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Abstract. In this paper, we introduce a new family of multivariate
distributions, called the unified weighted family, as a generalization to the
skew-elliptical family. We study some properties of the proposed family
and show that it subsumes many important subfamilies such as the families
arisen from the selection and hidden truncation ideas. Although the pro-
posed family is very general, we focus on the multivariate weighted normal
family which is regarded as a promising candidate in statistical inference.
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1. INTRODUCTION

Although the multivariate normal distribution has nice properties that make it
popular in statistical modeling, yet it shows some deficiencies in skew data set-ups
which should not be ignored. In fact, using Gaussian assumptions to model skewed
data leads to unrealistic or nonsensical results (see Ganjali et al. [16]). The authors
of [16] presented their concerns where such unrealistic results may occur while in-
vestigating the parameter estimates of a linear mixed model. Through the last two
decades several articles and books introduced distributions to model skewed data.
Azzalini [9] introduced the skewness concept to the normal distribution in terms
of modifying the normal probability density function by a multiplicative skew-
ing function. This idea has been applied to elliptical distributions to produce the
so-called skew-elliptical distribution. Numerous articles discussed new classes of
multivariate distributions having properties which coincide with those of normal
class or are close to them. Examples of such classes include the skew-normal fam-
ily proposed by Azzalini and Dalla Valle [13], the fundamental skew-normal dis-
tribution of Arellano-Valle and Genton [5], the unified skew-normal family studied
by Arellano-Valle and Azzalini [3], the closed skew-normal distribution proposed
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by Domı́nguez-Molina et al. [15], the selection skewed distribution proposed by
Arellano-Valle et al. [4], and the unified skew-elliptical class proposed by Arellano-
Valle and Genton [7], among others. We propose a new family of distributions and
focus on a subfamily called the multivariate weighted normal distribution. This
article is organized as follows. In Section 2, we revise the skew-normal distribu-
tion of Azzalini [9] and its variations. In Section 3, we present a unified weighted
family of distributions and discuss several special cases. In Section 4, we introduce
a weighted normal distribution and discuss its properties and more special cases.
Finally, we discuss our findings in Section 5, and we outline some detailed work
on the theory of this article in the Appendix.

2. THE SKEW-NORMAL DISTRIBUTION AND ITS EXTENSIONS

Azzalini [9] introduced the univariate skew-normal distribution that proves to
be significant in skewed data modeling. Azzalini and Capitanio [11] and Azza-
lini and Dalla Valle [13] extended this distribution to the following multivariate
version:

(2.1) fY(y) = 2φn(y;µ,Σ)Φ
(
α′ω−1(y− µ)

)
, y ∈ Rn,

where φn(y;µ,Σ) is the multivariate normal probability density function (pdf)
with mean µ ∈ Rn and (n× n) covariance matrix Σ, Φ(·) is the cumulative distri-
bution function of standard univariate normal distribution, α ∈ Rn is a vector that
controls the skewness, and ω is a diagonal matrix formed by using the standard
deviations of Σ.

As a generalization of the normal law, the skew-normal distribution is con-
sidered a natural choice in all practical skewed data sets. A particularly valuable
property is the continuity of the passage from the normal case to skewed distri-
butions. From the theoretical point of view, the skew-normal (SN) class has the
advantage of being mathematically tractable and having a good number of proper-
ties in common with the standard normal distribution. The SN class introduced by
Azzalini and Dalla Valle [13] lacks the closure under both conditional distribution
and convolution, which is a major pitfall of the class. Domı́nguez-Molina et al. [15]
extended the SN class to a larger class, called the multivariate closed skew-normal
class, which admits the closure under several properties. Azzalini and Capitanio
[12] proposed a new set of non-symmetric densities which subsumes several spe-
cial cases including skew-elliptical densities. Several articles discussed extensively
the skew-normal distribution and recent modifications related to multivariate fam-
ilies. For more details, see [2]–[4], [10], and [14].

2.1. Closed skew-normal distribution. The closed skew-normal (CSN) fam-
ily of distributions was proposed by Domı́nguez-Molina et al. [15] and reported in
González-Farias et al. [17]. It shares several properties with normal distribution,
including the closure under marginalization, and conditionally based on statistical
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modeling. Domı́nguez-Molina et al. [15] discussed the closure of CSN family un-
der linear transformation and moment generating function. Moreover, it is closed
under the sum of independent CSN random vectors and closed for the joint dis-
tribution of independent CSN distributions. The expressions of the CSN marginal
and conditional densities are similar to their normal distribution counterparts. The
pdf of CSN distribution is given by

(2.2) gp,q(x) = Cφp(x;µ,Σ)Φq

(
D(x− µ);ν,∆

)
, x ∈ Rp,

where C−1 = Φ(0;ν,∆ + DΣDT ), p > 1, q > 1, µ,ν ∈ Rq, D is an arbitrary
(q × p) matrix, Σ and ∆ are positive definite matrices of dimensions p × p and
q × q, respectively. The CSN pdf defined in (2.2) is more general than the SN
distribution considered in (2.1) and it might be used to fit non-normal data. The
absence of analytical representations of Φq(0;ν,∆) and its derivatives is a major
challenge for practitioners from the inferential point of view. Arellano-Valle and
Azzalini [3] discussed the CSN family and pointed out that this distribution is
over-parameterized. Some extensions and redefinitions of this family are presented
in Arellano-Valle and Azzalini [3] and Arellano-Valle and Genton [5].

