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1. INTRODUCTION

In this paper we study the asymptotic behavior of the vectors of sojourn times
in tandem queues in heavy traffic. A tandem queue, which is the simplest example
of a queueing network, consists of m servers (processing stations) in series. We
assume that each of the servers has an infinite waiting room, initially empty. Units
(or customers) arrive at the first station according to an arrival process described
by a stationary sequence {uk, k  1}, where uk stands for the interarrival time
between the k-th and (k + 1)-st units. At each server, the arriving unit is either
served immediately (if the waiting room is empty) or joins the queue. Further-
more, we assume that the units waiting in the queues are attended to in order of
their arrivals; the service process is described by stationary random sequences
{vik, k  1}, 1 ¬ i ¬ m, where vik represents the service time of the k-th unit
at the i-th server. More precisely, units arrive at the first server according to the
arrival process and, having completed service there, immediately proceed to the
second server. Afterwards, having completed service at the i-th server, they imme-
diately proceed to the (i+ 1)-st server until they reach the last server, whereupon
they exit the entire system. Thus, tandem queues under consideration in this paper
are completely described by the stationary sequence

{ζk := (v1k, . . . , v
m
k , uk), k  1}
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of random vectors in Rm+1 with nonnegative components. Tandem queues are
often used as models of manufacturing lines, and simple computer, communication
and social networks.

For a single server queue the heavy traffic problem has been studied in nu-
merous papers going back to Kingman’s classic work [12]. A recent comprehen-
sive source is the monograph by Whitt [21]. The papers by Szczotka and Kelly
[18], Szczotka [17], Boxma and Cohen [4], Szczotka and Woyczyński [20], and
Czystołowski and Szczotka [5] were of direct influence in the present study. In [4],
[20], and [5], the heavy tailed case has been studied.

Extensive work on Lévy-driven queues utilizing a different formalism of fluid
networks and reflected processes can be found in papers by Dębicki et al. [7],
Miyazawa and Rolski [15], and in the review article by Dębicki and Mandjes [8].
Nonlinear diffusion approximations to infinite tandem queues via the hydrody-
namic limits for nearest neighbor exclusion interacting particle systems have been
pioneered by Benassi and Fouque [1], Kipnis [13], and Srinivasan [16]. They all led
to the classical nonlinear Burgers partial differential equation. More complicated
regimes, including what was called the “gossiping secretaries” network, were stud-
ied in Margolius and Woyczyński [14]. They led to more general nonlinear diffu-
sion equations and interacting particle systems with nonlocal interactions via more
complex exclusion principles.

2. PRELIMINARIES

2.1. Notation. With the tandem queue described by the (introduced in Sec-
tion 1) stationary sequence {ζk := (v1k, . . . , v

m
k , uk), k  1} of the service times

vik at m servers in the network, and the interarrival times uk at the first server, let
w̃i
k and W̃ i

k denote, respectively, the waiting time for service in the i-th queue of
the k-th unit and the sojourn time of k-th unit in the first i-th queues. Also, let

w̃k = (w̃1
k, . . . , w̃

m
k ) and W̃k = (W̃ 1

k , . . . , W̃
m
k )

be the corresponding random vectors. Clearly,

W̃ i
k =

i∑
j=1

(w̃j
k + vjk), 1 ¬ i ¬ m.

We will consider the following three system parameters:

α = min
1¬i¬m

(ū− v̄i), ū = Eu1, and v̄i = E vi1, 1 ¬ i ¬ m,

where the expectations are assumed to be finite.
It is well known (cf. [18]) that if the sequence {ζk, k1} is ergodic, and α>0,

i.e., in the case of a stable queueing system, the vectors w̃k and W̃k converge in
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distribution, as k →∞, i.e.,

(2.1) w̃k
d−→ ω̃ = (ω̃1, ω̃2, . . . , ω̃m) and W̃k

d−→ W̃ = (W̃ 1, . . . , W̃m).

The main result of this paper describes the asymptotic behavior of the vector W̃
as α ↓ 0, that is, in what is usually described as the heavy traffic limit, and in the
situation when the distributions of interarrival times and service times have heavy
tails. However, the results cover also the situation of light tails considered in [18].

