
PROBABILITY
AND

MATHEMATICAL STATISTICS

Vol. 33, Fasc. 2 (2013), pp. 341–352

AN EXAMPLE OF A BOOLEAN-FREE TYPE CENTRAL LIMIT THEOREM
BY

ANNA K U L A∗ (WROCŁAW/KRAKÓW∗∗) AND JANUSZ W Y S O C Z A Ń S K I∗∗∗ (WROCŁAW)

Abstract. We construct a product of Hilbert spaces and associated
product of operators, which generalizes the boolean and the free products
and provides a model for new independence. The related Central Limit The-
orem is proved.
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1. INTRODUCTION

In classical probability random variables are real-valued functions, in par-
ticular they commute, and the notion of (their) independence is unique. In non-
commutative probability random variables are (self-adjont) elements of a ∗-algebra
with a given state, and they (usually) do not commute. Thus there is a need to study
new notions of independence, which would allow one to drop the commutativity
property. Such notions have been invented, the most fruitful being free [7], mono-
tonic [6], and boolean [1] independences. In this framework one studies properties
analogous to classical probability, like limit theorems, infinite divisibility, etc.

In this paper we investigate new construction of noncommutative random vari-
ables, which satisfy some condition of independence and for which we prove
related Central Limit Theorems. The random variables are indexed by partially
ordered sets and in special cases lead to boolean or free independence. By this we
mean the situation where random variables are freely independent if their indexes
are from a totally ordered set (i.e. where any two elements are comparable), and
are boolean independent if the index set is totally disordered (i.e. where any two
elements are incomparable).
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The paper is, in a sense, a continuation of our previous studies of independence
of noncommutative random variables, which are indexed by partially ordered sets.
There we investigated combination of the monotonic and boolean independences
(which we called the bm-independence, cf. [5] and [8]–[10]).

Our noncommutative random variables are operators on a Hilbert space, which
is a product (called the bf-product) of (given) Hilbert spaces, indexed by a partially
ordered index set. For such random variables we formulate and prove related Cen-
tral Limit Theorems (bf-CLT). When formulating a bf-CLT for random variables,
which are indexed by a partially ordered set, one encounters the problem of rea-
sonable formulation of it. In classical CLT one considers normalized partial sums
of the form

SN =
1√
N

N∑
k=1

Xk,

where Xk are i.i.d. with mean zero and variance one. This formulation involves
the total order of the index set N of positive integers, where the summation is over
integers from the interval [1, N ] ⊂ N and the normalization is by the square root
of the number of elements.

In this paper we study one type of examples of partial orders, given by positive
cones Π = Πd in Euclidean spaces V = Vd (d = 1, 2, 3, . . .), where Rd

+ = Π ⊂
V = Rd. In these spaces we define discrete lattices Id = Nd ⊂ Π, which play the
role of N in the classical CLT.

Our main result is Theorem 3.1, the bf-CLT for V = Rd. It states the conver-
gence in moments of (normalized partial sums of) our random variables to a sym-
metric probability measure on R (the bf-CLT measure). Two crucial ingredients of
the proof of the bf-CLT are the reduction to the bf-ordered non-crossing pair parti-
tions (Section 3.1) and the observation linking the limit problem to homogeneous
polynomials (Lemma 3.1).

2. CONSTRUCTION OF THE bf-FOCK SPACE

2.1. Partially ordered sets. Let us recall that a set X is partially ordered by a
relation ≼ if the relation is:

1. reflexive: ξ ≼ ξ for all ξ ∈ X ,
2. antisymmetric: ξ ≼ η and η ≼ ξ imply ξ = η for all ξ, η ∈ X ,
3. transitive: ξ ≼ η and η ≼ ρ imply ξ ≼ ρ for every ξ, η, ρ ∈ X .
In general, for two elements ξ, η ∈ X we shall write ξ ≺ η (or, equivalently,

η ≻ ξ) if ξ ≼ η and ξ ̸= η. Moreover, if the two elements are comparable (i.e.
either ξ ≼ η or η ≼ ξ), then we shall write ξ ∼ η; otherwise, we shall write ξ � η.

