(Yr ¬ ndnj)− F (ndnj)]
)
/σnj ,

where I(A) is the indicator of the event A, dnj are distance levels as in Theo-
rem 2.1, and σnj are given by (2.1). Then Znrj = gnj(Yr) with

gnj(x) =
(
ndnje

−ndnj (1− x)− [I(x ¬ ndnj)− F (ndnj)]
)
/σnj .

Consequently, E
(
gnj(Yr)

)
= 0, and for i ¬ j we have

E
(
gni(Yr)gnj(Yr)

)
= E (ZnriZnrj)

= e−ndni−ndnj (endni − 1− n2dnidnj)/σniσnj
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and, in particular, E
(
g2nj(Yr)

)
= 1. Moreover, by the triangle inequality,

(
E
(
|gnj(Yr)|3

))1/3
=
(
E(|Znrj |3)

)1/3
¬ ndnj

σnj
e−ndnj

(
E(|Yr − 1|3)

)1/3
+

[e−ndnj (1− e−ndnj )]1/3

σnj
,

which, by the conditions (i)–(iii), implies E
(
|gnj(Yr)|3

)
= o(
√
n) for every j.

From (2.3) and Proposition 2.1 we get

(Zn1 + . . .+ Znn)/
√
n
D−→ N (0,Σ).

Taking into account the decompositions (2.8) and (2.15) in [1] we see that

Kn =Mn +Rn, where Mn
D
= (Zn1 + . . .+ Znn)/

√
n.

The convergence of Rn to zero in probability follows from the proof of Theo-
rem 2.1 in [1] and the fact that (endnj − 1 − n2d2nj)/(endnj − 1) → 1 for both
cases (i) and (iii). This completes the proof of Theorem 2.1 �

Now, suppose J ­ 2 and 0 ¬ J1 ¬ J2 ¬ J are such that distance levels dnj
in (2.2) satisfy the condition (i) for j ¬ J1 and the condition (iii) for j > J2. More-
over, assume additionally

(A1) for i < j ¬ J1 it follows that
√
dni/dnj → sij ;

(A2) for J1 < j ¬ J2 it follows that ndnj → cj ;

(A3) for J2 < i < j it follows that n(dnj − dni)→ −2 log sij .
Then (2.3) is satisfied with sij given by (A1) and (A3), and specified in Corol-

lary 2.1 below. Thus, we have the following

COROLLARY 2.1. Under the conditions (i), (iii), and (A1)–(A3), the relation
(2.4) holds, where

Σ =

 Σ1 0 0
0 Σ2 0
0 0 Σ3


is the block diagonal matrix with sjj = 1, sij as in (A1) and (A3) for the first and
third group, while for J1 < i < j ¬ J2

sij = (eci − 1− cicj)/
√

(eci − 1− c2i )(ecj − 1− c2j ).

Csörgő and Wu illustrated Theorem 1.1 by giving well-behaving examples
called typical sequences. We apply Corollary 2.1 to these typical sequences sug-
gested by Csörgő and Wu in [1], hereby we choose the parameters to obtain a
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diagonal covariance matrix. A typical sequence {dn} for the case (i) is dn =
n−α for some α ∈ (1, 2). In particular, we take dnj = n−αj for j ¬ J1, with
α1 > α2 > . . . > αJ1 resulting in sij = 0 for i < j ¬ J1. Similarly, a typical
sequence {dn} for the case (iii) is dn = β(log n)/n for some β ∈ (0, 1). So we
take dnj = βj(log n)/n for j > J2, with βi < βj for J2 < i < j resulting again
in sij = 0. Finally, let 0 ¬ J2 − J1 ¬ 2, which means that Σ2 is at most a 2 × 2
matrix, and take cJ2 = (ecJ1+1 − 1)/cJ1+1 in the case J2 − J1 = 2. Under these
special choices Corollary 2.1 reduces to the following one.

COROLLARY 2.2. We have

Kn
D−→N (0, I).

The diagonal form of the matrix Σ can be obtained for other sequences of the
distance levels.

2.2. Asymptotic distribution of joint cluster counts from the uniform distri-
bution on a given interval. Let V1, V2, . . . , Vn be independent random variables,
each uniformly distributed on the interval [a, b] with a, b ∈ R, a < b, known. Let
Ka,b

n (dn) denote the number of clusters of (Vi) defined on [a, b] according to the
definition of K0,1

n (dn) = Kn(dn) on [0, 1] corresponding to a distance level dn.
We are again interested in the joint behaviour of Ka,b

n ’s for a sequence of
different distance levels coming from the three cases. We extend Theorem 2.1 to
this case.

