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Abstract. In this article, we first review the main characterizations of
multivariate Pearson type II distribution as a subclass of multivariate sym-
metric spherical distributions. Then we try to provide specific mathematical
and statistical principles underlying the construction of this subclass of mul-
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1. PRELIMINARIES

The class of multivariate symmetric spherical distributions has received exten-
sive attention as a generalization of multivariate standard normal distribution. The
fundamental characterizations and properties of this class of distributions can be
found in [3]. The works by Arellano-Valle and Bolfarine [2], Volodin [12], Liang
and Bentler [7], Arellano-Valle [1], and references therein have presented more
characterizations of the class of multivariate symmetric spherical distributions and
some particular subclasses of these distributions. In particular, characterizations of
multivariate Pearson type II distribution (MPII) have been obtained by Fang et
al. [3], Liang and Bentler [7], and Arellano-Valle [1].

The Pearson type II distribution plays a key role in the class of multivari-
ate symmetric spherical distributions. Specifically, every marginal distribution of a
multivariate symmetric distribution can be expressed in terms of the corresponding
radial distribution and the Pearson type II distribution; see Arellano-Valle [1]. This
important property and other mathematical and statistical features motivate us to
focus on this distribution. Let us first recall some basic notions.

Multivariate symmetric spherical distributions are defined on the closure of
an n-sphere. An n-sphere is a generalization of an ordinary sphere to an arbitrary
dimension. From a geometrical point of view, an n-sphere of radius r is a locus
of n-dimensional points with maximum distance r from the origin. An n-sphere is
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represented as follows:

(1.1) Sn =
{
(x1, . . . , xn) ∈ Rn,

n∑
i=1

x2i ¬ r2
}
.

In a special case where r = 1, this shape is called a unit n-sphere. The volume
Vn(r) and surface area Sn(r) of an n-sphere with radius r are given by

Vn(r) =
πn/2

Γ(n/2 + 1)
rn,(1.2)

Sn(r) =
2πn/2

Γ(n/2)
rn−1.(1.3)

Suppose (U1, . . . , Un)
′ is a random point from a unit n-sphere with joint den-

sity function given by

(1.4) fU1,..,Un(u1, . . . , un; a)

=
Γ(a+ n/2)

Γ(a)
π−n/2

(
1−

n∑
i=1

u2i
)a−1

I(0,1)
( n∑
i=1

u2i
)
, a > 0.

Then (U1, . . . , Un)
′ follows multivariate Pearson type II distribution with pa-

rameters a and n, MPIIn(a), where
∑n

i=1 u
2
i is called a spherical kernel of this

multivariate distribution. The class of multivariate Pearson type II distributions
formed by their joint density functions is defined as follows:

(1.5) C = {fU1,...,Un(u1, . . . , un; a), a > 0, n ∈ N}.

This paper is organized as follows. In Section 2 we present fundamental char-
acterizations of the class of multivariate Pearson type II distributions. Some useful
properties are also included in Section 2. In Section 3, we provide some mathemat-
ical and statistical features of this class of distributions.

2. CHARACTERIZATION OF MULTIVARIATE PEARSON TYPE II DISTRIBUTION

In this section, we present main characterizations of the MPII distribution
with detailed description. Some further useful results are also included.

THEOREM 2.1. Suppose U = (U1, . . . , Un)
′ follows a multivariate symmet-

ric Pearson type II distribution MPIIn(a). Then:

(C1) U has the stochastic representation U
d
=
√
VW, where V

d
= ∥U∥2 is

distributed as beta distribution B(n/2, a) and the n-dimensional vector W is uni-
formly distributed on the surface of a unit n-sphere. Furthermore, V and W are
independent.
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(C2) For each 1 ¬ k < n, (Ui1 , . . . , Uik)
′ is distributed as the multivariate

Pearson type II distribution MPIIk
(
a+ (n− k)/2

)
.

(C3) Let us assume that U = (U
(1)
1×k,U

(2)
1×(n−k))

′. Then the conditional dis-

tribution (1− ∥U(2)∥2)−1/2U(1) given U(2) = u(2) is distributed as multivariate
Pearson type II distribution MPIIk(a).

