PROBABILITY AND MATHEMATICAL STATISTICS Vol. 33, Fasc. 2 (2013), pp. 353–362

CLASSICAL METHOD OF CONSTRUCTING A COMPLETE SET OF IRREDUCIBLE REPRESENTATIONS OF SEMIDIRECT PRODUCT OF A COMPACT GROUP WITH A FINITE GROUP

Takeshi Hirai

Abstract: Let $G = U \rtimes S$ be a group of semidirect product of U compact and S finite. For an irreducible representation (= IR) ρ of U, let $S([\rho])$ be the stationary subgroup in S of the equivalence class $[\rho] \in \widehat{U}$. Intertwining operators $J_{\rho}(s)$ ($s \in S([\rho])$) between ρ and ${}^{s^{-1}\rho}$ gives in general a spin (= projective) representation of $S([\rho])$, which is lifted up to a linear representation J'_{ρ} of a covering group $S([\rho])'$ of $S([\rho])$. Put $\pi^{0} := \rho \cdot J'_{\rho}$, and take a spin representation π^{1} of $S([\rho])$ corresponding to the factor set inverse to that of J_{ρ} , and put $\Pi(\pi^{0}, \pi^{1}) = \operatorname{Ind}_{U \rtimes S([\rho])}^{G}(\pi^{0} \boxdot \pi^{1})$. We give a simple proof that $\Pi(\pi^{0}, \pi^{1})$ is irreducible and that any IR of G is equivalent to some of $\Pi(\pi^{0}, \pi^{1})$.

2000 AMS Mathematics Subject Classification: Primary: 20C99; Secondary: 20C15, 20C25.

Keywords and phrases: Semidirect product group, construction of irreducible representations, projective representation, finite group and compact group.

THE FULL TEXT IS AVAILABLE HERE