2.2. Selection distributions. Let U ∈ Rq and V ∈ Rp be two random vectors
and C be a measurable subset of Rq. The random vector X d

= (V|U ∈ C) is said
to have a selection distribution (see [5]), denoted by X ∼ SLCp,q, if its pdf is
given by

(2.3) fX(x) = fV(x)
P{U ∈ C|V = x}

P{U ∈ C}
=

∫
C
fU,V(u, x)du∫
C
fU(u)du

,

where fU(·) is the marginal pdf of U and fV,U(·, ·) is the joint pdf of V and U.
Arellano-Valle et al. [4] showed that several distributions arise from (2.3) by vary-
ing the set C and they studied several examples when (U′,V′)′ is normally dis-
tributed. The most common specification of C is C = {u ∈ Rq : u > 0}, where the
inequality between vectors is defined componentwisely. In such a case, the distribu-
tion corresponding to (2.3) is called a fundamental skew-normal (FUSN) distribu-
tion. Conditions under which invariant properties hold for the selection distribution
class (SLC) are studied in Arellano-Valle and Genton [6]. If the distribution of V
and the conditional distribution of U given V are both elliptical or both normal,
then the resulting FUSN distribution is said to be unified skew-elliptical (SUE)
or unified skew-normal (SUN), respectively. The main computational drawback of
SLC is how to obtain P{U ∈ C} for q > 2, especially with high dimensional data
sets.

2.3. A unified skew-elliptical distribution. A continuous p-dimensional ran-
dom vector Y has a multivariate unified skew-elliptical distribution, denoted by
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Y ∼ SUEp,q(µ,Ω, h(q+p), τ ,Γ), if its pdf is given as

fY(y) =
1

Fq(τ ;Γ+ΛΩ̄Λ′, h(q))
fp(y;µ,Ω, h(p))Fq(Λz + τ ;Γ, h

(q)
Q(z)),

where fp(y;µ,Ω, h(p)) = |Ω|−1/2h(p)
(
Q(z)

)
is the pdf of an elliptical distribution

with parameters µ, Ω and density generator function h(p), Fq(·, h(q)Q(z)) is the cdf of

q-dimensional elliptical distribution, h(q)Q(z)(u) = h(p+q)
(
u + Q(z)

)
/h(p)

(
Q(z)

)
,

z = ω−1(y−µ), Q(z) = z′Ω̄−1z, Ω̄ = ω−1Ωω−1, ω = diag(Ω)1/2, Λ is a (q×p)
real matrix controlling shape, τ ∈ Rq is an extension parameter, and Γ is a (q×q)
positive definite correlation matrix. For more details, see [3] and [7].

3. A UNIFIED WEIGHTED FAMILY OF DISTRIBUTIONS

In this section, we define a unified weighted family of distributions and ex-
plore its probabilistic properties. Also, we consider some important subfamilies of
distributions.

DEFINITION 3.1. Assume that an (n × 1) random vector U and an (m × 1)
random vector V have the joint pdf fU,V(u, v) and let g : Rn → R+ be an inte-
grable and measurable function. Also, assume that C is a measurable subset of
Rn such that {u ∈ C : g(u) > 0} has a positive probability. We define the unified
weighted family of distributions as those with the pdf

(3.1) h(v) =

∫
C
g(u)fU,V(u, v)du∫
C
g(u)fU(u)du

, v ∈ Rm,

where fU(u) is the marginal density of U.

The pdf (3.1) defines a rich class of distributions that can sometimes be ob-
tained by varying the function g(x) and keeping the joint pdf fU,V(u, v) fixed. On
the other hand, certain members of this class can be obtained by keeping g(x)
fixed and varying the joint pdf fU,V(u, v). In the proposed model, the variable of
integration u is a dummy variable and we may condition on the variable V = v
instead of U. If we choose the dimension of u to be small, it allows us to reduce
the difficulties in estimating the parameters of h(v). The class of unified weighted
distributions defined in this paper subsumes the weighted multivariate elliptically
distributed families introduced by Kim [19] and [20]. Although most distributions
represented by (3.1) are asymmetric, we could be interested in situations where
fV(v) is symmetric. In such situations the pdf (3.1) remains asymmetric unless the
following condition is satisfied for all v:∫

C
g(u)fU,V(u, v)du =

∫
C
g(u)fU,V(u,−v)du.
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Simulating a random sample from the pdf (3.1) is very important in practice. To
achieve that, we first rewrite h(v) as

h(v) =
∫
Rn

χ(u)fV|U=u(v|u)du,

where

χ(u) =
g∗(u)fU(u)∫

Rn

g∗(u)fU(u)du
with g∗(u) = g(u)1C(u).

Then, the following algorithm can be implemented to draw a random observation
from h(v):

1. Simulate a random observation, say, U0, from χ(u).
2. Simulate a random observation, say, V0, from fV|U=u(v|u).
3. Deliver V0 as an observation from h(v).
The simulations in Steps 1 and 2 depend on the functional forms χ(u) and

fV|U=u(v|u). The accept-reject method or the Metropolis–Hastings algorithms are
very general algorithms that can be used for such purposes.

THEOREM 3.1. Suppose that the pdf fU,V(u,v) in equation (3.1) obeys the
closure under both marginal and conditional distributions. Then h(v) satisfies the
same properties.

The proof is outlined in the Appendix.
Some interesting cases of (3.1) can be obtained by choosing g(x) and C so

that the integration in (3.1) has a closed form. Given an (n× 1) random vector U
and an (n × n) matrix A such that δ = E(U) and Υ = cov(U), we may get the
following theorem.

THEOREM 3.2. Let U be an (n×1) random vector with finite second moments,
and A be an (n× n) symmetric and semipositive definite matrix. If g(u) = u′Au
and C = Rn, then (3.1) reduces to

h(v) = fV(v)
E(U′AU|V = v)

tr(AΥ) + δ′Aδ
, v ∈ Rm.

In fact, the symmetry of fV(v) does not guarantee the symmetry of the last
family while if E(U′AU|V = v) = E(U′AU|V = −v) for all v and fV(v), then
the symmetry is guaranteed.