For a chain A in X (i.e. a totally ordered subset A ⊂ X ) and a ξ ∈ X we
shall write ξ ∼ A if ξ ∼ η for all η ∈ A, i.e. if A ∪ {ξ} is again totally ordered.
Otherwise we shall write ξ � A.

Natural examples of partially ordered sets are defined by positive cones in
vector spaces. Let us recall that a subset Π ⊂ V of a real or complex vector space
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V is a positive cone if it is closed under addition (i.e. u, v ∈ Π implies u+ v ∈ Π)
and under multiplication by positive scalars (i.e. u ∈ Π and λ > 0 imply λu ∈ Π).
The partial order ≼Π on the vector space V is defined by the positive cone Π in the
following way: for u, v ∈ V we put u ≼Π v if v − u ∈ Π.

In this paper we shall deal mostly with the case of positive cones in the Eu-
clidean spaces V = Rd with natural Π = (R+)

d. The other cases of the symmetric
positive cones in Euclidean spaces, classified by Faraut and Korányi in [3], will be
treated elsewhere.

2.2. bf-product of Hilbert spaces and bf-extensions of operators. Let X be a
partially ordered set with the partial order≼, and let {Hξ = H0

ξ ⊕CΩ : ξ ∈ X} be
a family of Hilbert spaces, indexed by elements ofX , with a common unit vector Ω
(orthogonal to each subspace H0

ξ).

DEFINITION 2.1 (bf-product). The bf-product of the family {Hξ : ξ ∈ X} is
the Hilbert space H spanned by Ω and all simple tensors of the form hξ1 ⊗ hξ2 ⊗
. . . ⊗ hξm ∈ H0

ξ1
⊗H0

ξ2
⊗ . . . ⊗H0

ξm
, where {ξ1 ̸= ξ2 ̸= . . . ̸= ξm} is a chain,

i.e. ξi ∼ ξj for all 1 ¬ i, j ¬ n and the scalar product is defined as

⟨hξ1 ⊗ hξ2 ⊗ . . .⊗ hξm |h′ξ1 ⊗ h′ξ2 ⊗ . . .⊗ h′ξn⟩ = δm,n ·
m∏
j=1

⟨hξj |h
′
ξj
⟩Hξj

.

REMARK 2.1. This definition differs from the bm-product of Hilbert spaces
defined in [8], where we allowed only decreasing indexes ξ1 ≻ ξ2 ≻ . . . ≻ ξm.

Let Aξ ∈ B(Hξ) be a bounded operator on the Hilbert space Hξ (ξ ∈ X ). We
define its bf-extension ontoH in the following manner.

DEFINITION 2.2 (bf-extension). For a ξ ∈ X the bf-extension operator Aξ ∈
B(H) of Aξ ∈ B(Hξ) from Hξ ontoH is defined as follows:

AξΩ := AξΩ = aξΩ+ gξ, aξ = ⟨AξΩ,Ω⟩Hξ
∈ C, gξ ∈ H0

ξ ,(2.1)

Aξhξ := Aξhξ = a′ξΩ+ h′ξ, a′ξ ∈ C, h′ξ ∈ H0
ξ ,(2.2)

Aξhη := aξ · hη + gξ ⊗ hη if ξ ∼ η and ξ ̸= η.(2.3)

Moreover, for ξ, η1, . . . , ηm ∈ Π and hη1 ∈ H0
η1 , . . . , hηm ∈ H0

ηm we set

Aξ(hη1 ⊗ . . .⊗ hηm) := (Aξhη1)⊗ hη2 ⊗ . . .⊗ hηm(2.4)
= a′ξ · hη2 ⊗ . . .⊗ hηm + h′ξ ⊗ hη2 ⊗ . . .⊗ hηm

if ξ = η1 ∼ {η2, . . . , ηm};