(C4) Let S = (S1, . . . , Sn)
′

be distributed as multivariate symmetric spheri-
cal distribution. Then every subvector S(k)=(Si1 , . . . , Sik)

′
, 1 ¬ k ¬ n− 1, has

the stochastic representation

S(k) d
= ∥S∥U(k),

where U(k) is distributed as MPIIk(n− k).

P r o o f. See Arellano-Valle [1] and Liang and Bentler [7]. �

REMARK 2.1. Generally, a random vector S = (S1, . . . , Sn)
′ with multivari-

ate spherical symmetric distribution has the stochastic representation

(2.1) S
d
= ∥S∥W,

where the random vector W is uniformly distributed on the surface of an n-sphere.

REMARK 2.2. If n = 2k, then two halves (U1, . . . , Uk)
′
and (Uk+1, . . . , U2k)

′

have the same distribution. The joint density function of the first vector takes the
form
(2.2) fU1,...,Uk

(u1, . . . , uk)

= π−k/2
Γ(a+ 3k/2)

Γ(a+ k/2)

(
1−

k∑
i=1

u2i
)a+k/2−1

I(0,1)
( k∑
i=1

u2i
)
.

REMARK 2.3. Let us put V =
∑n

i=1 U
2
i . Then the conditional distribution

of (U1, . . . , Un)
′

given
√
V =
√
v is uniformly distributed over the surface of an

n-sphere with radius
√
v.

P r o o f. For the proof note that V ∼ B(n/2, a). Therefore,

f√V (
√
v) =

2

B(n/2, a)
v(n/2−1/2)(1− v)a−1,

so we have

fU1,...,Un|
√
V (u1, u2, . . . , un|

√
v)

=

[
Γ(a+ n/2)

Γ(a)
π−n/2(1− v)a−1

][
2

B(n/2, a)
v(n/2−1/2)(1− v)a−1

]−1
=

1

Sn(
√
v)

,

where Sn(·) is given by (1.3). �
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3. SOME OTHER MATHEMATICAL AND STATISTICAL FEATURES
OF MULTIVARIATE PEARSON TYPE II DISTRIBUTION

In this section, we obtain some results that lead us to more distinguished fea-
tures of MPII distributions.

3.1. More characterizations. Let us provide some properties of the class of
MPII distributions through the following theorem.

THEOREM 3.1. Suppose U = (U1, U2, . . . , Un)
′ ∼MPIIn(a). Then:

(P1) (Norm-scale invariance property). The transformation of

(Ti1 , . . . , Tik)
′
=

(
Ui1

∥U∥
, . . . ,

Uik

∥U∥

)′
, 1 ¬ k ¬ n− 1,

is distributed as MPIIk
(
1
2 + (n− 1− k)/2

)
.

(P2) If W = (W1, . . . ,Wn)
′

is uniformly distributed on the volume of a unit
n-sphere, then, for 1 ¬ k ¬ n− 1,

(Wi1 , . . . ,Wik)
′ ∼MPIIk

(
1 +

n− k

2

)
.

P r o o f. (P1) By Theorem 2.1 (C2), the random vector (Ti1 , . . . , Tik)
′

is an
exchangeable random vector, so

(Ti1 , . . . , Tik)
′ d
= (T1, . . . , Tk)

′

for any choice of (i1, . . . , ik). Therefore, it suffices to show that (T1, . . . , Tn−1)
′

has MPII distribution. Put V =
∑n

i=1 U
2
i and Y = (T1, . . . , Tn−1, V )

′
. Then the

Jacobian of this transform is as follows:

J =

∣∣∣∣∂u∂y
∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

√
v 0 . . . 0

t1
2
√
v

0
√
v . . . 0

t2
2
√
v

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . .
√
v

tn−1
2
√
v

−t1
√
v√

1−
∑n−1

i=1
t2i

−t2
√
v√

1−
∑n−1

i=1
t2i

. . .

√
1−

∑n

i=1
t2i

2
√
v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

vn/2−1√
1−

∑n−1
i=1

t2i

.
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Hence we have

fT1,...,Tn−1,V (t1, . . . , tn−1, v)

=
Γ(a+ n/2)

Γ(a)
π−n/2

vn/2−1(1− v)a−1√
1−

∑n−1
i=1

t2i

I(0,1)
( n−1∑
i=1

t2i
)
I(0,1)(v).