3.1. Special cases. To show the significant role of the pdf (3.1), we present
two special cases of the pdf (3.1). The first example involves the crossing theory
of random processes and fields discussed by Podgórski and Rychlik [22]. Let V (t)
and X(t), t ∈ Rk, be two stationary stochastic processes taking values in Rm and
Rn, respectively. Also, assume that the process X(t) is differentiable with matrix
of partial derivatives denoted by Ẍ(0). If the random variables V (0), X(0), and
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Ẍ(0) admit a joint pdf denoted by fV (0),Ẍ(0),X(0)(v, ẍ, x), then the distribution of
V (t) on the contour Cx0 = {t ∈ [0, 1]k : X(t) = x0} will be written as

P
(
X(t) ∈ A|t ∈ Cx0

)
=

∫∫
A

det g
(
ẍ(0)

)
fV (0),Ẍ(0),X(0)

(
v, ẍ(0), x0

)
dẍ(0)dv∫

det g
(
ẍ(0)

)
fV (0),Ẍ(0),X(0)

(
v, ẍ(0), x0

)
dẍ(0)

,

where det g(·) means the generalized determinant function, i.e. det g(B)=
√
|BB′|.

Setting A = (−∞, x1] × . . . × (−∞, xn] in the last formula and differen-
tiating with respect to x1, . . . , xn, we get the pdf (3.1) provided that C = Rm,
g(x) = det

(
ẍ(0)

)
, and fU,V(u, v) = fV (0),Ẍ(0)

(
v, ẍ|X(0) = x0

)
.

The second example is from Adler [1], where X(t), t ∈ Rn, is assumed to
be a stationary and ergodic random field which admits partial derivative up to the
second order. Then, for any set of points t1, . . . , tk, the conditional pdf of V =(
X(t1), . . . , X(tk)

)′ under the condition that X(t) has a local maximum of height
u at t = 0 is given by

fV(v) =

∫
D

∣∣ det (ẍ(0))∣∣fV (0),Ẍ(0)
(
v, ẍ|X(0) = u, Ẋ(0) = 0

)
dẍ(0)dv∫

D

∣∣det (ẍ(0))∣∣fẌ(0)
(
ẍ|X(0) = u, Ẋ(0) = 0

)
dẍ(0)

,

where ẋ is the gradient of X(t) and D is the set of all t such that Ẍ(t) is a negative
definite matrix. It can be noticed that the last pdf has the same form as (3.1).

To elaborate more on Theorem 3.2, we consider more special cases of g(u)
and assume that U and V have jointly a multivariate normal distribution, which
leads us to the following cases (i)–(vii):

(i) If g(u) = 1C(u), then (3.1) reduces to (2.3).
(ii) Let A1 and A2 be (n× n) semipositive definite matrices. Define g(u) =

u′A1u× u′A2u such that U and V in (3.1) have jointly the following multivariate
normal distribution: (

U
V

)
∼ Nn+m

((
S

ℓ

)
,

(
M Γ0

(Γ0)
′ K

))
.

Using Theorem 3.2 of Mathai and Provost [21], we may rewrite (3.1) as

h(v) =
φm(v; ℓ,K)

∫
Rn

u′A1u× u′A2u φn

(
u; τ 0(v),T

)
du∫

Rn

u′A1u× u′A2u φn(u;S,M)du
, v ∈ Rm,

where τ 0(v) = S +Γ0K−1(v− ℓ) and T = M−Γ0K−1(Γ0)′. Since the function
φn

(
u; τ 0(v),T

)
is the pdf of Nn

(
τ 0(v),T

)
, the last equation reduces to

h(v) = φm(v; ℓ,T)
E (U′A1U× U′A2U|V = v0)

E (U′A1U× U′A2U)
.
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Applying Theorem 3.2 d3 in Mathai and Provost [21], p. 75, we get

h(v) = φm(v; ℓ,T)
k1 + k2
k3 + k4

,

where

k1 = 2tr(A1TA2T) + 4(τ 0)′(v)A1TA2τ
0(v),

k2 =
(
(τ 0)′(v)A1τ

0(v) + tr(A1T)
)(
(τ 0)′(v)A2τ

0(v) + tr(A2T)
)
,

k3 = 2tr(A1MA2M) + 4S′A1MA2S,

k4 =
(
S′A1S + tr(A1M)

) (
S′A2S + tr(A2M)

)
.

Another special case assumes g(u) = (u′Au)r , where r is an integer, and the
closed form is obtained by making use of Theorems 3.2 b2 and 3.2 b4 of Mathai
and Provost [21].

(iii) Let g(u)= a′u, where a is a fixed vector in Rn, and let C = {u∈Rn :
a′u>0}. If

(U
V
)

has the same distribution as in (ii), then (a′U|V = v) ∼ N(µ̈, σ̈2)
and a′U ∼ N(µ, σ2), where µ̈ = E(a′U|V = v), σ̈2 = var(a′U|V = v), µ = a′S,
and σ2 = a′Ma. Finally, by putting x+ = max(0, x), the pdf (3.1) will reduce to

h(v) = φm(v; ℓ,K)
E
(
(a′U)+|V = v

)
E
(
(a′U)+

)
= φm(v; ℓ,K)

µ̈Φ(µ̈/σ̈) + (σ̈/
√
2π) exp(−µ2/σ2)

µΦ(µ/σ) + (σ/
√
2π) exp(−µ2/σ2)

.

(iv) Let g(u) = Φ(a+ b′u) and C = Rn, where a ∈ R and b is a fixed vector
in Rn. Then

h(v) =

∫
C
Φ(a+ b′u)fU,V(u, v)du∫
C
Φ(a+ b′u)fU(u)du

= φm(v; ℓ,K)

∫
Rn

Φ(a+ b′u)φn

(
u; τ 0(v),T

)
du∫

Rn

Φ(a+ b′u)φn(u;S,M)du

= φm(v; ℓ,K)
E
(
Φ(a+ b′U)|V = v

)
E
(
Φ(a+ b′U)

) ,

where τ 0(v) and T are defined in (ii). Referring to Raluca [23] and using Lem-
ma 2.1 in Arellano-Valle and Genton [5] to simplify the conditional expectation,
we get the following closed form:

h(v) = φm(v; ℓ,K)
Φ
(
(a+ b′τ 0(v))/

√
1 + b′Tb

)
Φ
(
(a+ b′S)/

√
1 + b′Mb

) .
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Selecting the function g(u) in this manner leads to the so-called extended skew-
normal (ESN) distribution. In fact, according to Arnold and Beaver [8] and Ro-
drigues [24], a random vector X is said to have an n-dimensional ESN distribution
with parameters µ, Ω, λ and τ , denoted by X ∼ ESNn(µ,Ω,λ, τ), if it has
the pdf

f(x;µ,Ω,λ, τ) = φn(x;µ,Ω)Φ
(
α0 + λ′(x− µ)