Aξ(hη1 ⊗ . . .⊗ hηm) := (AξΩ)⊗ hη1 ⊗ . . .⊗ hηm(2.5)
= aξ · hη1 ⊗ . . .⊗ hηm + gξ ⊗ hη1 ⊗ . . .⊗ hηm
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if ξ ̸= η1 and ξ ∼ {η1, . . . , ηm}; and

(2.6) Aξ(hη1 ⊗ . . .⊗ hηm) := 0

if ξ � {η1, . . . , ηm}.
The notation bf (abbreviation for boolean-free) is justified by the fact that, in

particular cases, the extension operators are boolean independent (if X is totally
disordered, i.e. every two elements are incomparable) or free independent (if X is
totally ordered, i.e. every two elements are comparable). These properties require
considering the vacuum state φ on B(H) (bounded operators onH), defined as

φ(A) := ⟨AΩ|Ω⟩.

It is immediate to see that if Aξ is self-adjoint, then Aξ is self-adjoint too.

THEOREM 2.1. Let H be the bf-product of a family of Hilbert spaces {Hξ :
ξ ∈ X} and let {Aξ : ξ ∈ X} be a family of algebras of bf-extension operators.
Then the following holds:

(B) If the index set X is totally disordered, then the bf-extension operators
{Aξ : ξ ∈ X} are boolean independent, i.e. they satisfy the condition

(2.7) φ(Aξ1 . . . Aξm) = φ(Aξ1) . . . φ(Aξm)

for any ξ1, . . . , ξm ∈ X and any Aξ1 ∈ Aξ1 , . . . , Aξm ∈ Aξm .
(F) If the index set X is totally ordered, then the bf-extension operators {Aξ :

ξ ∈ X} are freely independent, i.e. they satisfy the condition: for any Aξ1 ∈ Aξ1 ,
. . . , Aξm ∈ Aξm , if φ(Aξ) = 0 for all ξ ∈ X , then

(2.8) φ(Aξ1Aξ2 . . . Aξm) = 0 for any ξ1 ̸= ξ2 ̸= . . . ̸= ξm ∈ X .

P r o o f. For the proof of the condition (B) let us assume that X is totally
disordered. Observe that, for a given ξ, η ∈ X , if AηΩ = aηΩ + gη with gη ∈
H0

η, then ξ � η implies Aξgη = 0, and thus AξAηΩ = aηaξΩ + gξ. Hence, by
induction, one can easily show that

Aξ1 . . . AξmΩ = aξ1 . . . aξmΩ+ gξ1 ,

where aξj := φ(Aξj ) = ⟨AξjΩ|Ω⟩ and AξjΩ = aξjΩ+ gξj (j = 1, . . . ,m). There-
fore, using gξ1 ⊥ Ω, we get

φ(Aξ1 . . . Aξm) = ⟨aξ1 . . . aξmΩ+ gξ1 |Ω⟩ = aξ1 . . . aξm = φ(Aξ1) . . . φ(Aξm).

For the proof of the condition (F) let us assume that φ(Aξj ) = 0 for 1 ¬ j ¬
m, and that X is totally ordered. To compute φ(Aξ1 . . . Aξm) we analyse the con-
struction of the vector Aξ1 . . . AξmΩ. By the assumption we have AξjΩ = gξj ∈
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H0
ξm

for all j = 1, . . . ,m, so using ξ1 ∼ ξ2 ∼ . . . ∼ ξm and (2.5) one gets by
induction

Aξj . . . AξmΩ = gξj ⊗ . . .⊗ gξm

for all 1 ¬ j ¬ m. Therefore,

Aξ1 . . . AξmΩ = gξ1 ⊗ . . .⊗ gξm ⊥ Ω,

which implies φ(Aξ1 . . . Aξm) = 0. �

3. BOOLEAN-FREE TYPE CLT FOR EUCLIDEAN SPACE

In this section we consider the vector space X := Rd and the positive cone
Π=Πd :={(a1, . . . , ad) ∈ V : 0 ¬ a1, . . . , 0 ¬ ad} for a given positive integer d.
Then the partial order ≼ on Rd is defined explicitly as follows: for (a1, . . . , ad),
(b1, . . . , bd) ∈ Rd we have (a1, . . . , ad) ≼ (b1, . . . , bd) if and only if a1 ¬ b1, . . .,
ad ¬ bd.

