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MULTIDIMENSIONAL CATALAN AND RELATED NUMBERS
AS HAUSDORFF MOMENTS∗

BY
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Abstract. We study integral representation of the so-called d-dimen-
sional Catalan numbers Cd(n), defined by

[∏d−1
p=0 p!/(n+ p)!

]
(dn)!,

d = 2, 3, . . ., n = 0, 1, . . . We prove that the Cd(n)’s are the nth Haus-
dorff power moments of positive functions Wd(x) defined on x ∈ [0, d d].
We construct exact and explicit forms of Wd(x) and demonstrate that they
can be expressed as combinations of d−1 hypergeometric functions of type
d−1Fd−2 of argument x/d d. These solutions are unique. We analyze them
analytically and graphically. A combinatorially relevant, specific extension
of Cd(n) for d even in the form

Dd(n) =
[ d−1∏
p=0

p!
(n+p)!

][ d/2−1∏
q=0

(2n+2q)!
(2q)!

]
is analyzed along the same lines.
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1. INTRODUCTION

Amongst many existing generalizations of classical Catalan numbers

C(n) =
1

n+ 1

(
2n

n

)
,

those that include the parameter that in a certain sense can be associated with the
spatial dimension d are particularly interesting. They permit to extend to higher
dimensions d > 2 the notions of objects enumerated by C(n) in d = 2. In this
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note we shall be concerned with one of such generalizations, called d-dimensional
Catalan numbers (see [1], [9], [19]), which are defined as

(1.1) Cd(n) =

[
d−1∏
p=0

p!

(n+ p)!

]
(dn)!, n = 0, 1, . . . , and d = 2, 3, . . . ,

which for d = 2 clearly reduce the conventional Catalan numbers C(n). The form
of equation (1.1) guarantees that Cd(0) = 1 for all d. We shall refer to Sloane’s
On-Line Encyclopedia of Integer Sequences (OEIS) [17] and quote initial terms,
for n = 0, 1, . . . , 7, of several sequences Cd(n), d = 2, 3, 4, and 5, along with the
labelling of their entries in the OEIS:
• for d = 2: 1, 1, 2, 5, 14, 42, 132, . . . (A00108), which are the Catalan numbers,
• for d = 3: 1, 1, 5, 42, 462, 6006, 87516, . . . (A005789, A151334),
• for d = 4: 1, 1, 14, 462, 24024, 1662804, 140229804, . . . (A005790),
• for d = 5: 1, 1, 42, 6006, 1662804, 701149020, 396499770810, . . . (A005791),
• for general d, see A060854.

The explicit form of Cd(n)’s permits one to immediately write down some
of their characteristics. If ∆(k, a) = a/k, (a+ 1)/k, . . . , (a+ k − 1)/k denotes
a special list of k elements, then the ordinary generating function of Cd(n)’s can
be written as

(1.2) g(d, z) =
∞∑
n=0

Cd(n) z
n = dFd−1

(
∆(d, 1)

2, 3, . . . , d

∣∣d dz

)
.

Similarly, the exponential generating function of Cd(n)’s is of the form

(1.3) G(d, z) =
∞∑
n=0

Cd(n)
zn

n!
= dFd

(
∆(d, 1)

1, 2, . . . , d

∣∣d dz

)
.

The use of Stirling’s formula gives the leading term of n → ∞ asymptotics for
Cd(n):

(1.4) Cd(n)
n→∞−−−→ n−(d

2−1)/2d dn + . . . , d = 2, 3, . . .

In equations (1.2) and (1.3) we have used the standard notation for the general-
ized hypergeometric function pFq

(
(αp)
(βq)

∣∣x), with (αp) and (βq) the lists of p “up-
per” and q “lower” parameters, respectively, see [16]. Observe that since in dFd of
equation (1.3) there is a pair of lower and upper parameters differing by one, the
appropriate function dFd can be reduced to a combination of d−1Fd−1’s, see [16],
the formula 7.2.13.17 on page 439.