)
/Φ(τ),

where λ = Ω−1δ(1 − δ′Ω−1δ)−1/2, τ = a, and α0 = τ(1 − δ′Ω−1δ)−1/2. Set-
ting S = 0, ℓ = µ, Γ0 = δ, M = Ω, and K = 1, and noting that b′Tb = b′b −
b′δΩ−1δ′b, we see that the pdf h(v) reduces to the ESN distribution with

α0 =
τ√

1 + b′b

(
1− b′δΩ−1δ′b

1 + b′b

)−1/2
and

λ =
Ω−1b′δ√
1 + b′b

(
1− b′δΩ−1δ′b

1 + b′b

)−1/2
,

where δ∗ = b′δ/
√
1 + b′b.

(v) Let g(u) = exp(c′u)Φ(a + b′u), u ∈ Rn, a ∈ R. Then the pdf (3.1) has
the following closed form:

h(v) = φm(v; ℓ,K)

[
exp

(
c′τ 0(v) + c′Tc

)
Φ

(
a+ b′τ 0(v) + b′Tc√

1 + b′Tb

)]
×
[
exp(c′S + c′Mc)Φ

(
a+ b′S + b′Mc√

1 + b′Mb

)]−1
.

(vi) Let p(j) > 0, λ(j)
0 be real numbers and λ(j) ∈ Rn for j = 1, . . . , k. De-

fine g(u) as

g(u) =
k∑

j=1

p(j)Φ(λ
(j)
0 + λ(j)′u)

and let C = Rn. Then (3.1) reduces to

h(v) =

∫
C

k∑
j=1

p(j)Φ(λ
(j)
0 + λ(j)′u)fU,V(u, v)du∫

C

k∑
j=1

p(j)Φ(λ
(j)
0 + λ(j)′u)fU(u)du

.
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Using Fubini’s theorem, we may write this pdf as follows:

h(v) = φm(v; ℓ,K)

k∑
j=1

p(j)
∫
C
Φ(λ

(j)
0 + λ(j)′u)φn

(
u; τ 0(v),T

)
du

k∑
j=1

p(j)
∫
C
Φ(λ

(j)
0 + λ(j)′u)φn (u;S,M) du

= φm(v; ℓ,K)

k∑
j=1

p(j)EΦ(λ
(j)
0 + λ(j)′U|V = v)

k∑
j=1

p(j)EΦ(λ
(j)
0 + λ(j)′U)

= φm(v; ℓ,K)

k∑
j=1

p(j)Φ
((
λ
(j)
0 + λ(j)′τ 0(v)

)
/
√

1 + λ(j)′Tλ(j)
)

k∑
j=1

p(j)Φ
(
(λ

(j)
0 + λ(j)′S)/

√
1 + λ(j)′Mλ(j)

) .

Setting λ(j) = ej and λ
(j)
0 = 0 for all j gives the following pdf:

h(v) = φm(v; ℓ,K)

k∑
j=1

p(j)Φ
((

e′jτ 0(v)
)
/
√

1 + λ(j)′Tλ(j)
)

k∑
j=1

p(j)Φ
(
(e′jS)/

√
1 + λ(j)′Mλ(j)

) .

(vii) Let g(u) = exp(su′Au), where s ∈ R and A is a symmetric and semi-
positive definite matrix. Then

h(v) =

∫
C
exp(su′Au)fU,V(u, v)du∫
C
exp(su′Au)fU(u)du

= φm(v; ℓ,K)

∫
Rn

exp(su′Au)φn

(
u; τ 0(v),T

)
du∫

Rn

exp(su′Au)φn (u;S,M) du
.

Since φn

(
u; τ 0(v),T

)
is the pdf of Nn

(
τ 0(v),T

)
, the pdf h(v) turns out to be

h(v) = φm(v; ℓ,K)
E
(
exp(su′Au)|V = v

)(
exp(su′Au)

)
du

= φm(v; ℓ,K)
MQ0(s)

MQ(s)
,

where MQ0(s) is the moment generating function (mgf) of U′AU given V = v,
and MQ(s) is the mgf of U′AU.
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4. WEIGHTED NORMAL DISTRIBUTION

Throughout the rest of the paper, we assume that fU,V(u, v) in equation (3.1) is
a member of the multivariate normal class. To introduce the weighted normal (WN)
distribution, let g be the function described in Definition 3.1 and φn+m(x, y;µ,Σ)
be the pdf of Nn+m(µ,Σ), m > 1, n > 1, µ ∈ Rn+m, Σ is an (n+m)× (n+m)
positive definite matrix such that

µ =

(
µx
µy

)
=

(
θ

γ

)
and Σ =

(
Σxx Σxy
Σyx Σyy

)
=

(
Ψ Γ
Γ′ ∆

)
.

DEFINITION 4.1. A random variable Y is said to have a WN distribution,
denoted by WNm,n(µ,Σ, g), if the pdf of Y is given by

(4.1) fY(y) =

∫
C
g(x)φn+m (x, y;µ,Σ) dx∫
C
g(x)φn (x;θ,Ψ) dx

, y ∈ Rm,

where φn(x;θ,Ψ) is the marginal pdf of X.

Also, we can write the pdf of a WN random vector as

(4.2) fY(y) =

∫
C
g(x)φn(x;θ,Ψ)φm

(
y;µ∗(x),Σ∗

)
dx∫

C
g(x)φn(x;θ,Ψ)dx

,

where µ∗(x) = γ + Γ′Ψ−1(x− θ) and Σ∗ = ∆− Γ′Ψ−1Γ.