2.2. Representation of the vector of sojourn times. The limit vector W̃ in
(2.1) has a representation in terms of the original sequences of interarrival and
service times that will be useful in what follows. From now onwards let us re-
place the stationary sequence {ζk, k  1} by its two-sided stationary extension

{ζ̃k,−∞ < k <∞}, so that {ζ̃k, k  1} d
= {ζk, k  1}. For simplicity’s sake the

tilde over the two-sided extension will be dropped henceforth. Below we will as-
sume the following condition:

(2.2) {(v1j , v2j , . . . , vmj , uj), j ¬ 0} d
= {(v1j , v2j , . . . , vmj , uj), j  0}.

The representation will also involve the interpolated processes

V s(t) =
⌊t⌋∑
j=1

vsj and U(t) =
⌊t⌋∑
j=1

uj ,

where ⌊t⌋ denotes the integer part of t.

PROPOSITION 2.1. Under the assumption (2.2) the limit random vector
(W̃ 1, . . . , W̃m) in (2.1) has the distribution identical with the distribution of the
random vector (W 1, . . . ,Wm), where

(2.3) W i = sup
0=ni+1¬ni¬ni−1¬...¬n1<∞

i∑
s=1

( ns∑
j=ns+1+1

(vsj − uj) + vsns+1

)
,

with n1, . . . , ni+1 ranging over the set of nonnegative integers or, equivalently,

(2.4) W i = sup
0=ti+1¬ti¬...¬t1<∞

( i∑
s=1

(
V s(ts)− V s(ts+1)

)
− U(t1)

+
i∑

s=1

(
V s(ts+1)− V s(⌊ts+1⌋−)

))
,

with t1, . . . , ti+1 ranging over the set of nonnegative real numbers.
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P r o o f. The formula (3.5) from [18] implies that the i-th coordinate, W̃ i, of
the vector W̃ = (W̃ 1, . . . , W̃m) in (2.1) has the following form:

W̃ i = sup
−∞¬n1¬...¬ni¬ni+1=−1

i∑
s=1

( ns+1∑
j=ns+1

(vsj − uj) + vsns+1+1

)
.

In view of the assumption (2.2) we get (W̃ 1, . . . , W̃m)
d
= (W 1, . . . ,Wm),

with

W i = sup
0=ni+1¬ni¬...¬n1<∞

i∑
s=1

( ns∑
j=ns+1+1

(vsj − uj) + vsns+1

)
.

Therefore,

W i = sup
0=ni+1¬ni¬...¬n1<∞

( i∑
s=1

( ns∑
j=ns+1+1

vsj + vsns+1

)
−

n1∑
j=1

uj

)
= sup

0=ti+1¬ti¬...¬t1<∞

( i∑
s=1

( ⌊ts⌋∑
j=⌊ts+1⌋+1

vsj + vs⌊ts+1⌋
)
−
⌊t1⌋∑
j=1

uj

)
,

which is the formula (2.3).
Taking into account the notation introduced before and the relation

vs⌊ts+1⌋ = V s(ts+1)− V s(⌊ts+1⌋−)

we arrive at the formula (2.4), thus completing the proof of the proposition. �

REMARK 2.1. Notice that, for each n  1, we have

W i = sup
0=ti+1¬ti¬...¬t1<∞

( i∑
s=1

(
V s(nts)− V s(nts+1)

)
− U(nt1)

+
i∑

s=1

(
V s(nts+1)− V s(⌊nts+1⌋−)

))
.

REMARK 2.2. The assumption (2.2) is satisfied if the process {ζk :=
(v1k, . . . , v

m
k , uk),−∞ < k < ∞} is reversible, or if ζk := (v1k, . . . , v

m
k , uk),

−∞ < k <∞, are i.i.d. random vectors.

2.3. Continuity of the operator G. In the relation (2.4) in Proposition 2.1 we
describe the action of an operator on the interpolated process V s. It will be conve-
nient to introduce a special notation for the operator itself,

Gi(x)(t) = sup
0=ti+1¬ti¬...¬t2¬t1=t

i∑
j=1

(
xj(tj)− xj(tj+1)

)
+

i∑
j=1

(
xj(tj+1)− xj(tj+1−)

)
, t  0,
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and consider it as a mapping

Dm[0,∞) ∋ x = (x1, . . . , xm) 7→ Gi(x) ∈ D[0,∞),

where Dm[0,∞) denotes the product of m copies of the space D[0,∞) of func-
tions that are right-continuous and have left-hand limits at each point. D[0,∞) is
being considered with the J1 Skorokhod topology, and Dm[0,∞) with the product
J1 Skorokhod topology (see, e.g., [21], p. 83).