Set J ­ 1 and let dn1 ¬ dn2 ¬ . . . ¬ dnJ be distance levels. Let us replace
the condition (iii) given in Subsection 2.1 by

(iii′) ndnj →∞, ne−ndnj/(b−a) →∞,
and suppose each dnj satisfies one of the conditions: (i), (ii) or (iii′).

Let Ka,b
nj (dnj) be numbers of clusters corresponding to the distance levels

dnj , j = 1, . . . , J . Set m∗nj = ne−ndnj/(b−a),

(2.5) (σ∗nj)
2 = e−2ndnj/(b−a)

(
endnj/(b−a) − 1− [ndnj/(b− a)]2

)
,

and

(2.6) Ka,b
n =

1√
n

(
Ka,b

n1 (dn1)−m∗n1
σ∗n1

, . . . ,
Ka,b

nJ (dnJ)−m∗nJ
σ∗nJ

)
.

Then we have

THEOREM 2.2. Under the above notation, the assumptions (i), (ii), (iii′), and

(2.7) e(−ndni−ndnj)/(b−a)
(
endni/(b−a) − 1− n2dnidnj

(b− a)2

)
/σ∗niσ

∗
nj → sij
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for all 1 ¬ i < j ¬ J, we have

(2.8) Ka,b
n

D−→ N (0,Σ),

where Σ = (sij) with sjj = 1 for all j = 1, . . . , J .

Theorem 2.2 is an immediate corollary of Theorem 2.1 after applying a linear
transformation of Vi’s onto the interval [0, 1]. Of course, the transformation refers
both to the sample and to the distance levels, thus Ka,b

n (dn) = K0,1
n

(
dn/(b− a)

)
.

Replacing the conditions (A2) and (A3) given in Subsection 2.1 by
(A2′) for J1 < j ¬ J2 it follows that ndnj/(b− a)→ cj ;
(A3′) for J2 < i < j it follows that n(dnj − dni)/(b− a)→ −2 log sij ,

we see that (2.7) is satisfied. Thus we get the following analogue of Corollary 2.1.

COROLLARY 2.3. Under the conditions (i), (iii′) and (A1), (A2′), (A3′), the
relation (2.8) holds, where

(2.9) Σ =

 Σ1 0 0
0 Σ2 0
0 0 Σ3


is the block a diagonal matrix with sjj = 1, sij as in (A1′) and (A3′) for the first
and third group, while for J1 < i < j ¬ J2

(2.10) sij = (eci − 1− cicj)/
√

(eci − 1− c2i )(ecj − 1− c2j ).

2.3. Asymptotic distribution of joint cluster counts from the uniform dis-
tribution on an unknown interval. Let V1, . . . , Vn be independent, uniformly dis-
tributed random variables on the interval [a, b] with a < b being unknown and let
V1,n, . . . , Vn,n be the ordered sample. We shall investigate a counterpart of Theo-
rems 2.1 and 2.2 when the endpoints of the interval are estimated by â = V1,n and
b̂ = Vn,n.

By analogy with the previous notation, for given J ­ 1 and distance levels
dn1 < . . . < dnJ , set m̂nj = ne−ndnj/(b̂−â),

σ̂2nj = e−2ndnj/(b̂−â)
(
endnj/(b̂−â) − 1− [ndnj/(b̂− â)]2

)
,

and

(2.11) K̂n =
1√
n

(
K̂n1(dn1)− m̂n1

σ̂n1
, . . . ,

K̂nJ(dnJ)− m̂nJ

σ̂nJ

)
.

THEOREM 2.3. If the assumptions (i), (ii), (iii′) are satisfied and (2.7) holds,
then

(2.12) K̂n
D−→ N (0,Σ)

with Σ as in (2.8).
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Before proving Theorem 2.3 we state some useful lemmas. The first one fol-
lows immediately from the Slutsky lemma while the second one is a well-known
property of estimators â and b̂.

LEMMA 2.1. LetX1, X2, . . . be a sequence of random vectors in RJ , and ln ∈
RJ and sn ∈ R be deterministic norming sequences. If (Xn − ln)/sn

D−→ X and

for some random vectorsLn and random variables Sn we have (Ln− ln)/sn
P−→0

and Sn/sn
P−→ 1, then (Xn − Ln)/Sn

D−→ X .

LEMMA 2.2. For every α < 1 we have

nα(b− Vn,n)
P−→ 0 and nα(V1,n − a)

P−→ 0.