4.1. Main results.

PROPOSITION 4.1. The cdf associated with the pdf given in (4.2) is

FY(y) =

∫
C
g(x)φn(x;θ,Ψ)Φm

(
y;µ∗(x),Σ∗

)
dx∫

C
g(x)φn(x;θ,Ψ)dx

,

where Φm

(
y;µ∗(x),Σ∗

)
is the cdf of an m-dimensional normal distribution with

mean vector µ∗(x) and covariance matrix Σ∗.

The proofs of some theorems and propositions will be outlined in Appendix.

PROPOSITION 4.2. If Y ∼WNm,n(µ,Σ, g), then the mgf of Y is

(4.3) MY(u) =

∫
C
g(x)φn(x;θ,Ψ)MY|x(u)dx∫
C
g(x)φn(x;θ,Ψ)dx

, u ∈ Rm,

where MY|x(u) = exp
(
u′µ∗(x) + 1

2u′Σ∗u
)
.
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PROPOSITION 4.3. Suppose that Y ∼ WNm,n(µ,Σ, g), b ∈ Rm, A is an
(m×m) matrix of rank p, and

Ã =

(
In On×m

O′n×m A

)
and b̃ =

(
On×1

b

)
.

Then AY + b ∼WNp,m(Ãµ+ b, ÃΣÃ′, g).

This proposition can be easily obtained since

Ã
(

X
Y

)
+ b̃ =

(
X

AY + b

)
∼ Nn+p

((
θ

Aγ + b

)
,

(
Ψ ΓA′

AΓ′ A∆A′
))

.

COROLLARY 4.1. Under the assumptions of Proposition 4.3 and for Y ∼
WNm,n(µ,Σ, g), the random variable Ȳ = a′Y, a ̸= 0, is distributed as
WN1,n(ã′µ, ã′Σã, g).

PROPOSITION 4.4. Let Y ∼ WNm,n(µ,Σ, g) and let us divide Y into two
subvectors: a k1-dimensional vector Y1 and a k2-dimensional vector Y2. Moreover,
let us consider the following corresponding partitions of γ, Γ, and ∆:

γ =

(
γ1

γ2

)
, Γ =

(
Γ1 Γ2

)
, and ∆ =

(
∆11 ∆12

∆′12 ∆22

)
.

Then:
(i) Y1 ∼WNk1,n(µ̃1, Σ̃11, g), where

µ̃1 =

(
θ1

γ1

)
and Σ̃11 =

(
Ψ Γ1

Γ′1 ∆11

)
.

(ii) (Y2|Y1 = y1) ∼WNk2,n(µ̃, Σ̃, g), where

µ̃ =

(
θ
γ2

)
+

(
Γ1

∆′12

)
∆−111 (y1 − γ1)

and

Σ̃ =

(
Ψ− Γ1∆

−1
11 Γ

′
1 Γ2 − Γ1∆11∆12

Γ′2 −∆′12∆
−1
11 Γ

′
1 ∆22 −∆′12∆

−1
11 ∆12

)
.

THEOREM 4.1. Let Y = (Y1, . . . , Ym) ∼WNm,n(µ,Σ, g). Then:
(i) We have

E(Yi) =

∫
C
g(x)φn (x;θ,Ψ)µ∗i (xi)dx∫
C
g(x)φn (x;θ,Ψ) dx

,

where µ∗i (x) is the i-th component of µ∗(x).
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(ii) cov(Yi, Yj) = σ∗ij − E(Yi)E(Yj), where σ∗ij is the covariance between
(Yi|Xi = xi) and (Yj |Xj = xj), i, j = 1, . . . ,m.

REMARK. If g(x) is symmetric about θ for all x and C=Rn, then E(Yi)=γi.
Note that if A is an (n × n) semipositive definite matrix and g(x) = x′Ax,

then the pdf of Y ∼Wm,n(µ,Σ, g) can be written as

fY(y) =

∫
Rn

x′Axφn+m(x, y;µ,Σ)dx∫
Rn

x′Axφn(x;θ,Ψ)dx

= φm(y;γ,∆)

∫
Rn

x′Axφn

(
x; τ (y),η

)
dx∫

Rn

x′Axφn(x;θ,Ψ)dx
,

where y ∈ Rm, τ (y) = θ + Γ∆−1(y − γ), and η = Ψ − Γ∆−1Γ′. Since it fol-
lows that φn

(
x; τ (y),η

)
is the pdf of Nn

(
τ (y),η

)
, we have

fY(y) = φm(y;γ,∆)
E (X′AX|Y = y)

E (X′AX)
(4.4)

= φm(y;γ,∆)
tr(Aη) + τ (y)′Aτ (y)

tr(AΨ) + θ′Aθ
.

PROPOSITION 4.5. Let A be an (n× n) semipositive definite matrix and as-
sume that Y ∼WNm,n(µ,Σ, g) with g(x) = x′Ax. Then

MY(u) =
Q

tr(AΨ) + θ′Aθ
exp

(
u′γ +

1

2
u′∆u

)
,

where

Q = tr(C∆) + (∆u)′C(∆u) + 2γ ′C∆u + γ ′Cγ
+ 2S ′AΓ∆−1(∆u + γ) + S ′AS + tr(Aη),

S = θ − Γ∆−1γ and C = ∆−1Γ′AΓ∆−1.

THEOREM 4.2. Let A be an (n × n) semipositive definite matrix. If Y ∼
WNm,n(µ,Σ, g), with g(x) = x′Ax. Then

E(Y) =
tr(C∆+ Aη) + γ ′Cγ + 2(S ′AΓγ + S ′AS)

tr(AΨ) + θ′Aθ
+

2(∆Cγ + ΓAS)

tr(AΨ) + θ′Aθ

and

E(YY′) =
2

tr(AΨ) + θ′Aθ

(
(∆Cγ + ΓAS)∆+ tr(C∆) + γ ′Cγ

+ 2ASΓ∆−1γ + 2∆Cγ + 2ΓAS + (∆Cγ + ΓAS +∆C∆)γ ′
)
.
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THEOREM 4.3. Let Y ∼WNm,n(µ,Σ, g). Then Y ∼ Nm(γ,∆) if and only
if Γ = 0.