Notice that, for x such that xi(0) = 0, we have

G2(x)(t) = sup
0¬t2¬t1=t

(
x1(t1)− x1(t2) + x2(t2) + x1(t2)− x1(t2−)

)
, t  0.

PROPOSITION 2.2. Mappings Gi and G = (G1, . . . , Gm) are continuous in
the Skorokhod J1 topology and the product Skorokhod J1 topology, respectively.

P r o o f. To prove the assertion notice that, for x = (x1, x2, . . . , xm) and y =
(y1, y2, . . . , ym) belonging to Dm[0,∞), we have

Gi(x)(t) = Gi(x− y + y)(t) ¬ Gi(x− y)(t) +Gi(y)(t),

so that

(2.5)
sup
0¬s¬t

|Gi(x)(s)−Gi(y)(s)| ¬ sup
0¬s¬t

|Gi(x− y)(s)|+ sup
0¬s¬t

|Gi(y − x)(s)|.

Now, let xn = (x1n, x
2
n, . . . , x

m
n ) converge, as n→∞, to x = (x1, x2, . . . , xm) in

Dm[0,∞) equipped with the product J1 topology, and let t be a continuity point
of x (thus it is also a continuity point of all of xi, i = 1, . . . ,m). Then there exist
sequences {λi

n, n  1}, 1 ¬ i ¬ m, of continuous mappings of [0, t] onto [0, t],
with strictly increasing continuous inverses, such that

max
1¬j¬m

sup
0¬s¬t

|λj
n(s)− s| → 0,

max
1¬j¬m

sup
0¬s¬t

|xjn ◦ λj
n(s)− xj(s)| → 0,

and
max

1¬j¬m
sup
0¬s¬t

|xjn ◦ λj
n(s−)− xj(s−)| → 0,

as n→∞, where ◦ denotes the superposition of functions. In view of (2.5),

(2.6) sup
0¬s¬t

|Gi(xn ◦ λn)(s)−Gi(x)(s)|

¬ sup
0¬s¬t

|Gi(xn ◦ λn − x)(s)|+ sup
0¬s¬t

|Gi(x− xn ◦ λn)(s)|.
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Putting
yjn(t) = xjn ◦ λj

n(t)− xj(t), yn = (y1n, y
2
n, . . . , y

m
n ),

we get

sup
0¬s¬t

|Gi(xn ◦ λn − x)(s)| = sup
0¬s¬t

|Gi(yn)(s)|

= sup
0¬s¬t

∣∣ sup
0=ti+1¬ti¬...¬t2¬t1=s

i∑
j=1

(
yjn(tj)−yjn(tj+1)

)
+

i∑
j=1

(
yjn(tj+1)− yjn(tj+1−)

)∣∣.

(2.7)

Therefore, if
sup
0¬s¬t

|xjn ◦ λj
n(s)− xj(s)| ¬ ε

and
sup
0¬s¬t

|xjn ◦ λj
n(s−)− xj(s−)| ¬ ε,

then sup0¬s¬t |yin(s)| ¬ ε, and, by (2.7),

(2.8) sup
0¬s¬t

|Gi(xn ◦ λn − x)(s)| ¬ 2iε.

In a similar way we obtain

(2.9) sup
0¬s¬t

|Gi(x− xn ◦ λn)(s)| ¬ 2iε.

Hence, by (2.8) and (2.9),

(2.10) sup
0¬s¬t

|Gi(xn ◦ λn)(s)−Gi(x)(s)| ¬ 4iε,

which implies the continuity of Gi, and of G as well. The proof of the proposition
is now complete. �

The operators Gi, for different i’s, are related by the following inequality:

PROPOSITION 2.3. For each Gi, i = 1, . . . ,m, and x ∈ Dm[0,∞) with
x(0) = 0,

(2.11) sup
0¬s¬t

Gi(x) ¬ sup
0¬s¬t

Gi−1(x)(s) + sup
0¬s¬t

xi(s),

where, by definition, G0 ≡ 0.
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P r o o f. Indeed,

sup
0¬s¬t

Gi(x)(s) = sup
0¬s¬t

sup
0=ti+1¬ti¬...¬t2¬t1=s

i∑
j=1

(
xj(tj)− xj(tj+1)