It is obvious that V and (T1, . . . , Tn−1)
′ are independent. Moreover, it follows that

V and (T1, . . . , Tn−1)
′ are distributed as B(n/2, a) and MPIIn−1

(
1
2

)
, respec-

tively.
To prove (P2) note that

fW1,...,Wn(w1, . . . , wn) =
1

Vn(1)
I(0,1]

( n∑
i=1

w2
i

)
.

Then the result follows by the fact that (W1, . . . ,Wn−1)
′ ∼MPIIn−1

(
3
2

)
. �

3.2. Multivariate Pearson type II transform of a normal random sample.
Since multivariate standard normal distribution plays an important role in the class
of multivariate symmetric spherical distributions, in this section we present spe-
cial transformations of normal and complex normal random samples that follow
multivariate Pearson type II distribution.

Let X1, . . . , Xn+1 be a random sample from normal distribution with mean
zero and variance σ2. Now define the transforms Rn+1 and Ui, i = 1, . . . , n + 1,
as follows:

Rn+1 =
√

X2
1 +X2

2 + . . .+X2
n+1,(3.1)

Ui =
Xi

Rn+1
, i = 1, . . . , n+ 1.(3.2)

The random vector (U1, . . . , Un+1)
′

is distributed uniformly over the surface of
a unit (n + 1)-sphere; see Rubinstein and Kroese [11] and Marsaglia [8]. Using
the following theorem we show that all subvectors (Ui1 , . . . , Uik)

′
, k = 1, . . . , n,

of (U1, . . . , Un+1)
′ are distributed as multivariate Pearson type II distribution. Ac-

cording to Theorem 2.1 (C2), it suffices to show that (U1, . . . , Un)
′ has multivariate

Pearson type II distribution.

THEOREM 3.2. For fixed n, assume Rn+1 and (U1, . . . , Un)
′

are defined as
in (3.1) and (3.2), respectively.

(i) (Ui1 , Ui2 , . . . , Uik)
′
, k = 1, . . . , n, and Rn+1 are independent.

(ii) (U1, . . . , Un)
′

is distributed as MPIIn
(
1
2

)
and(

Xi1√∑n+1

j=1
X2

j

, . . . ,
Xik√∑n+1

j=1
X2

j

)′
∼MPIIk

(
1

2
+

n− k

2

)
for k = 1, . . . , n− 1.
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P r o o f. (i) By similar arguments to those in the proof of Theorem 2.1 (C2)
we can obtain

fU1,U2,...,Un,Rn+1(u1, . . . , un, r) = f(X1,...,Xn+1)(u1, . . . , un, r) · |J |

=
2 exp{−r2/2σ2}rn

(2πσ2)(n+1)/2
√

1−
∑n

i=1
u2i

I(0,∞)(r)I(0,1)
( n∑
i=1

u2i
)
.

Hence Rn+1 and (U1, . . . , Un)
′

are independent.
(ii) It is easy to see that (U1, . . . , Un)

′
is distributed as MPIIn

(
1
2

)
. We have

(3.3) fU1,...,Un(u1, . . . , un) =
Γ(n/2 + 1/2)

π(n+1)/2
√

1−
∑n

i=1
u2i

I(0,1)
( n∑
i=1

u2i
)
.

Comparing (3.3) to (1.4), we can conclude that (U1, . . . , Un)
′ ∼MPIIn

(
1
2

)
. �

REMARK 3.1. Note that Rn+1 is said to have a generalized Rayleigh distribu-
tion. In general, a random variable X follows a generalized Rayleigh distribution
with parameters k and θ,GR(k, θ), if the density function of X is given by

f(x) =
2θk+1

Γ(k + 1)
x2k+1 exp{−θx2}, x  0, θ > 0, k  0

(see Johnson et al. [6]). By this notation, Rn+1 follows GR
(
(n − 1)/2, 1/2σ2

)
.

For n = 1, Rn+1 has an ordinary Rayleigh distribution.