Inspired by the very fruitful interpretation of Catalan numbers C(n) as mo-
ments of a positive function on the interval [0, 4], which is intimately related to the
famous Wigner’s semicircle law [2], we set out to consider the sequences Cd(n),
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d > 2, as Hausdorff power moments and have defined an objective of obtaining for
d > 2 the equivalents of the solution for d = 2, quoted in equation (2.8) below.

The paper is organized as follows: in Section 2 we describe the method of
obtaining exact and explicit solutions for d  2. Subsequently we write down the
general solution for d arbitrary and quote the specific cases of d = 2, 3, 4, and 5.
In Section 3 we discuss some possible generalizations of Cd(n)’s. In Section 4 we
close the note with short conclusions and comments about possible applications of
the probability distributions found here.

2. SOLUTIONS OF THE HAUSDORFF MOMENT PROBLEM

We want to find the solutions of the Hausdorff moment problem

(2.1)
R(d)∫
0

xnWd(x) dx = Cd(n), n = 0, 1, . . . , and d = 2, 3, . . . ,

where R(d), the upper edge of the support of Wd(x), will be determined below.
The conventional estimate R(d) = limn→∞[Cd(n)]

1/n = dd will be confirmed
later by the Mellin transform analysis. As a preliminary step we shall demonstrate
that the desired Wd(x) defined in (2.1) is positive. Applying the Gauss–Legendre
multiplication formula for gamma function to equation (1.1) and introducing com-
plex s such that n = s− 1 we obtain

(2.2) Cd(s− 1) = (2π)(1−d)/2d1/2−d
( d−1∏
k=0

k!
)
(d d) s

d−1∏
j=0

Γ
(
s− 1 + (j + 1)/d

)
Γ(s+ j)

,

which should be interpreted as the Mellin transform of Wd(x), i.e. the integral∫∞
0

xs−1Wd(x)dx, denoted byM [Wd(x); s], see [18]. Since for all 0 ¬ j ¬ d− 1
the inequality j > (j + 1− d)/d is true, the individual term labelled by j in the
second product of equation (2.2) has the inverse Mellin transform [18] (see [16],
the formula 8.4.2.3 on page 631),

(2.3) M−1
[
Γ
(
s− 1 + (j + 1)/d

)
Γ(s+ j)

;x

]
=

x(j+1)/d−1 (1− x)j−(j+1)/d

Γ
(
1 + j − (j + 1)/d

) ,

j = 0, 1, . . . , d− 1, e.g., it is proportional to the standard probabilistic beta distri-
bution [10] in the variable x, which is a positive and absolutely continuous func-
tion for 0 ¬ x ¬ 1. We perceive now Cd(s− 1) as a product of d such individual
terms. Then the weight Wd(x) is a positive and absolutely continuous function on
[0, R(d)], since it is a d-fold Mellin convolution of positive and absolutely contin-
uous functions on [0, 1]. In the final result we accommodate the prefactor (d d)s

which indicates, via elementary property of the Mellin transform [18], that the so-
lution of (2.1) will depend on x/d d.
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It turns out that such a d-fold Mellin convolution can be carried out explicitly.
The key step is first to identify the weight Wd(x) as a special case of the Meijer
G-function Gm,n

p,q (see [16]). This is a direct consequence of (2.2), i.e.,

(2.4) Wd(x) = (2π)(1−d)/2d1/2−d
( d−1∏
k=0

k!
)
Gd,0

d,d

(
x

dd
∣∣0, 1, . . . , d− 1

−∆(d, 0)

)
,

where ∆(n, a)=a/n, (a+ 1)/n, . . . , (a+ n− 1)/n. Next, the Meijer G-function
is converted to the hypergeometric form by using the formulas 16.17.2 and 17.17.3
of [13], which is the Slater theorem. We quote only the final result which is of the
form

