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Abstract. It is shown that the Bargmann representation of a t-deformed
probability measure can be obtained by taking away some t-dependent
amount of mass at zero of the Bargmann representation of the original mea-
sure and scaling of the remaining part. This allows us to formulate condi-
tions on existence of the Bargmann representation of a t-deformed proba-
bility measure and to study some prominent examples.
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1. MOTIVATION

Bargmann [3], [4] showed that there is a unitary isomorphism from the Hilbert
space L2

(
Rn, (2π)−n/2 exp(−∥x∥2/2)dx

)
with the usual scalar product onto the

Hilbert space of all holomorphic functions in n complex variables, equipped with
the scalar product

⟨ f, g ⟩ =
∫
Cn

f(z)g(z)γn(dz),

where γn(dz) = π−n exp(−∥z∥2)dz for z ∈ Cn, which maps orthogonal poly-
nomials of the first space onto monomials of the same degree in the second. That
mapping is usually called the Segal–Bargmann transform. A similar result was
shown by Asai et al. [2] for the Gaussian and Poisson measures. There are also
other contributions to the subject, for instance Królak [11], who studied q-Gaussian
measures, and Penson and Solomon [12], with Gaussian and q-Gaussian in a more
physical setting. It is therefore natural to ask if the Segal–Bargmann transform has
the desired properties for Hilbert spaces constructed with other measures on R.
A necessary condition for that is the existence of an analogue of the measure γn
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as a solution to a complex moment problem depending on the initial measure. In
the present paper we are studying some general facts about such moment prob-
lems, and calculating a few examples for central limit measures of convolutions
appearing around the free probability theory.

2. INTRODUCTION

Let µ be a probability measure on R having finite moments mµ(n) of all or-
ders. Then the Cauchy transform of the measure µ can be conveniently written in
the continued fraction form

Gµ (z) =
+∞∫
−∞

µ(dx)

z − x
=

1

z − αµ(1)−
λµ(1)

z − αµ(2)−
λµ(2)

z − αµ(3)−
λµ(3)

. . .

,(2.1)

which has to be understood either formally in the general case or as a completely
convergent continued fraction in the case when the measure µ is determined by its
moments, due to a theorem that can be found, for instance, in [13].

From [1] and [9] it is known that for such a µ there exists a complete orthogo-
nal system {Pµ

n (x)}∞n=0 of polynomials for L2
(
R;µ(dx)

)
, a sequence {λµ(n)}∞n=0,

λµ(n) ­ 0, and a sequence {αµ(n)}∞n=0 , αµ(n) ∈ R, the same as in the Cauchy
transform, such that

Pµ
0 (x) = 1, Pµ

1 (x) = x− αµ(1),(
x− αµ(n+ 1)

)
Pµ
n (x) = Pµ

n+1(x) + λµ(n)P
µ
n−1(x),

⟨Pµ
n (x), P

µ
m(x)⟩L2(µ) = δn,mλµ(1) . . . λµ(n) =: δn,mΛµ(n).

The sequence of the orthonormal polynomials associated with µ is given by

pµ0 (x) = 1, pµ1 (x) =
x− αµ(1)√

λµ(1)
,

(
x− αµ(n+ 1)

)
pµn(x) =

√
λµ(n+ 1) pµn+1(x) +

√
λµ(n) p

µ
n−1(x).

DEFINITION 2.1. The Bargmann representation of a probability measure µ
on R with symmetric Jacobi coefficients λµ(n) is a probability measure βµ on the
complex plane C such that for all m,n ∈ N∫

C
znzmβµ(dz) = δn,m λµ(1) . . . λµ(n) = δn,mΛµ(n).(2.2)
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REMARK 2.1. Since the Bargmann representation βµ depends only on the
symmetric Jacobi coefficients λµ(n) of the original measure µ, it is also the Barg-
mann representation of all other probability measures ν that differ from µ by the
coefficients αν(n). In the sequel, we shall therefore restrict our attention to the
symmetric probability measures, that is, measures with αν(n) = 0 for all n.