3.1. bf-ordered pair partitions. For further considerations we need some com-
binatorial preparation regarding partitions with blocks indexed by elements of X .
We shall use the notation NC(2n) (resp. NC2(2n)) for the set of all (resp. pair)
non-crossing partitions of the set {1, 2, . . . , 2n}. Recall that a block B={a<b}
∈ V ∈ NC2(2n) is called outer if there is no other block B′ = {a′ < b′} ∈ V such
that a′ < a < b < b′; otherwise the block is inner. Thus, a partition V ∈ NC2(2n)
has only one outer block if and only if it contains the block {1, 2n}.

DEFINITION 3.1. We say that a sequence of k blocks (Bi1 , . . . , Bik) (with
Bij = {aj , bj} for 1 ¬ j ¬ k) of a partition V ∈ NC2(2n) is a maximal descend-
ing sequence if the following holds. For every 1 ¬ j ¬ k − 1 we have:

(i) aj < aj+1 < bj+1 < bj ;
(ii) there is no other block B = {c, d} ∈ V such that aj<c<aj+1< bj+1 <

d < bj ;
(iii) there is no other block B = {c, d} ∈ V such that c<aj<aj+1< bj+1 <

bj < d or aj < aj+1 < c < d < bj+1 < bj .

For a pair of blocks (Bij , Bij+1) which satisfy the conditions (i) and (ii) we
shall use the notation Bij 7→ Bij+1 ; (iii) ensures maximality.

It will be convenient to order the blocks of a non-crossing partition by their
‘left legs’ (i.e. the minimal elements) defined as min(Bj) = aj,1 when Bj={aj,1<
. . . < aj,sj}. The block B1 will denote the one that contains 1. In general, the nota-
tion V = (B1, . . . , Bk) will mean that min(Bj) < min(Bj+1) for 1 ¬ j ¬ k − 1.

DEFINITION 3.2. We say that a sequence (ξ1, ξ2, . . . , ξ2n) of elements from
X is associated with a partition V = (B1, . . . , Bk) ∈ NC(2n) if for every 1¬ j
¬ k there exists the label ξ(j) ∈ {ξ1, ξ2, . . . , ξ2n} such that Bj := {1 ¬ s ¬ 2n :
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ξs = ξ(j)} (we shall denote this by Bj ⊢ ξ(j) or ξ(j) ⊣ Bj). In other words, the
blocks are labelled by the elements.

DEFINITION 3.3 (bf-ordered partitions). A sequence (ξ1, . . . , ξ2n) of elements
in X establishes a bf-order on associated partition V = (B1, . . . , Bn) ∈ NC2(2n)
if for every maximal descending sequence Bi1 7→ . . . 7→ Bik of blocks, the asso-
ciated labels ξ(1) ⊣ Bi1 , . . . , ξ(k) ⊣ Bik form a chain, i.e. ξ(s) ∼ ξ(t) for every
1 ¬ s, t ¬ k. In particular, every element ξj in the sequence has to appear exactly
twice.

3.2. bf-Central Limit Theorem. Consider the family {Jξ : ξ ∈ Id} of subsets
of Id := Nd

0 (where N0 := {0, 1, 2, . . .}) with ξ := (a1, a2, . . . , ad) ∈ Id, and de-
fined by Jξ := [0, ξ] ∩ N0 = {ξ′ ∈ Nd

0 : ξ′ ≼ ξ}. This family is increasing (ξ′ ≼ ξ
implies Jξ′ ⊂ Jξ), and satisfies

∪
ξ∈Id Jξ = Nd

0. Thus it can play the same role
in Rd as N plays in R in the classical CLT (where one considers the summation
(1/
√
M)

∑
m¬M Xm for i.i.d. X1, X2, . . .). In our formulation of bf-CLT we shall

replace this by

Sξ :=
1√
|Jξ|

∑
ξ′≼ξ

Aξ′ =
1√
|Jξ|

∑
ξ′∈Jξ

Aξ′

for the family of bf-extension operators {Aξ : ξ ∈ Id}, and we shall consider the
limit ξ →∞ in the sense that a1, . . . , ad →∞.