(2.5) Wd(x) =
d−1∑
j=1

cj(d)

xj/d
×

×d−1 Fd−2

(
− j

d ,−1−
j
d , . . . ,−d+ 2− j

d

1− 1
d , 1−

2
d , . . . , 1−

j−1
d ; 1 + 1

d , 1 +
2
d , . . . , 1 +

d−j−1
d

∣∣ x
d d

)

defined for 0 ¬ x ¬ d d, which implies R(d) = dd in equation (2.1). (For the
reader’s convenience we point out that in equation (2.5), in the lower list of pa-
rameters of d−1Fd−2, there are two sequences of numbers, which contain j − 1
and d− 1− j terms, respectively). The numerical coefficient cj(d) is equal to

(2.6) cj(d) = (2π)(1−d)/2dj−d+1/2×

×
[
d−1∏
p=1

p!

Γ
(
p+ j/d

)][ j−1∏
k=1

Γ

(
k

d

)][
d−1∏

k=j+1

Γ

(
j − k

d

)]
,

where j = 1, . . . , d− 1 and d = 2, 3, . . .
The structure of parameter list of the Meijer G-function in equation (2.4) war-

rants that the assumptions of the formula 2.24.2.1 in [16] are satisfied:

(2.7) −1
d

d−1∑
k=0

k −
d−1∑
k=0

k = −d
2 − 1

2
< 0, d = 2, 3, . . .

Therefore, the Mellin transform of Wd(x) is well defined for ℜ(s) > (d− 1)/d.
We shall explicitly write down the solutions for d = 2, 3, 4, and 5, starting

with W2(x),

(2.8) W2(x) =
1

2π

√
4− x

x
, 0 < x 6 4,

which is obtained in many references (see [11], [14], and Figure 1a below). It is
the only density that can be expressed by an elementary function. Furthermore,
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Figure 1a. The density W2(x),
see equation (2.8)

Figure 1b. The density W3(x),
see equation (2.9)

for d > 2 no density can be expressed by standard special functions, and the hy-
pergeometric form is the final one. For d = 3, . . . , 5 the solutions take the form:

(2.9)

W3(x) =
c1(3)

x1/3
2F1

(
−4

3 ,−
1
3

4
3

∣∣ x
33

)
+

c2(3)

x2/3
2F1

(
−5

3 ,−
2
3

2
3

∣∣ x
33

)
, 0 < x 6 33,

W4(x) =
c1(4)

x1/4
3F2

(
−9

4 ,−
5
4 ,−

1
4

5
4 ,

3
2

∣∣ x
44

)
+

c2(4)

x1/2
3F2

(
−5

2 ,−
3
2 ,−

1
2

3
4 ,

5
4

∣∣ x
44

)(2.10)

+
c3(4)

x3/4
3F2

(
−11

4 ,−
7
4 ,−

3
4

1
2 ,

3
4

∣∣ x
44

)
, 0 < x 6 44,

(2.11) W5(x) =

=
c1(5)

x1/5
4F3

(
−16

5 ,−
11
5 ,−

6
5 ,−

1
5

6
5 ,

7
5 ,

8
5

∣∣ x
55

)
+
c2(5)

x2/5
4F3

(
−17

5 ,−
12
5 ,−

7
5 ,−

2
5

4
5 ,

6
5 ,

7
5

∣∣ x
55

)

+
c3(5)

x3/5
4F3

(
−18

5 ,−
13
5 ,−

8
5 ,−

3
5

3
5 ,

4
5 ,

6
5

∣∣ x
55

)
+
c4(5)

x4/5
4F3

(
−19

5 ,−
14
5 ,−

9
5 ,−

4
5

2
5 ,

3
5 ,

4
5

∣∣ x
55

)
,

0 < x 6 55.
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Table 1. The coefficients cj(d) (see equations (2.5) and (2.6)) for
d = 3, . . . , 6 and j = 1, . . . , d − 1. To simplify the notation in cj(5) and
cj(6) we set A = sin