Now, we are ready to prove Theorem 2.3.

P r o o f o f T h e o r e m 2.3. According to Theorem 2.2 and Lemma 2.1 it
is enough to prove that

(2.13)
m̂nj −m∗nj√

nσ∗nj

P−→ 0 and
σ̂2nj

(σ∗nj)
2

P−→ 1.

Since b̂ − â < b − a a.s. and, by the Lagrange theorem, for every x ¬ y it
follows that |e−x − e−y| ¬ e−x|x− y|, we obtain

|m̂nj −m∗nj | = n|e−ndnj/(b̂−â) − e−ndnj/(b−a)|

¬ n2dnj
|b̂− b|+ |â− a|
(b̂− â)(b− a)

e−ndnj/(b−a).

Hence ∣∣∣∣m̂nj −m∗nj√
nσ∗nj

∣∣∣∣ ¬ √n|b̂− b|+√n|â− a|(b̂− â)
φ

(
ndnj
b− a

)
,

where φ(x) = x/
√
ex − 1− x2. As φ(x) is a bounded function on (0,∞), by an

application of Lemma 2.2 with α = 1/2 we obtain the first relation in (2.13).
To prove the second relation, set ψ(x) = x/(1 − e−x − x2e−x) and observe

that ψ(x) is a Lipschitz function on (0,∞) and ψ(x) > 1 on this interval. Now,

σ̂2nj
(σ∗nj)

2
− 1 =

=
b− a
b̂− â

exp

{
−ndnj

(
1

b̂− â
− 1

b− a

)}
ψ
(
ndnj/(b− a)

)
− ψ

(
ndnj/(b̂− â)

)
ψ
(
ndnj/(b̂− â)

)
+
b− a
b̂− â

exp

{
−ndnj

(
1

b̂− â
− 1

b− a

)}
− 1.
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Because in all considered cases ndnj < log n for large n, by Lemma 2.2 it
follows that ndnj

(
(b̂− â)−1 − (b− a)−1

)
converges in probability to zero, which

by the properties of the function ψ(x) implies that the second relation in (2.13)
also holds. This completes the proof. �

As in the previous subsection we get the following corollary.

COROLLARY 2.4. Under the conditions (i), (iii′) and (A1), (A2′), (A3′), the
relation (2.12) holds, where Σ is given by (2.9).

In particular, if J = 1 and (i) or (A2′), or (iii′) holds, then

(2.14)
K̂n1 − m̂n1√

nσ̂n1

D−→ N (0, 1).

Obviously, (2.14) corresponds to Theorem 1.1.

3. STATISTICAL RESULTS AND SIMULATIONS

3.1. Test statistics. First consider the simple null hypothesis asserting that a
sample X1, . . . , Xn has the uniform distribution on [0, 1]. Given J ­ 1 and dis-
tance levels dn1 ¬ . . . ¬ dnJ , each satisfying one of the conditions (i), (ii) or (iii)
and such that (2.3) holds. Consider the statistic

C = KT
nΣ
−1Kn,

where Kn is given by (2.2) and Σ is as in Theorem 2.1. Then from (2.4) it follows
that under the null hypothesis

(3.1) C
D−→ χ2

J ,

where χ2
k is a random variable with chi-square distribution with k degrees of free-

dom. So, C defines the upper-tailed test for uniformity called here the cluster test
and denoted by C. This means that asymptotic critical values of this test are given
by quantiles of the chi-square distribution with J degrees of freedom. Since the
convergence in (3.1) is very slow, we propose rather to use empirical critical val-
ues (see Subsection 3.2).

Now, consider the composite null hypothesis asserting that a sample comes
from the family of all uniform distributions on R. As a test statistic one can use
K̂T

nΣ
−1K̂n, where K̂n is given by (2.11). Here, we propose another solution based

on the random transform of the data into the unit interval. To this end, let Y1, Y2, . . .
be i.i.d. exponentially distributed random variables with mean one (cf. the proof of
Theorem 2.1) and set Sk = Y1 + . . .+ Yk. It is well known that

(3.2)
(

S1
Sn+1

, . . . ,
Sn
Sn+1

)
D
= (U1,n, . . . , Un,n),
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whereU1,n, . . . , Un,n are the order statistics of the uniform [0, 1] sampleU1, . . . , Un.
The following well-known lemma is a consequence of (3.2).

