ASYMPTOTIC RESULTS FOR RANDOM POLYNOMIALS ON THE UNIT CIRCLE

Gabriel H. Tucci
 Philip Whiting

Abstract: In this paper we study the asymptotic behavior of the maximum magnitude of a complex random polynomial with i.i.d. uniformly distributed random roots on the unit circle. More specifically, let $\left\{n_{k}\right\}_{k=1}^{\infty}$ be an infinite sequence of positive integers and let $\left\{z_{k}\right\}_{k=1}^{\infty}$ be a sequence of i.i.d. uniformly distributed random variables on the unit circle. The above pair of sequences determine a sequence of random polynomials $P_{N}(z)=\prod_{k=1}^{N}\left(z-z_{k}\right)^{n_{k}}$ with random roots on the unit circle and their corresponding multiplicities. In this work, we show that subject to a certain regularity condition on the sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$, the log maximum magnitude of these polynomials scales as $s_{N} I^{*}$, where $s_{N}^{2}=\sum_{k=1}^{N} n_{k}^{2}$ and I^{*} is a strictly positive random variable.

2000 AMS Mathematics Subject Classification: Primary: 60F99; Secondary: 60B10.

Keywords and phrases: Random polynomials, Brownian bridge, stochastic process.