)
+

i∑
j=1

(
xj(tj+1)− xj(tj+1−)

)
¬ sup

0¬s¬t
sup

0=ti+1¬ti¬...¬t2¬t1=s

i−1∑
j=1

(
xj(tj)− xj(tj+1)

)
+

i−1∑
j=1

(
xj(tj+1)− xj(tj+1−)

)
+ sup

0¬s¬t
sup

0=ti+1¬ti¬...¬t2¬t1=s

(
xi(ti)− xi(ti+1)

)
+

(
xi(ti+1)− xi(ti+1−)

)
= sup

0¬s¬t
Gi−1(x)(s) + sup

0¬s¬t
xi(s). �

2.4. The invariance principle. Let Ic and Ic, c > 0, be the indicator functions
of the sets {t < c} and {t  c}, respectively. Obviously, for any x ∈ Dm[0,∞),
we have x = xIc + xIc.

DEFINITION 2.1. We shall say that a measurable mapping f :Dm[0,∞) 7→Rm

has the property (∗) if the following four conditions are satisfied:

(∗)


0 ¬ f(x+ y) ¬ f(x) + f(y), whenever x(0) = y(0) = 0,

f(x+ a) = f(x) + a for any a ∈ Rm, x ∈ Dm[0,∞)with x(0) = 0,

f
(
xIc(·)

)
= f

(
x(c+ ·)

)
,

f(xnIc)→ f(xIc), for all xn → x, in Skorokhod J1 product topology,

where c is a continuity point of x.

DEFINITION 2.2. Given a sequence S = {sk}, sk ↑ ∞, we shall say that a
vector-valued process

{
X(t)=

(
X1(t), . . . , Xm(t)

)
, t0

}
in Rm has S-asympto-

tically stationary increments if the processes {X(t), t  0} and {X(sk + t) −
X(sk), t  0}, k = 1, 2, . . . , have the same distribution.

Clearly, if {ξj ,−∞ < j <∞} is a stationary sequence then the process Y (t)

=
∑⌊t⌋

j=1 ξj , t  0, has S-asymptotically stationary increments with sk = k.

THEOREM 2.1. Let X = (X1, . . . , Xm) and Xn = (X1
n, . . . , X

m
n ), n  1,

be stochastic processes with trajectories in Dm[0,∞), and such that X(0) =
Xn(0) = (0, . . . , 0) a.s. Additionally, assume that Xn, n  1, have S-asympto-
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tically stationary increments, and that Xn
d−→ X as n→∞, where X is stochas-

tically continuous, and X(t)→ (−∞, . . . ,−∞) a.s. as t→∞.
Then, if the mapping f : Dm[0,∞) 7→ Rm satisfies the property (∗), and the

sequence of Mn = (M1
n, . . . ,M

m
n ) := f(Xn) is tight, then Mn

d−→M = f(X).

P r o o f. Notice that

f(Xn) = f(XnIsk +XnI
sk) ¬ f(XnIsk) + f(XnI

sk)

= f(XnIsk) + f
(
Xn(sk + ·)

)
¬ f(XnIsk) + f

(
Xn(sk + ·)−Xn(sk)

)
+Xn(sk).

Hence,

f(Xn)− f(XnIsk) ¬ f
(
Xn(sk + ·)−Xn(sk)

)
+Xn(sk).

Because {Xn} has S-asymptotically stationary increments,

Xn(sk + ·)−Xn(sk)
d
= Xn and f

(
Xn(sk + ·)−Xn(sk)

) d
= f(Xn).

The tightness of {f(Xn)} implies that, for any ε > 0, there exists a compact set
K ∈ Rm

+ such that P
(
f(Xn) ∈ K

)
 1− ε, and ∥x∥ ¬ k0 for all x ∈ K. Hence,

for any δ ∈ Rm
+ , we have

P
(
f(Xn)− f(XnIsk)  δ

)
¬ ε+P

(
f
(
Xn(sk+·)−Xn(sk)

)
∈K, f

(
Xn(sk+·)−Xn(sk)

)
+Xn(sk)δ

)
¬ ε+ P

(
k0 +Xn(sk)  δ

)
.