LEMMA 3.1. Let V1, . . . , Vn be i.i.d. uniformly distributed random variables
over the interval [a, b] and let V1,n, . . . , Vn,n be the corresponding order statistics.
Then for each fixed n(

V2,n − V1,n
Vn,n − V1,n

, . . . ,
Vn−1,n − V1,n
Vn,n − V1,n

)
D
= (U1,n−2, . . . , Un−2,n−2),(3.3)

where on the right-hand side of (3.3) we have the order statistics of the uniform
[0, 1] sample U1, . . . , Un−2.

Given J ­ 1 and distance levels dn1 ¬ . . . ¬ dnJ , each satisfying one of the
conditions (i), (ii) or (iii) and such that (2.3) holds. Let

K̃n−2 =
1√
n

(
K̃n−2,1(dn1)−mn−2,1

σn−2,1
, . . . ,

K̃n−2,J(dnJ)−mn−2,J
σn−2,J

)
(cf. (2.2)) be a vector of normalized numbers of clusters of the randomly trans-
formed sample (V2,n − V1,n)/(Vn,n − V1,n), . . . , (Vn−1,n − V1,n)/(Vn,n − V1,n).
Now, for testing the composite null hypothesis we take the statistic

Cmod = K̃T
n−2Σ

−1K̃n−2,

where again Σ is as in Theorem 2.1. Then from (3.3) and Theorem 2.1 it follows
that under the null hypothesis

(3.4) Cmod
D−→ χ2

J .

Thus, Cmod defines the upper-tailed test, called here the modified cluster test and
denoted by Cmod. Since the convergence in (3.4) is slow, as for C we also propose
to use empirical critical values.

3.2. Critical values. The exact null distributions of the test statistics C and
Cmod are very difficult to evaluate. Moreover, Csörgő and Wu [1] showed that for
typical distance levels (see the end of Subsection 2.1) the fastest rate of conver-
gence of Knj(dnj) to the normal distribution is O(n−1/4 log n). So, the conver-
gence for each j and probably also jointly is very slow. This can be easily seen in
Table 1. Thus we provide simulated critical values both for C and Cmod. After pre-
liminary simulations reported in Subsection 3.3 below, we decided to take J = 6,
J1 = J2 − J1 = 2, and distance levels described at the end of Subsection 2.1 with
α1 = 1.9, α2 = 1.1, c1 = 1, c2 = e− 1, β1 = 0.1, β2 = 0.9. Such a choice implies
that Corollary 2.2 holds, i.e. Σ = I . In Table 1 we present simulated critical values
corresponding to significance levels 0.1, 0.05, and 0.01. The last row, correspond-
ing to n =∞, contains asymptotic critical values (the same for both tests).
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Table 1. Critical points of cluster tests C and Cmod

for different sample sizes and different significance levels, 200,000 MC runs

C Cmod

n 0.10 0.05 0.01 n 0.10 0.05 0.01
20 13.05 15.69 21.86 20 16.29 19.32 25.90
50 12.36 15.26 22.32 50 13.33 16.07 22.65

100 12.71 15.74 23.34 100 13.03 15.96 23.22
200 12.77 15.98 23.68 200 12.91 16.00 23.63
500 12.59 15.68 23.24 500 12.65 15.71 23.19

1000 12.34 15.38 22.64 1000 12.29 15.34 22.34
∞ 10.65 12.59 16.81

3.3. Optimal choice of J and distance levels. To see how the dimension J
and a choice of distance levels influence powers attained by cluster tests we com-
pared several cases with J between 2 and 6, J2 − J1 ¬ 2, and typical distance
levels such that Corollary 2.2 applies. The results are shown in Table 2. In all cases
we used empirical critical values which are given in the third column of Table 2.
We present empirical powers for two specific alternatives g1 and g2 described in
Subsection 3.4. It is easy to see that C attains the highest power for J = 6 and
other parameters as specified in Subsection 3.2. The behaviour of Cmod is quite
similar.

Table 2. Empirical critical values (u0.05) and empirical powers (in %) for the cluster
test C under alternatives g1 and g2 for different dimensions J and different typical

distance levels. Significance level 0.05, n = 100, 200,000 MC runs

J α c β u0.05 g1 with ϱ = 3/2 g2 with ϱ = 0.9, j = 5

2 1.5 – 0.5 6.52 6 14
2 – 1 0.5 6.75 9 56
2 1.5 1 – 6.20 13 70
2 1.3 1 – 6.06 14 77
2 1.1 1 – 6.41 16 84
3 1.5 1 0.5 8.38 10 61
3 1.1 1 0.9 10.68 14 85
4 1.1 1 0.9