THEOREM 4.4. Suppose that Yi, i = 1, 2, . . . , r, are independent random
vectors such that Yi ∼WNmi,ni(µi,Σi, gi). Then

Y = (Y′1, . . . ,Y′r)
′ ∼WNm∗,n∗(µ

⋄,Σ⋄, g⋄),

where C⋄ = C1 × . . .× Cr, g⋄(x1, . . . , xr) =
∏r

i=1 gi(xi), µ
⋄ = vec(µ1, . . . ,µr),

µi =
(
θi
γi

)
, Σ⋄ =⊕r

i=1
Σi, θ

⋄ = vec(θ1, . . . ,θr), Γ
⋄ = vec(Γ1, . . . ,Γr),Ψ

⋄ =

⊕r

i=1
Ψi, n

∗ =
∑r

i=1 ni, m
∗ =

∑r
i=1mi, and the operators ⊕ and vec(·) are

respectively defined as

A⊕ B =

(
A 0
0 B

)
and vec(a,b) = (a′,b′)′.

THEOREM 4.5. If Yi, i = 1, . . . , r, are independent random vectors such that
Yi ∼ WNm,ni(µi,Σi, gi), then

∑r
i=1 Yi ∼ WNm,n∗(µ

+,Σ+, g+), where g+ :

Rn∗ → R+ with g+(x1, . . . , xr) =
∏r

i=1 g(xi), µ
+ =

(
θ⋄
′
,
∑r

i=1 γ
′
i

)′
, and

Σ+ =

(
Ψ⋄ Γ⋄

Γ⋄
′ r∑

i=1
∆i

)
.

THEOREM 4.6. A random vector Y has an n-dimensional weighted normal
distribution if and only if a′Y has a univariate weighted normal distribution for all
non-zero vectors a ∈ Rn.

COROLLARY 4.2. Let Y and ϵ be independent random vectors such that Y ∼
WNm,n(µ,Σ, g) and ϵ ∼ Nm(0, σ2Im). If Z = Y + ϵ, then Z is distributed as
WNm,n(µ,Ω

∗, g), where Ω∗ is the same as Σ except that ∆ is replaced by ∆+
σ2Im.

Gupta and Huang [18] reported a similar result to Theorem 4.6, discussing
the relationship between univariate and multivariate skew-normal distributions. On
the other hand, Corollary 4.2 shows that the weighted normal distribution is closed
under convolution with the normal distribution.

5. CONCLUDING REMARK AND FUTURE STUDIES

In this paper, a new family of distributions, called the unified weighted fam-
ily, is introduced as an extension to the skew-elliptical family and other families.
A rich subfamily of the proposed class, called the weighted normal (WN) family,
is studied extensively and it showed a high flexibility to obey several nice proper-
ties such as closure under conditional distributions, marginal distributions, affine



228 M. T. Alodat et al.

transformation as well as closure under convolution with normal variates. Such
tractable properties give us a strong motivation to redevelop several statistical tech-
niques under a weighted skew-normal assumption. Although most distributions of
the unified weighted family are asymmetric, we showed that, under some condi-
tions, the family includes some symmetric cases. There is much room for future
study including:

1. Estimating the parameters of the WN distribution.
2. Studying the properties of the quadratic form of WN random vector.
3. Exploring the role of g(x) in controlling skewness, kurtosis, and modality.

Acknowledgments. The authors thank two anonymous referees and the editor
for their helpful comments that helped them make substantial improvements.

6. APPENDIX

6.1. Proof of Theorem 3.1.
(i) Suppose that fU,V(u, v) is closed under marginal distribution and consider

the partition v =
(v1

v2

)
, where v1 is an r-dimensional vector and v2 is an (m− r)-

dimensional vector. Then

h(v1, v2) =

∫
C
g(u)fU,V(u, v1, v2)du∫
C
g(u)fU(u)du

, v ∈ Rm, u ∈ Rn.

Integrating v2 out gives the following marginal pdf of v1:

h1(v1) =

∫
C
g(u)fU,V1(u, v1)du∫
C
g(u)fU(u)du

, v1 ∈ Rr.

Since fU,V1(u, v1) has the same form as fU,V(u, v), it follows that h1(v1) has the
same form as that of h(v).

(ii) Suppose fU,V(u, v) and fU(u) are closed under conditional distribution.
Then

fV2|V1=v1(v2) =
fV(v1, v2)
fV1(v1)

=

∫
C
g(u)fU,V(u, v1, v2)du∫
C
g(u)fU,V1(u, v1)du

, v1 ∈ Rr.

Dividing the numerator and denominator of the last equation by fV1(v1) yields

fV2|V1=v1(v2) =
fV(v1, v2)
fV1(v1)

=

∫
C
g(u)fU,V2|V1=v1(u, v2|v1)du∫
C
g(u)fU|V1=v1(u|v1)du

.
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Since fU,V(u, v) is closed by conditioning, it follows that fU,V2|V1=v1(u, v2|v1)
and fU|V1=v1(u|v1) have the same forms as fU,V(u, v) and fU(u), respectively.
Therefore, fV2|V1=v1(v2) has the same form as that of h(v). �

6.2. Proof of Proposition 4.1. Since the pdf of an n-dimensional vector Y ∼
WNm,n(µ,Σ, g) is given by

fY(y) =

∫
C
g(x)φn+m(x, y;µ,Σ)dx∫
C
g(x)φn(x;θ,Ψ)dx

, y ∈ Rm,

we have

FY(y) =
y1∫
−∞

. . .
ym∫
−∞

∫
C
g(x)φn+m(x, y;µ,Σ)dx∫
C
g(x)φn(x;θ,Ψ)dx

dym . . . dy1.