Consequently,

lim sup
n

P
(
f(Xn)− f(XnIsk)  δ

)
¬ ε+ lim sup

n
P
(
k0 +Xn(sk)  δ

)
¬ ε+ P

(
k0 +Xn(sk)  δ

)
.

But Xn(sk)→ (−∞, . . . ,−∞) a.s., so P
(
k0 +Xn(sk)  δ

)
→ 0. This implies

lim
k

lim sup
n

P
(
f(Xn)− f(XnIsk)  δ

)
¬ ε,

which completes the proof of the theorem. �
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3. HEAVY TRAFFIC LIMIT

3.1. Notation. From now onwards, instead of a single tandem queue, we will
consider a sequence of such systems indexed by n  1. Our previous notation
will now include the index indicating the number of a tandem. Hence, for the n-th
tandem we have the generating sequence

{ζn,k := (v1n,k, . . . , v
m
n,k, un,k),−∞ ¬ k ¬ ∞}.

Let

ain = v̄in − ūn, αn = min
1¬i¬m

(−ain) > 0, ūn = Eun,1, v̄in = E vin,1,

V s
n (t) =

⌊nt⌋∑
j=1

vsn,j , and Un(t) =
⌊nt⌋∑
j=1

un,j .

Then the counterpart of the vector of sojourn times W = (W 1,W 2, . . . ,Wm) for
the n-th system is W (n) =

(
W 1(n),W 2(n), . . . ,Wm(n)

)
, where

W i(n) = sup
0=ti+1¬ti¬...¬t1<∞

( i∑
s=1

( ⌊nts⌋∑
j=⌊nts+1⌋+1

vsn,j + vsn,[nts+1]

)
−
⌊nt1⌋∑
j=1

un,j

)
= sup

0=ti+1¬ti¬...¬t1<∞

( i∑
s=1

(
V s
n (ts)− V s

n (ts+1)
)
− Un(t1)

+
i∑

s=1

(
V s
n (ts+1)− V s

n (⌊ts+1⌋−)
))

.

Furthermore, let us introduce the following notation:

Ṽ i
n(t) :=

1

cn

⌊nt⌋∑
j=1

(vin,j − v̄in), Ũn(t) :=
1

cn

⌊nt⌋∑
j=1

(un,j − ūn),

Di
n(t) := Ṽ i

n(t)− Ṽ i
n([t]−) ≡

1

cn
(vi[nt] − v̄in),

Ai
n(t) :=

n|ain|
cn

[nti]

n
, and Bi

n :=
1

cn

i∑
s=1

v̄sn,

where {cn} is a nondecreasing sequence of positive numbers diverging to infinity.
Then

(3.1)
1

cn
W i(n) = sup

0=ti+1¬ti¬...¬t1<∞

( i∑
s=1

(
Ṽ s
n (ts)−As

n(ts)− Ṽ s
n (ts+1) +As

n(ts+1)
)

− Ũn(t1) +
i∑

s=1

Ds
n(ts+1) +Bi

n

)
.
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3.2. Tightness of the sequence {W (n)/cn} in heavy traffic. To provide suffi-
cient conditions for tightness of {W (n)/cn} in heavy traffic observe that its terms
have the following representation:
(3.2)
1

cn
W i(n) = sup

0¬t<∞
sup

0=ti+1¬ti¬...¬t2¬t1=t

i∑
s=1

(
Zs
n(ts)− Zs

n(ts+1) +Ds
n(ts+1)

)
,

where

Zi
n(t) := Ṽ i

n(t)− Ũ i
n(t)−

n|ain|
cn

⌊nt⌋
n

.

Also, define
Ri

n := sup
0¬t<∞

Zi
n(t).

THEOREM 3.1. Assume that, for each i = 1, 2, . . . ,m,

lim
n→∞

n|ain|
cn

= di <∞.

If, for each i = 1, 2, . . . ,m, the sequence {Ri
n} is tight, then the sequence

{W i(n)/cn} is tight for each i = 1, 2, . . . ,m.