– 1.7 – 11.96 14 88
4 1.1 0.5 0.9

– 1.3 – 12.34 16 88
4 1.9 1 0.1

– – 0.9 12.01 13 85
6 1.9 0.5 0.1

1.1 1.3 0.9 16.65 16 87
6 1.9 1 0.1

1.1 1.7 0.9 15.74 16 89
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3.4. Power comparision. We simulated powers of the new tests C and Cmod

with parameters specified in Subsection 3.2 for significance level 0.05, sample size
n = 100, and for 200,000 MC runs for each case. We considered five continuous
alternative distributions on [0, 1]. All alternative distributions are identified by their
density functions (g1, g2, g3, g4) or by their quantile function (G−15 ). The list of
alternatives is as follows:

1. g1(t) =
{
2ϱ−1ϱtϱ if 0 ¬ t < 1/2,
2ϱ−1ϱ(1− t)ϱ if 1/2 ¬ t ¬ 1,

where ϱ > 0;

2. g2(t) = 1 + ϱ cos(πjt), where ϱ ∈ [−1, 1];
3. g3(t) = c(θ(j)) exp

{∑j
k=1 θkbk(t)

}
, where bk are the Legendre polyno-

mials on [0, 1] and θ(j) = (θ1, . . . , θj);
4. contamination of the uniform distribution with beta distribution: g4(t) =

1− ϱ+ ϱΓ(p+ q)/
(
Γ(p) + Γ(q)

)
tp−1(1− t)q−1, where ϱ ∈ [0, 1];

5. G−15 (t) = 1/2 +
(
t− (1− t)ϱ

)
/2, where ϱ > 0.

We compare the new tests C and Cmod with the data driven smooth test NT1

introduced in Inglot and Ledwina [5] which proved to be a strong test for uni-
formity. We took powers of NT1 from Tables 2–4 in [5]. Overall, the data driven
smooth test NT1 appears to be the best and the cluster test and the modified cluster
test give uniformly poorer performance, except for highly oscillating alternatives
where the cluster tests are almost equally well or perform better than NT1, for ex-
ample for g2 with ϱ = 1.00 and j = 10 the power of both tests is 100% and 99%
(see Table 3).

For better illustration of the cluster tests performance we draw power func-
tions of the three compared tests for alternative g1 (Figure 1) and for alternative 5
(Figure 2). The procedure ran for 300 values of the parameters chosen from the in-
terval [0, 3], significance level 0.05, and n = 100. For alternative 5 the case ϱ = 0
corresponds to the uniform distribution on [0, 1/2], while the case ϱ = 1 corre-
sponds to the uniform distribution in [0, 1], thus according to the modified cluster
test the sample is contained in the class of all the uniform laws, see Figure 2.

Table 3. Empirical powers (in %) for NT1, C, and Cmod.
Alternatives g2, g3 and g4, significance level 0.05, n = 100, 200,000 MC runs

Alternative ϱ j p q θ NT1 C Cmod

g2 0.45 1 78 15 12
g2 0.60 4 71 34 29
g2 0.75 7 81 62 54
g2 1.00 10 75 100 99
g3 2 (−0.2,−0.3) 73 12 9
g3 5 (0,0,0,0,0.4) 76 22 18
g3 8 (0,0,0,0,0,0,0,−0.5) 90 42 36
g4 0.25 2.0 10.0 73 16 15
g4 0.50 0.8 1.5 61 10 9
g4 0.10 0.1 0.1 68 36 26
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Figure 1. Empirical powers of NT1 (thick line), C (dotted line), and Cmod (dashed line)
as functions of ϱ for alternative g1. Significance level 0.05, n = 100, 200,000 MC runs
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Figure 2. Empirical powers of NT1 (thick line), C (dotted line), and Cmod (dashed line)
as functions of ϱ for alternative 5. Significance level 0.05, n = 100, 200,000 MC runs

The consistency of both cluster tests is a difficult question because one should
prove a kind of the Csörgő and Wu theorem for a nonuniformly distributed sam-
ple. From simulations not reported here in detail it follows that the new tests seem
to be consistent since the increasing of a sample size results in a greater power.
For example, for the test C and alternative g2 with ϱ = 0.80 and j = 8 the pow-
ers for n = 20, 50, and 100 are 26%, 48%, and 75%, respectively, while for the
same alternative with ϱ = 1.00 and j = 12 the powers for n = 20, 50, and 100 are
31%, 85%, and 100%, respectively.

The conclusion is that the cluster tests perform worse than other procedures
unless some highly oscillating alternatives. Samples coming from these alterna-
tives are inherently well-clusterable, such as those associated with periodic density
functions.
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