(
π
5

)
, B = sin

(
2π
5

)
and E = Γ

(
5
6

)6
, D = Γ

(
2
3

)6
j cj(3) cj(4) cj(5) cj(6)

1 −33
√
3

16π3
Γ
(
2
3

)3 442

75π4
Γ
(
3
4

)4 −
59
√
5Γ

(
4
5

)5
A4

2532112π5 B

213316 E

741331805π6

2
32

10
Γ
(
2
3

)−3 − 43

15π2

59
√
5Γ

(
3
5

)5
B4

267317π5 A
− 319D

2107365π6

3 –
46

4851
Γ
(
3
4

)−4 − 59
√
5(AB)−1

2734132Γ
(
3
5

)5 221

725234π3

4 – –
59
√
5(AB)−1

27347219Γ
(
4
5

)4 − 317

11253287D

5 – – –
222317

1145417323229E

The coefficients cj(d), j = 1, . . . , d− 1, for d = 3, . . . , 6 are collected in Table 1.
With cj(6)’s given there and using equations (2.5) and (2.6), the reader can eas-
ily reconstruct W6(x), which will not be reproduced here. The solution W3(x) is
represented in Figure 1b.

3. GENERALIZATION OF MULTIDIMENSIONAL CATALAN NUMBERS

In this section we analyze the extension of C4(n) obtained by replacing (4n)!
in equation (1.1) by (2n)!(2n+ 2)! . The corresponding sequence

D4(n) ≡ 6(2n)!(2n+ 2)!
[ 3∏
r=0

(n+ r)!
]−1

has attracted attention in several contexts, as it appears in [1], [3], [4], [6].
The initial terms of D4(n) are 1, 1, 4, 30, 330, 4719, 81796, 1643356 for

n = 0, 1, . . . , 7. It is listed as A006149 in OEIS where also additional information
can be found. It turns out that the ordinary generating function of D4(n) can be
expressed by the elliptic functions E(y) and K(y) (see [13]):

∞∑
n=0

D4(n) z
n =

1 + 6z

4z2
+

(1− 16z) (1 + 112z)

240π z3
K(4
√
z)(3.1)

− 1 + 224z + 256z2

240π z3
E(4
√
z).
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In fact, the sequence D4(n) allows for the same kind of analysis as does the en-
semble of Cd(n)’s. The Hausdorff moment problem for D4(n), namely

(3.2)
h∫
0

xn V4(x) dx = D4(n) =
6(2n)!(2n+ 2)!

3∏
r=0

(n+ r)!

, n = 0, 1, . . . ,

can be solved by using the method of Mellin convolution and the Meijer G-function
elucidated above. The weight can be proven to be positive on x ∈ [0, h] with
h = 16 and takes the form

(3.3) V4(x) =
1

15π2

[(
64√
x
+ 56
√
x+

x3/2

4

)
×

× E
(√

1− x

16

)
− 2
√
x(16 + x)K

(√
1− x

16

)]
.

The function V4(x) is plotted in Figure 2a.

Figure 2a. The density V4(x),
see equation (3.3)

Figure 2b. The density V6(x),
see equation (3.8) for d = 6

The sequence D4(n) analyzed above is a special case d = 4 of the following
generalization of Cd(n) defined for even d:

(3.4) Dd(n) =

[
d−1∏
r=0

r!

(n+ r)!

] [ d/2−1∏
s=0

(2n+ 2s)!

(2s)!

]
, d = 2, 4, 6, . . .