THEOREM 3.1 (bf-CLT for bf-extensions). Let {Aξ : ξ ∈ Id} be a family of
self-adjoint bf-extension operators on the bf-product H and let φ be the vacuum
state. Assume that φ(Aξ) = 0 and φ(A2

ξ) = 1 for every ξ ∈ Id. Then, for every
n ∈ N0, limξ→∞ φ

(
(Sξ)

2n+1
)
= 0. Moreover, there exists a sequence

(
gn(d)

)∞
n=0

of real numbers such that for n ∈ N0 there exists the limit

(3.1) gn(d) := lim
ξ→∞

φ
(
(Sξ)

2n
)
= lim

ξ→∞
φ

([
1√
|Jξ|

∑
ξ′∈Jξ

Aξ′

]2n)
.

The sequence is the (even) moment sequence of a symmetric probability measure
µd on R:

gn(d) =
+∞∫
−∞

x2n µd(dx), 0 =
+∞∫
−∞

x2n+1 µd(dx)

for n = 0, 1, 2, . . .

P r o o f. For the proof of the theorem we first use standard quantitative ar-
guments (see [5] and [10]) to reduce the statement to summation related to non-
crossing pair partitions with bf-order. Namely,

gn(d) = lim
ξ→∞

1

|Jξ|n
∑

bfNCn2 (Jξ)

φ(Aξ′1
Aξ′2

. . . Aξ′2n
),
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where the summation is over all bfNCn2 (Jξ) sequences (ξ′1, ξ
′
2, . . . , ξ

′
2n), i.e. se-

quences of elements ξ′1, ξ
′
2, . . . , ξ

′
2n ∈ Jξ, which are associated with partitions from

NC2(2n) on which they establish bf-order. Under these conditions and by the as-
sumptions we have φ(Aξ′1

Aξ′2
. . . Aξ′2n

) = 1 since then there is the product formula

φ(Aξ′1
Aξ′2

. . . Aξ′2n
) =

n∏
j=1

φ(A2
ξ′sj

) = 1,

where {ξ′s1 , . . . , ξ
′
sn} = {ξ

′
1, . . . , ξ

′
2n}. Hence proving (3.1) is reduced to showing

that, for each n ∈ N, there exists the limit

(3.2) gn(d) = lim
ξ→∞

|bfNCn2 (Jξ)|
|Jξ|n

.

Thus we need to estimate the numbers dn(ξ) := |bfNCn2 (Jξ)| for ξ →∞.
We split the proof into several lemmas, and, for simplicity of the notation,

shall present the proofs for the case d = 2. This does not restrict the full generality
of the theorem (see Remark 3.2).

We first describe the behaviour of the number of ‘nested’ partitions. With this
aid, we estimate the cardinality of the set of sequences with one outer block. Fi-
nally, we look on the behaviour of dn(ξ) as ξ →∞.

Below we shall frequently use the following technical result (cf. Faulhaber’s
formula in [2]):

(3.3)
y∑

c=0

(y − c)kcm = γ(k,m)yk+m+1 +O
(
yk+m

)
.