A discussion of when a complex bisequence is a complex moment sequence
can be found in [15]. The authors show in Theorem 1 that the sequence{cm,n}∞m,n=0

is a complex moment sequence, that is, there exists a positive Borel measure γ on
C fulfilling

cn,m =
∫
C
znzmγ(dz)

if and only if there exists a sequence {c̃n,m}∞m+n­0 ⊂ C such that

c̃n,m = cn,m for m,n = 0, 1, . . .

and for any finite {zm,n}m+n­0 ⊂ C
∑

m+n­0
p+q­0

c̃m+q,n+p zm,n zp,q ­ 0.(2.3)

Moreover, Stochel and Szafraniec [15] show in Corollary 4 that if the bise-
quence {cm,n} admits a decomposition cm,n = am+nbm−n with {an}n∈N positive
definite on the semigroup N and {bm}n∈Z positive definite on the group Z, then
the extension {c̃m,n} satisfying (2.3) can be found. Consequently, we have

PROPOSITION 2.1. If {Λµ(n)}∞n=0 and {Λµ(n)}∞n=1 are positive definite, µ
admits a Bargmann representation βµ.

P r o o f. Take

bm =

{
1, m = 0,

0, m ∈ Z \ 0,
an =

{
Λν(k), n = 2k,

0, n = 2k + 1,

since {Λµ(n)}∞n=0 are moments of a Stieltjes measure, an are moments of the
symmetrization of its composition with square root, and are positive definite. Now,
use the above-mentioned Corollary 4 of [15]. �

Assume that for a given µ the Bargmann measure βµ exists, that is, there exists
a solution of the following moment problem:∫

C
znzmβµ(dz) = δn,mΛµ(n).
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We would like to make a polar decomposition of the measure on the complex plane.
Let us take a random variable Z whose distribution is the Bargmann measure βµ
and some integrable function f . We have∫

f(z)βµ(dz) = E f(Z) = E [E f(Z) | |Z| = r]

=
∫

[0,∞)

[
1{0}(r)f(0) + 1(0,∞)(r)

∫
[0,2π)

f(r ei θ)Θr
µ(dθ)

]
ϱµ(dr).

DEFINITION 2.2. The Bargmann measure will be called rotation-invariant (or
radial) if Θr

µ = 1
2πλ[0,2π) for ϱµ-almost all r.

The following theorem has been noted in [16].

THEOREM 2.1. If a measure µ admits a Bargmann representation βµ(dz) =
Θr

µ(dθ)ϱµ(dr), then it also admits a rotation-invariant Bargmann representation.

P r o o f. Take f(z) = zkzl. Observe that for k = l∫
C
zkzlβµ(dz)

=
∫

[0,∞)

[
1{0}(r)0

k+l + 1(0,∞)(r)
∫

[0,2π)

rk+l ei (k−l) θΘr
µ(dθ)

]
ϱµ(dr)

=
∫

[0,∞)

rk+lϱµ(dr) = Λµ(k).

This means that mϱµ(2k) = Λµ(k), and integration with respect to the product
measure 1

2πλ[0,2π)(dθ)ϱµ(dr) yields for k = l

∫
[0,∞)

[
1{0}(r)0

k+l + 1(0,∞)(r)
∫

[0,2π)

rk+l ei (k−l) θ
1

2π
λ[0,2π)(dθ)

]
ϱµ(dr)

=
∫

[0,∞)

rk+lϱµ(dr) = Λµ(k),

and zero for k ̸= l, so it is also a Bargmann representation for µ. �

The radial measure ϱµ is convenient for taking into product measures, but
since its moments are only partially specified, it is inconvenient to handle it di-
rectly. Instead, we may use, along the lines of [6], the bijection j : R+ → R+,
j(x) = x2, that produces a bijection between Stieltjes measures via the equation∫

f(x)νj(dx) =
∫
f
(
j(x)

)
ν(dx).

Then let us define the following:
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DEFINITION 2.3. Define the square-radial measure ξµ to be

ξµ = ϱjµ.

Now we have

mξµ(n) = Λµ(n)(2.4)

and the existence and uniqueness of ξµ can be studied by using standard Stieltjes
moment problem techniques, while the measure ϱµ can be easily recovered from ξµ
by inverting j. Hence, as noticed in Proposition 2.1 of [6], we have the following:

COROLLARY 2.1. There is a one-to-one correspondence between radial so-
lutions of (2.2) and solutions of the Stieltjes moment problem:

Λµ(0) = 1,

Λµ(n) = λµ(1) . . . λµ(n) =
∞∫
0

xnξµ(dx).