Here the parameter d should not be associated anymore with the spatial dimension.
Several exact characteristics of the sequences Dd(n) are available. The ordinary
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generating function takes the form

(3.5) g̃(d, z) = d/2Fd/2−1

(
1
2 ,

3
2 , . . . ,

d−1
2 , 1

d
2 + 1, d2 + 2, . . . , d

∣∣2dz),
whereas the corresponding exponential generating function is equal to

(3.6) G̃(d, z) = dFd

( 1
2 ,

3
2 , . . . ,

d−1
2 , 1, 2, . . . , d2

1, 2, 3, . . . , d

∣∣2dz).
The leading term of the n→∞ asymptotics for Dd(n) can be obtained by using
the Stirling formula and it has the following form:

(3.7) Dd(n)
n→∞−−−→ n−d (d−1)/4 2dn, d = 4, 6, . . .

It is remarkable that the Hausdorff moment problem for Dd(n), i.e.

κ(d)∫
0

xn Vd(x) dx = Dd(n), n = 0, 1, . . . , and d = 4, 6, . . . ,

can be exactly solved as well in terms of positive functions Vd(x) defined for x ∈
[0, 2d], i.e., κ(d) = 2d, which equals

Vd(x) =

2−d
d−1∏
r=0

r!

d/2−1∏
k=0

Γ
(
k + 1

2

)
k!

G
d/2, 0
d/2, d/2

(
x

2d
|
d
2 ,

d
2 + 1, . . . , d− 1

−1
2 ,

1
2 ,

3
2 , . . . ,

d−3
2

)
.(3.8)

Here the condition 2.24.2.1 in [16] implies −d
4(d + 1) < 0, d = 4, 6, . . ., which

is always satisfied. In addition, the Mellin transform of Vd(x) is well defined for
ℜ(s) > 1

2 . The proof of positivity of Vd(x) can be carried out along the lines ex-
posed in the previous section.

Since in (3.8) in both parameter lists in the Meijer G-function there are index
pairs that differ by an integer, this Meijer G-function cannot be represented by a
sum of generalized hypergeometric functions. However, the expression (3.8) can
be easily manipulated algebraically and represented graphically (in this work we
have made an extensive use of Mapler). In Figure 2b we display V6(x) in the range
x ∈ [10, 60]. Observe the rapid decrease of this function for x & 25, followed by
a large region where it is practically flat and equals zero. A similar behavior is
observed for higher values of d.
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4. DISCUSSION AND CONCLUSIONS

In this work we have treated essentially two generalizations of conventional
Catalan numbers, which are related to such notions as Young tableaux, hook
lengths, generalized Dyck paths, etc. [7]. They all turn out to be moments of pos-
itive functions on supports included in the positive half line. The relevant weight
functions have been obtained explicitly and analyzed graphically. All these positive
functions are unique solutions of Hausdorff moment problems. The key tool in this
approach has been the inverse Mellin transform and the encoding with Meijer G-
functions. The positivity of solutions has been rigorously proven using the method
of Mellin convolution, applied to related problems previously (see [8], [12], [15]).

It should be specified that the function W2(x) of equation (2.8) is the known
Marchenko–Pastur distribution [11], [15], which describes the level statistic of ran-
dom Wishart matrices W = GG†, where G is a square, N × N random Ginibre
matrix. As far as applications for random matrices are concerned two problems
appear to be relevant for the distributions found in the present work.

First, it would be intriguing to know if the distributions Wd(x) for d  3, and
Vd(x) for d = 4, 6, . . . would correspond to limit spectral densities of certain (if
any) ensembles of random matrices. A second possibility is to extend the analysis
of products of square random matrices to products of rectangular N ×M random
matrices with r = N/M . A case in point is a detailed analysis of products of rect-
angular Gaussian random matrices carried out in [5]. Therefore, once the relevant
matrix ensemble has been properly identified, it is quite feasible to undertake the
analysis of appropriate products of rectangular matrices. This would lead, in the
spirit of [5], to, for instance, W (r)

3 (x) parametrized by r, with W
(1)
3 (x) ≡W3(x).

Both of these problems are under active consideration.

Acknowledgments. We thank G. H. E. Duchamp and Olivier Gérard for useful
suggestions and discussions.
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