Indeed, by Faulhaber’s formula we have

y∑
c=0

(y − c)kcm =
k∑

j=0

(
k

j

)
(−1)jyk−j

y∑
c=0

cm+j

=
k∑

j=0

(
k

j

)
(−1)jyk−j 1

m+ j + 1

m+j+1∑
i=1

(−1)δi,m+j

(
m+ j + 1

i

)
Bm+j+1−iy

i

=

[ k∑
j=0

(
k

j

)
(−1)j

m+ j + 1

]
ym+k+1 +

1

2

k∑
j=0

(
k

j

)
(−1)jyk+m

+
k∑

j=0

(
k

j

)
(−1)j 1

m+ j + 1

m+j−1∑
i=1

(
m+ j + 1

i

)
Bm+j+1−i y

k−j+i

= γ(k,m)yk+m+1 +O(ym+k),

where Bk’s are Bernoulli numbers, and

γ(k,m) =
k∑

j=0

(
k

j

)
(−1)j

m+ j + 1
.
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DEFINITION 3.4. Let π belong to bfNCn2 (Jρ) and be of the form

(3.4) π = (ξ1, ξ2, . . . , ξt, π
′, ξt, . . . , ξ2, ξ1),

π′ ∈ bfNCn−t2 (Jρ). Then we call π′ a bfNC-subsequence nested at the depth t
under ξ1, . . . , ξt. Given a sequence ρ ≻ ξ1 ≻ . . . ≻ ξt ≻ 0, the number of all
bfNCn−t2 (Jρ)-subsequences nested at the depth t under ξ1, . . . , ξt will be denoted
by ctn[ρ](ξ1 ≻ . . . ≻ ξt).

REMARK 3.1. If we omit the assumption about the decreasing ordering of
elements ξ1, . . . , ξt, then the number of all bfNCn−t2 (Jρ)-subsequences nested at
the depth t under ξ1, . . . , ξt equals t! · ctn[ρ](ξ1 ≻ . . . ≻ ξt).

DEFINITION 3.5. Let us denote by bfNCn2,1(Jρ) the collection of all sequences
in bfNCn2 (Jρ) such that the associated non-crossing pair partition, on which the se-
quence establishes bf-order, has exactly one outer block. Let B1

ρ(n) = B1
ρ(n, d) :=

|bfNCn2,1(Jρ)| denote the cardinality of the set.

LEMMA 3.1. Let n be a fixed integer. For any t < n we have

(3.5) ctn[ρ](ξ1 ≻ . . . ≻ ξt) = Pn,t(v0, v1, . . . , vt) + pn,t(x0, y0, x1, . . . , xt, yt),

where
Pn,t(v0, v1, . . . , vt) =

∑
k0+...+kt=n−t

αn,t
k0,...,kd

vk00 . . . vktt

is a homogeneous polynomial in t+ 1 variables of degree n− t and

vj = vol([ξj , ξj+1]), j = 0, 1, . . . , t.

Moreover, pn,t is a polynomial in 2t+2 variables xj = aj − aj+1, yj = bj − bj+1

of degree at most 2(n − t − 1), where ξ0 = ρ, ξt+1 = 0, ξi = (ai, bi) for i =
0, . . . , t.

P r o o f. We proceed by the inverse induction on t. For t = n − 1 the only
bfNC12(Jρ)-subsequence will be related to the partition π′ = {η, η} with η com-
parable to all ξi’s. Thus

cn−1n [ρ](ξ1 ≻ . . . ≻ ξn−1) = |{η : ∃j ξj+1 ≺ η ≺ ξj}| =
d∑

j=0

∑
η:ξj+1≺η≺ξj

1

=
d∑

j=0

(aj − aj+1)(bj − bj+1) = v0 + . . .+ vd

is homogeneous of degree one, and pn,n−1 = 0.
Let us now assume that for any (t+ 1)-elements ordered sequence in [0, ρ] the

number ctn[ρ](ξ1 ≻ . . . ≻ ξt+1) is of the form (3.5).
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Let ξ1 ≻ . . . ≻ ξt, π be of the form (3.4). Then π′ itself has n − t blocks
and p outer blocks B1, . . . , Bp. Each such outer block induces a subpartition σi ∈
bfNCmi