Moreover, suppose X1, . . . , Xn are i.i.d. complex normal random variables
Nc(0, σ

2). Let

ℜ(X) =
(
ℜ(X1), . . . ,ℜ(Xn)

)′
n×1 and ℑ(X) =

(
ℑ(X1), . . . ,ℑ(Xn)

)′
n×1.

It is well known (see Goodman [4]) that(
ℜ(X),ℑ(X)

)′ ∼ N2n(0,Σ), where Σ =

[
σ2I 0
0 σ2I

]
.

Let

R =
ℜ(X)

∥X∥
and I =

ℑ(X)

∥X∥
,

where ∥X∥ =
√∑n

i=1

(
ℜ(Xi)

)2
+
∑n

i=1

(
ℑ(Xi)

)2
. By Remark 2.2, one can con-

clude that R d
= I and both are distributed as MPIIn

(
1
2 + n/2

)
.

3.3. Simulation procedure. A common procedure to simulate random vectors
from a prescribed multivariate distribution is generating their elements sequen-
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tially from their corresponding conditional distributions; see Ross [10]. Using this
method and considering Remark 2.3, we can present the following procedure to
simulate a random vector (U1, . . . , Un) with MPIIn(a) distribution.

For fixed a and n  2 take the following steps:
S t e p 1. Generate a random variable W from B(n/2, a).
S t e p 2. Choose a random point (U1, . . . , Un) uniformly on the surface of an

n-sphere with radius
√
w generated in Step 1.

Several methods have been obtained to generate a random point uniformly
on the surface of an n-sphere with radius r; see, e.g., Muller [9], Marsaglia [8],
Guralnik et al. [5], and Rubinstein and Kroese [11]. According to these works, an
efficient approach is to generate the vector(

rX1√
(X2

1 + . . .+X2
n)

, . . . ,
rXn√

(X2
1 + . . .+X2

n)

)
,

where X1, . . . , Xn is a random sample from N(0, 1).
According to Theorem 2.1 (C4), we can use this procedure to generate ran-

dom vectors from the marginal distributions of an arbitrary multivariate symmetric
spherical distribution. Also, a conditioning technique can be utilized to generate a
random vector from an arbitrary spherical distribution.

3.4. An extension. In this section, we introduce an extension to the class of
multivariate Pearson type II distribution, namely hyperspherical beta distribution
HBn(a, b). The joint density function of HBn(a, b) for a, b > 0 is given by

(3.4) fU1,...,Un(u1, . . . , un) = Aa,b,n

( n∑
i=1

u2i
)b−1(

1−
n∑

i=1

u2i
)a−1

I(0,1)
( n∑
i=1

u2i
)
.

It is obvious that for b = 1 the joint density function (3.4) reduces to joint den-
sity function of MPIIn(a). Including one more parameter makes it being more
flexible than the MPII distribution. Also, the class of hyperspherical beta dis-
tributions can be studied in several statistical views as a generalization of beta
distributions over a unit hypersphere. Let us summarize some features of this class
through the following statements:

(i) The coefficient Aa,b,n in (3.4) is given by

Aa,b,n =
π−n/2Γ(n/2)Γ(n/2 + a+ b− 1)

Γ(a)Γ(n/2 + b− 1)
.

(ii) The stochastic representation of the random vector

HB = (U1, . . . , Un)
′ ∼ HBn(a, b)

can be given by HB
d
=
√
VW, where V is distributed as B(n/2 + b− 1, a).

(iii) For each 1 ¬ k < n, we have (Ui1 , . . . , Uik)
′ d
=
√
VW (k), where V and

W (k) are distributed as B(n/2+ b− 1, a) and MPIIk(n− k), respectively. More-
over, they are independent.
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4. DISCUSSION

There is a lot of information cited in many textbooks and articles about uni-
variate distributions and their particular mathematical and statistical features. Nev-
ertheless, for multivariate distributions, one can only find multivariate normal and
some related distributions. Having a lot of mathematical and statistical features, the
class of hyperspherical distributions, especially MPII , can be taken into account
to cite in many multivariate textbooks as a class of multivariate distributions with
several features. Also, there are wide-ranging multivariate data recorded in many
applied fields that follow spherical distributions. The main aim of this article was
to provide more details of this important class of multivariate distributions.
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