Writing φn+m(x, y;µ,Σ) = φm

(
y;µ∗(x),Σ∗

)
φn(x;θ,Ψ) and applying Fubini’s

theorem we get

FY(y) =

∫
C
g(x)Φm

(
y;µ∗(x),Σ∗

)
φn(x;θ,Ψ)dx∫

C
g(x)φn(x;θ,Ψ)dx

. �

6.3. Proof of Proposition 4.2. If u ∈ Rm, then the mgf of Y is

MY(u) =

∫
Rm

∫
C
g(x) exp(u′y)φn+m(x, y;µ,Σ)dxdy∫

C
g(x)φn(x;θ,Ψ)dx

.

Interchanging the order of integrations and using the equality φn+m(x, y;µ,Σ) =
φm

(
y;µ∗(x),Σ∗

)
φn(x;θ,Ψ), we obtain

MY(u) =

∫
C
g(x)φn(x;θ,Ψ)MY|x(u)dx∫

C
φn(x;θ,Ψ)dx

. �

6.4. Proof of Proposition 4.4. Suppose that Y ∼ WNm,n(µ,Σ, g) and con-
sider the partition Y =

(Y1

Y2

)
. Then

(i) We have

fY(y1, y2) =

∫
C
g(x)φn+k1+k2(x, y1, y2;µ,Σ)dx∫

C
g(x)φn(x;θ,Ψ)dx

, y1 ∈ Rk1 , y2 ∈ Rk2 .
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Integrating Y2 out, we get the pdf of Y1:

fY1(y1) =

∫
C
g(x)φn+k1(x, y1; µ̃1, Σ̃11)dx∫
C
g(x)φn(x;θ,Ψ)dx

.

Thus Y1 is distributed as WN, which concludes the closure under marginalization.
(ii) The conditional distribution of (Y2|Y1 = y1) is obtained as follows:

fY2|Y1=y1(y2) =

∫
C
g(x)φn+k1+k2(x, y1, y2;µ,Σ)dx∫
C
g(x)φn(x; µ̃1, Σ̃11)dx

.

Dividing by φk1(y1;µ1,Σ11), we obtain

fY2|Y1=y1(y2) =

∫
C
g(x)φn+k2(x, y2; µ̃, Σ̃)dx∫

C
g(x)φn+k1(x, y1;θ

∗,Ψ∗)dx
,

where θ∗ = θ + Γ1∆
−1
11 (y1 − γ1) and Ψ∗ = Ψ− Γ1∆

−1
11 Γ

′
1. �

6.5. Proof of Theorem 4.1.
(i) The first moment of Yi is obtained by using Proposition 4.2. Indeed, we

have

∂MY(u)
∂ui

=
∂

∂ui

∫
C
g(x)φ(x;θ,Ψ) exp

( m∑
i=1

(
uiµ
∗
i (x) +

1
2u

2
iσ
∗
ii

)
+

m∑
i=1

m∑
i=1

uiujσ
∗
ij

)
dx∫

C
g(x)φ(x;θ,Ψ)dx

for ui ∈ R, where σ∗ij is the covariance between (Yi|Xi = xi) and (Yj |Xj = xj).

Interchanging the integral sign and the derivative and setting u = 0 yields

∂MY(u)
∂ui

∣∣∣∣
u=0

=

∫
C
g(x)µ∗i (x)φn(x;θ,Ψ)dx∫
C
g(x)φn(x;θ,Ψ)dx

,

where µ∗i (x) is the i-th entry of the vector µ∗(x).
(ii) Since

E(YiYj) =
∂2MY(u)
∂ui∂uj

∣∣∣∣
u=0

,

it clear that E(YiYj) = σ∗ij . �
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6.6. Proof of Proposition 4.5. We know that if Y ∼ WNm,n(µ,Σ, g) with
g(x) = x′Ax, then the mgf of Y is

MY(u) =
tr(Aη)

∫
Rm

exp(u′y)φm(y;γ,∆)dy

tr(AΨ) + θ′Aθ
(6.1)

+

∫
Rm

τ (y)′Aτ (y) exp(u′y)φm(y;γ,∆)dy

tr(AΨ) + θ′Aθ
.

The first term in (6.1) simplifies to

(6.2)
tr(Aη) exp

(
u′γ + 1

2u′∆u
)

tr(AΨ) + θ′Aθ

while the second term in (6.1) takes the form

(6.3)
S ′AS

tr(AΨ) + θ′Aθ

∫
Rm

exp(u′y)φm(y;γ,∆)dy

+
2S ′AΓ∆−1

tr(AΨ) + θ′Aθ

∫
Rm

y exp(u′y)φm(y;γ,∆)dy

+
2S ′AΓ∆−1

tr(AΨ) + θ′Aθ

∫
Rm

y′Cy exp(u′y)φm(y;γ,∆)dy,

where S = θ−Γ∆−1γ and C = ∆−1Γ′AΓ∆−1. The first term in (6.3) becomes

(6.4)
S ′AS exp

(
u′γ + 1

2u′∆u
)

tr(AΨ) + θ′Aθ
.

Now, define Z = Y− γ, where Y ∼ Nm(γ,∆). Then

2S ′AΓ∆−1

tr(AΨ) + θ′Aθ

∫
Rm

exp(u′y)φm(y;γ,∆)dy

=
2SAΓ∆−1 exp

(
u′γ + 1

2u′∆u
)

tr(AΨ) + θ′Aθ
E(W + γ),

where W ∼ Nm(∆u,∆). Using the multivariate normal properties, we get

(6.5)
2S ′AΓ∆−1

tr(AΨ) + θ′Aθ

∫
Rm

y exp(u′y)φm(y;γ,∆)dy

=
2S ′AΓ∆−1

tr(AΨ) + θ′Aθ
(∆u + γ) exp

(
u′γ +

1

2
u′∆u

)
.
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The last term in (6.3) takes the form

(6.6)

∫
Rm

y′Cy exp(u′y)φm(y;γ,∆)dy

tr(AΨ) + θ′Aθ

=
exp

(
u′γ + 1

2u′∆u
)

tr(AΨ) + θ′Aθ

(
tr(C∆) + (∆u)′C(∆u) + 2γ ′C∆u + γ ′Cγ

)
.