2,1(Jρ). Let us focus on one such subpartition σ (for convenience we omit
the index i), consisting of m ¬ n− t blocks, and denote the label of its outer block
by η. Since η ∼ {ξ1, . . . , ξt}, there exists j (0 ¬ j ¬ t) such that ξj+1 ≺ η ≺ ξj .
Thus, by the inductive assumption, the number of bf-subsequences nested at the
depth t+1 under ξ1, . . . , ξt, η satisfies (3.5). This means that there are polynomials
Pm+t,t+1 homogeneous, in t + 2 variables, of degree m − 1, and an appropriate
polynomial pm+t,t+1 of smaller order such that

ct+1
n [ρ](ξ1 ≻ . . . ≻ ξj ≻ η ≻ ξj+1 ≻ . . . ≻ ξt)

=
∑

k0+...+kt=m−1,kj=k
(1)
j +k

(2)
j

αm+t,t+1
k0,...,kd

vk00 . . . (v
(1)
j )k

(1)
j (v

(2)
j )k

(2)
j . . . vktt

+ pm+t,t+1(x0, y0, . . . , yj−1, aj − c, bj − d, c− aj+1, d− bj+1, xj+1, . . . , yt),

where vj denotes the volume of the interval [ξj+1, ξj ] and v
(1)
j = vol[η, ξj ], and

v
(2)
j = vol[ξj+1, η].

Now, to compute all possible subsequences nested under ξ1, . . . , ξt related to
the partition σ, we need to sum over all possible points η lying in [ξj+1, ξj ], and
then sum over all j’s. We shall first focus on the leading term (i.e. the one related
to P ). Note that when applying the summation over η ∈ [ξj+1, ξj ] to it, the only

term which depends on η is (v(1)j )k
(1)
j (v

(2)
j )k

(2)
j . That is why, using (3.3) and writing

k
(1)
j = k and k

(1)
j = l, we first compute

∑
η∈[ξj+1,ξj ]

(v
(1)
j )k

(1)
j (v

(2)
j )k

(2)
j

=
aj∑

c=aj+1

(c− aj)
k(aj+1 − c)l

bj∑
d=bj+1

(d− bj)
k(bj+1 − d)l

=
aj−aj+1∑

c=0

ck(aj+1 − aj − c)l
bj−bj+1∑
d=0

dk(bj+1 − bj+1 − d)l

=
(
γ(k, l)(aj+1 − aj)

k+l+1 +O
(
(aj+1 − aj)

k+l
))

×
(
γ(k, l)(bj+1 − bj)

k+l+1 +O
(
(bj+1 − bj)

k+l
))

= γ(k
(1)
j , k

(2)
j )2 · v

k
(1)
j +k

(2)
j +1

j +O
(
(aj+1 − aj)

k
(1)
j +k

(2)
j +1(bj+1 − bj)

k
(1)
j +k

(2)
j
)

+O
(
(aj+1 − aj)

k
(1)
j +k

(2)
j (bj+1 − bj)

k
(1)
j +k

(2)
j +1).
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We see that the leading term of the result is proportional to the volume of the
interval [ξj+1, ξj ]. This means that the leading term of

∑
η∈[ξj+1,ξj ]

ct+1
n [ρ](ξ1 ≻ . . . ≻ ξj ≻ η ≻ ξj+1 ≻ . . . ≻ ξt)

will be a homogeneous polynomial in variables v0, . . . , vj , . . . , vt of degree k0 +

. . .+ kj−1 + k
(1)
j + k

(2)
j + 1+ kj+1 + . . .+ kt = m, which does not depend on j.

Thus summing over all j = 0, . . . , t we get a sum of polynomials in the same vari-
ables, homogeneous of the same degree m. The result will be of the same type.
Finally, we need to consider all blocks B1, . . . , Bp. Let Pi denote the homoge-
neous polynomial in variables v0, . . . , vj , . . . , vt of degree mi, corresponding to
the block Bi. Since the choice of the points labelling blocks in different subparti-
tions σ1, . . . , σp can be regarded as independent (formally, the points should not
repeat, but such a situation is negligible), the number of subsequences nested under
fixed ξ1, . . . , ξt is the product of Pi’s, which is again a homogeneous polynomial
in variables v0, . . . , vj , . . . , vt of degree

∑p
i=1mi = n− t.