P r o o f. The assertion is proved by mathematical induction. For that purpose
we need to show that {W 1(n)/cn} is tight. But this follows from the relation

R1
n = W 1(n)/cn + v1n,0/cn,

the convergence v1n,0/cn
P→ 0, and the assumption that {R1

n} is tight.
So, assume that {W i(n)/cn} is tight. To show that {W i+1(n)/cn} is tight

notice that, in view of the relation (2.11) in Proposition 2.3, we get

1

cn
W i+1(n) ¬ 1

cn
W i(n) + sup

0¬t<∞
sup
0¬s¬t

Zi+1
n (s) + vi+1

n,0 /cn

=
1

cn
W i(n) +Ri+1

n + vi+1
n,0 /cn.

Now, since vi+1
n,0 /cn

P→ 0, the tightness assumption of {Ri+1
n }, and that induction

assumption that {W i(n)/cn} is tight imply that {W i+1(n)/cn} is tight, which
concludes the proof of the theorem. �

Using Theorem 3.1 and Theorem 1 in [5] we immediately obtain the follow-
ing corollary. All the Lévy processes appearing below are assumed to have finite
expectations (see, e.g., [2], for background information on Lévy processes).
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COROLLARY 3.1. Assume that, for each n, {ζn,k, 0 < k <∞} is a sequence
of i.i.d. random vectors in Rm+1

+ such that the sequence {(v1n,k, . . . , vmn,k), k1} is
independent of the sequence {un,k, k  1}. Furthermore, assume that the follow-
ing three conditions are satisfied:

(A) (Ṽ 1
n , . . . , Ṽ

m
n , Ũn)

d−→(V 1, V 2, . . . , V m, U)≡(V,U), as n→∞, where
V and U are mutually independent stochastically continuous, centered Lévy pro-
cesses in Rm and R, respectively;

(B) n(ūn − v̄in)/cn → βi, as n→∞, where 0 < βi <∞, for 1 ¬ i ¬ m;

(C) n(ūn/cn)
2 → c2 and n(v̄in/cn)

2 → c2, 1 ¬ i ¬ m, as n → ∞, where
0 ¬ c2 <∞.

Then the sequence {W (n)/cn} is tight.

3.3. Asymptotic behavior of the sequence {W (n)/cn} in heavy traffic. Below
we consider the asymptotic behavior of random vectors W (n) under the heavy
traffic assumption, αn ↓ 0, and in the situation when the distributions of random
variables un,1, v

i
n,1, 1 ¬ i ¬ m, have heavy tails but finite expectations. Let us

begin by introducing the mapping

Dm[0,∞) ∋ x = (x1, . . . , xm) 7−→ h̃(x) =
(
h(x1), . . . , h(xm)

)
∈ Rm,

where h(xi) = supt0 x
i(t). Observe that this mapping is not continuous in the J1

product topology. However, the mapping f = h̃ ◦ G satisfies the property (∗) of
Subsection 2.4.

THEOREM 3.2. Assume that, for each n  1, {ζn,k,−∞ < k < ∞} is an
ergodic and reversible sequence of random vectors in Rm+1

+ such that αk ↓ 0, and

(A) (Ṽ 1
n , . . . , Ṽ

m
n , Ũn)

d−→(V 1, V 2, . . . , V m, U)≡(V,U), as n→∞, where
V and U are mutually independent stochastically continuous, centered Lévy pro-
cesses in Rm and R, respectively;

(B) n(ūn − v̄in)/cn → βi, as n→∞, where 0 < βi <∞, for 1 ¬ i ¬ m.

Moreover, assume that the sequence {W (n)/cn} is tight.
Then, for any β = β1, . . . , βm ∈ Rm, as n→∞, the sojourn times Wn con-

verge in distribution to the distribution of M := h̃
(
G(V − β)− U

)
, where V and

U are stochastically continuous, centered Lévy processes inRmandR, respectively,
and the mapping G is defined as in Proposition 2.2.

P r o o f. Let us introduce the following notation:

Y i
n(t) := Ṽ i

n(t)−Ai
n(t), Yn := (Y 1

n , . . . , Y
m
n ),

D̃i
n(t) := Y i

n(t)− Y i
n([t]−) ≡

1

cn
(vi[nt] − v̄in)−

|ain|
cn

,
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and

Ci
n :=

1

cn

i∑
s=1

|asn|.