Finally, by (6.2)–(6.6) we complete the proof of the theorem. �

6.7. Proof of Theorem 4.3. Given Γ = 0, it follows that for y ∈ Rm we have
φn+m(x, y;µ,Σ) = φn(x;θ,Ψ)φm(y;γ,∆). Hence fY(y)=φm(y;γ,∆). Con-
versely, given Y ∼ Nm(γ,∆), we have

fY(y) = φm(y;γ,∆)

∫
C
g(x)φ

(
x; τ (y),η

)
dx∫

C
g(x)φ(x;θ,Ψ)dx

.

Hence,

fY(y) = φm(y;γ,∆)

∫
C
g(x) exp

(
− 1

2

(
x− τ (y)

)′
η−1

(
x− τ (y)

))
dx

(2π)n/2|η|1/2
∫
C
g(x)φn(x;θ,Ψ)dx

,

where τ (y) = θ+Γ′∆−1(y−γ) and η = Ψ−Γ∆−1Γ′. Integrating with respect
to y over the spaceRm yields

E


∫
C
g(x) exp

(
− 1

2

(
x− τ (y)

)′
η−1

(
x− τ (y)

))
dx

(2π)n/2|η|1/2
∫
C
g(x)φn(x;θ,Ψ)dx

 = 1,

since the last equality is true for every x ∈ Rn. Then Γ = 0. �

6.8. Proof of Theorem 4.4. The joint pdf of Y1, . . . ,Yr is given by

f(y1, . . . , yr) =

∏r
i=1

∫
Ci
gi(xi)φni+mi(xi, yi;µi,Σi)dxi∏r

i=1

∫
Ci
gi(xi)φni(xi;θi,Ψi)dxi

,

where

µi =

(
θi

γi

)
and Σi =

(
Ψi Γi

Γ′i ∆i

)
,
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and g∗(x1, . . . , xr) =
∏r

i=1 gi(xi). Now

r∏
i=1

φni+mi(zi;µi,Σi)

= (2π)−
1
2
(n∗+m∗)

r∏
i=1

|Σi|−1/2 exp
(
− 1

2

r∑
i=1

(zi − µi)Σ
−1
i (zi − µi)

)
= (2π)−

1
2
(n∗+m∗)|Σ⋄|−1/2 exp

(
− 1

2
(z− µ⋄)(Σ⋄)−1(z− µ⋄)

)
,

where

zi =
(

xi
yi

)
, n∗ =

r∑
i=1

ni, m∗ =
r∑

i=1

mi,

and z = vec(z1, . . . , zr), µ⋄ = vec(µ1, . . . ,µr), Σ
⋄ =⊕r

i=1
Σi. Similarly,

r∏
i=1

φni(xi;θi,Ψi)

= (2π)−
1
2
(n∗)

r∏
i=1

|Ψi|−1/2 exp
(
− 1

2

r∑
i=1

(xi − θi)Ψ
−1
i (xi − θi)

)
= (2π)−

1
2
(n∗)|Ψ⋄|−1/2 exp

(
− 1

2
(x⋄ − θ⋄)(Ψ⋄)−1(x⋄ − θ⋄)

)
,

where x⋄ = vec(x1, . . . , xr), θ⋄ = vec(θ1, . . . ,θr), and Ψ⋄ =⊕r

i=1
Ψi. Finally,

we get the pdf

f(y1, . . . , yr) =

∫
C1×...×Cr

g∗(x⋄)φn∗+m∗(x⋄, y⋄;µ⋄,Σ⋄)dx⋄∫
C1×...×Cr

g∗(x⋄)φn∗(x⋄;θ⋄,Ψ⋄)dx⋄
, y⋄ ∈ Rn∗+m∗ ,

which completes the proof. �

6.9. Proof of Theorem 4.5. Under the notation: X⋄ = vec(X1, . . . ,Xr), Y⋄ =
vec(Y1, . . . ,Yr), θ⋄ = vec(θ1, . . . ,θr), γ⋄ = vec(γ1, . . . ,γr), Ψ

⋄ =⊕r

i=1
Ψi,

Γ⋄ = vec(Γ1, . . . ,Γr), ∆∗ =
∑r

i=1∆i, γ∗ =
∑r

i=1 γi, Γ
∗ =⊕r

i=1
γi, n

∗ =∑r
i=1 ni, and ∆⋄ =⊕r

i=1
∆i, we have(

X⋄
Y⋄
)
∼ Nn∗,m∗

((
θ⋄

γ⋄

)
,

(
Ψ⋄ Γ∗

(Γ∗)′ ∆⋄

))
.

This implies that

(6.7)

( X⋄
r∑

i=1
Yi

)
∼ Nn∗+m∗

((
θ⋄

γ∗

)
,

(
Ψ⋄ Γ⋄

(Γ⋄)′ ∆∗

))
.

From (6.7) we conclude that
∑r

i=1 Yi ∼ WNm,n∗(µ
+,Σ+, g+), which means

that the weighted normal distribution is closed under convolution. �
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6.10. Proof of Theorem 4.6. If T = a′Y and ã′ = (0′n×1, a′), then

T ∼WN1,n(ã′µ, ã′Σ∗ã, g)

and the mgf of T is

MT (u) =

∫
C
g(x)φn(x;θ,Ψ) exp

(
ua′µ∗(x) + 1

2u
2a′Σ∗a

)
dx∫

C
g(x)φn(x;θ,Ψ)dx

, u ∈ R.

Setting u = 1, we have, for every a and for u ∈ R,

E
(
exp(a′Y)

)
=

∫
C
g(x)φn(x;θ,Ψ) exp

(
a′µ∗(x) + 1

2a′Σ∗a
)
dx∫

C
g(x)φn(x;θ,Ψ)dx

= MY(a),

which is the mgf of WNm,n(µ,Σ, g). Conversely, if Y ∼ WNm,n(µ,Σ, g), then
using Corollary 4.1 we conclude that a′Y ∼WN1,n(ã′µ, ã′Σã, g). �
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