By the same technique we can show that the remaining terms are of type
(aj − aj+1)

k(bj − bj+1)
l with k + l < n− t and j = 0, . . . , t. �

The next lemma estimates B1
ξ (n, d).

LEMMA 3.2. For any n ∈ N there exists a constant Ln > 0, independent of
ρ, such that

B1
ρ(n) = |bfNCn2,1(Jρ)| = Ln · |Jρ|n +O(|Jρ|n−1).

P r o o f. For any fixed sequence in bfNCn2,1(Jρ) let ξ = (a, b) denote the label
of the outer block in the sequence. By the bf-ordering property we must have ξ ∼
ρ = (M,N). Applying Lemma 3.1 to the case of t = 1, we see that

B1
ρ(n) =

∑
ξ∼ρ

c1n−1[ρ](ξ)

=
M∑
a=0

N∑
b=0

[
Pn,1

(
ab, (M − a)(N − b)

)
+ pn,1

(
ab, (M − a)(N − b)

)]
=

M∑
a=0

N∑
b=0

∑
k0+k1=n−1

αn,1
k0,k1

(ab)k0 [(M − a)(N − b)]k1

+
M∑
a=0

N∑
b=0

∑
l0+l1<n−1

βn,1
l0,l1

(ab)l0 [(M − a)(N − b)]l1

=
n−1∑
m=0

αn,1
m,n−1−mγ(m,n−m− 1)2(MN)n +O

(
(MN)n−1

)
,
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which shows that

B1
ρ(n) = Ln|Jρ|n +O(|Jρ|n−1), Ln =

n−1∑
m=0

αn,1
m,n−m−1γ(m,n−m− 1)2,

and the proof is completed. �

Now we are ready to estimate the number of bfNC-sequences.

LEMMA 3.3. For any n ∈ N there exists a constant Kn > 0, independent of
ρ, such that

|bfNCn2 (Jρ)| = Kn · |Jρ|n +O(|Jρ|n−1).

P r o o f. Let us consider π = {ξ1, . . . , ξ2n} ∈ bfNCn2 (Jρ) associated with
a non-crossing pair partition of n blocks. Consider the block {1, 2k} labelled
with ξ = ξ1 = ξ2k. The bf-ordered subpartition π′ = {ξ1, . . . , ξ2k} has exactly one
outer block, i.e. π′ ∈ bfNCk2,1(Jρ). The remaining part {ξ2k+1, . . . , ξ2n} belongs
to bfNCn−k2 (Jρ) and its ordering can be chosen independently of π′. That is why

|bfNCn2 (Jρ)|=
n∑

k=1

|bfNCn−k2 (Jρ)|B1
ρ(k)=

( n∑
k=1

Kn−kLk

)
· |Jρ|n +O(|Jρ|n−1),

by Lemma 3.2 and the inductive assumption. �

The application of Lemma 3.3 completes the proof of Theorem 3.1, because
(cf. (3.2))

gn(d) = lim
ρ→∞

|bfNCn2 (Jρ)|
|Jρ|n

= Kn =
n∑

k=1

Kn−kLk <∞. �

REMARK 3.2. The same idea of proof applies to bf-CLT in higher dimen-
sional space Rd. The difference is that the variable vj , j = 0, . . . , d, in Lemma 3.1
is the volume of the d-dimensional interval [ξj+1, ξj ]. Also all possible coordinates
of differences ξj − ξj+1 will appear in the polynomial pn,t. Consequently, the d-th
power of γ(k, d) will appear in the constant Lk, but the limit gn remains finite for
any n ∈ N.

REMARK 3.3. The recurrence for the sequence (gn)n∈N is given by

g0 = 1, gn =
n∑

k=1

gn−kLk, n > 1,

where Lk is a linear combination of the coefficients in the polynomial Pn,1 from
Lemma 3.1, and thus is difficult to compute. The first values of the sequence, for
d = 2, are

g0 = g1 = 1, g2 =
3

2
, g3 =

22

9
, g4 =

599

144
.
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