Notice that, by (3.1), we have

1

cn
W i(n) =

= sup
0¬t<∞

(
sup

0=ti+1¬ti¬...¬t2¬t1=t

( i∑
s=1

(
Y s
n (ts)−Y s

n (ts+1)+D̃i
n(ti+1)

))
−Ũn(t)

)
+Bi

n + Ci
n = h̃

(
Gi(Yn)− Ũn

)
+Bi

n + Ci
n,

where the last equality follows by the definition of Gi. In view of the assumptions
(A) and (B),

(Yn, Ũn) ≡
(
(Y 1

n , . . . , Y
m
n ), Ũn

) d−→
(
(Y 1, . . . , Y m), U

)
≡ (Y, U),

where
Y i(t) = V i(t)− βit.

Now, the continuity of mappings Gi in the product J1 Skorokhod topology (Propo-
sition 2.2) implies the convergence(

G(Yn), Ũn

)
≡

((
G1(Y 1

n ), . . . , G
m(Y m

n )
)
, Ũn

)
d−→

((
G1(Y 1), . . . , Gm(Y m)

)
, U

)
≡

(
G(Y ), U

)
.

Finally, an application of Theorem 2.1, with f = h̃ and

Xn = (X1
n, . . . , X

m
n ) :=

(
G1(Yn), . . . , G

m(Yn)
)
− Ũn,

X = (X1, . . . , Xm) :=
(
G1(Y ), . . . , Gm(Y )

)
− U,

yields the assertion of the theorem. �

COROLLARY 3.2. Let, for each n  1, {ζn,k,−∞ < k <∞} be a sequence
of i.i.d. random vectors in Rm+1

+ such that the sequence {(v1n,k, . . . , vmn,k),−∞ <

k <∞} is independent of the sequence {un,k,−∞ < k <∞}, and assume that

(A
′
) (Ṽ 1

n , . . . , Ṽ
m
n )

d−→ V and Un
d−→ U, as n → ∞, where V and U are

mutually independent, centered Lévy processes in Rm and R, respectively.
Moreover, suppose that the conditions (B) and (C) of Corollary 3.1 are sat-

isfied.
Then

W (n)/cn
d−→M = h̃

(
G̃(V − β)− U

)
,

where β(t) = (β1t, . . . , βmt).
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The situation in the special case of two identical servers in series, that is, when
m = 2 and v1k = v2k, is described in the following result:

COROLLARY 3.3. Let, for each n  1, {ζn,k = (v1n,k, v
1
n,k, un,k),−∞ < k <

∞} be a sequence of i.i.d. random vectors in R3
+ such that the sequences {v1n,k,

−∞ < k <∞} and {un,k,−∞ < k <∞} are mutually independent, and each
of them is a sequence of i.i.d. nonnegative random variables. Moreover, let

(A
′
) Ṽ 1

n
d−→ V 1 and Un

d−→ U, as n →∞, where V 1 and U are mutually
independent, centered Lévy processes in R;

(B) n(ūn − v̄1n)/cn → β1, as n→∞, where 0 < β1 <∞;

(C) n(ūn/cn)
2 → c2 and n(v̄1n/cn)

2 → c2, as n→∞, where 0 ¬ c2 <∞.
Then

W 2(n)/cn
d−→ sup

0¬t2¬t<∞

(
V 1(t)− β1t+ V 1(t2)− V 1(t2−)− U(t)

)
.

Note that, despite the identical service times at both servers, the above result is
different than one might expect intuitively on the basis of an analysis of the single
server system.
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[8] K. Dębicki and M. Mandjes, Lévy-driven queues, Institute of Mathematics, University of

Wrocław. Preprint (2010).
[9] J . M. Harr ison, The heavy traffic approximation for single server queues in series, J. Appl.

Probab. 10 (1973), pp. 613–629.
[10] J . M. Harr ison, The diffusion approximation for tandem queues in heavy traffic, J. Appl.

Probab. 10 (1978), pp. 886–905.
[11] J . Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer, New

York 1987.
[12] J . F. C. Kingman, The single server queue in heavy traffic, Math. Proc. Cambridge Philos.

Soc. 57 (1961), pp. 902–904.
[13] C. Kipnis, Central limit theorems for infinite series of queues and applications to simple

exclusion, Ann. Probab. 14 (1986), pp. 397–408.
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