From the above discussion we have the following remark:

REMARK 2.2. The Bargmann measure βµ exists if and only if the sequences
{Λµ(n)}∞n=0 and {Λµ(n)}∞n=1 are positive definite.

We remind a criterion for the determinate moment problem (see [14], Propo-
sition 1.5):

PROPOSITION 2.2. If {dn}∞n=0 is a Stieltjes moment sequence (that is, if there
is a measure ρd on [0,∞) such that dn =

∫∞
0

xnρd(dx)) and for some C,R > 0

|dn| ¬ CRn (2n)!,

then the Stieltjes moment problem is determinate.

3. THE t-DEFORMATION OF MEASURES AND OF BARGMANN REPRESENTATIONS

DEFINITION 3.1. Let t ­ 0. The t-deformation of a probability measure µ ∈
P (R) is the measure Utµ corresponding to the reciprocal of the Cauchy transform
given by

1

GUtµ (z)
=

t

Gµ (z)
+ (1− t)z.(3.1)

The properties of the transformation Ut were studied in [7], [8], and [17].
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Given a measure µ with all moments finite, the t-deformed measure Utµ has
the Cauchy transform given by

GUtµ (z) =
1

z − t αµ(1)−
t λµ(1)

z − αµ(2)−
λµ(2)

z − αµ(3)−
λµ(3)

. . .

.

Using the t-transformation Bożejko and Wysoczański [7] defined the associ-
ated deformation of convolutions in the following way:

DEFINITION 3.2. Given a convolution ⊕ and t > 0, the t-deformed convolu-
tion ⊕t is defined as

µ⊕t ν = U1/t

(
(Utµ)⊕ (Utν)

)
for any two probability measures µ and ν.

Let us now recall the fundamental observation of [7], the central limit theorem.

THEOREM 3.1. Let µ ∈ P (R) be such that mµ(1) = 0, mµ(2) = 1, and let
t > 0. Then

D1/
√
nµ⊕t . . .⊕t D1/

√
nµ

n→∞−→ νt

in the weak-∗ topology, where the limiting measure νt is a related measure appear-
ing in the central limit theorem for the convolution⊕ by νt = U1/tD√tν, where the
dilation D is defined as usual by Dsν(A) = ν(s−1A).

The above theorem suggests that instead of considering the original deforma-
tion Ut it is preferable to use U1/tD√t. In the remaining part of the present paper we
shall be concerned with the existence of Bargmann representations of (U1/tD√t)-
deformations of probability measures. To this end we have the following

PROPOSITION 3.1. Assume that a measure µ is symmetric with finite moments
of all orders. If the symmetric Jacobi coefficients of µ are equal to λµ(n), then to
the measure µt = U1/tD√t µ there corresponds the sequence of symmetric Jacobi
coefficients

λµt(1) = λµ(1), λµt(n) = t λµ(n), n ­ 2.

Hence, the moments associated with the Bargmann measures are related by

Λµt(0) = Λµ(0) = 1, Λµt(n) = tn−1Λµ(n).
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THEOREM 3.2. The measures ξµt , ϱµt , when they exist, are given by

ξµt =

(
1− 1

t

)
δ0 +

1

t
Dtξµ,

ϱµt =

(
1− 1

t

)
δ0 +

1

t
D√tϱµ.

P r o o f. It is easily checked by computing the moments of the measures. �

4. POSITIVE DEFINITENESS OF THE t-TRANSFORMED MOMENTS

Assume that the Stieltjes moment problem {mν(n)}∞n=0 with mν(0) = 1 has
indeed a solution ν, that is, all the determinants

Dn =

∣∣∣∣∣∣∣∣∣
mν(0) mν(1) . . . mν(n)
mν(1) mν(2) . . . mν(n+ 1)

...
...

...
mν(n) mν(n+ 1) . . . mν(2n)

∣∣∣∣∣∣∣∣∣ ,

D′n =

∣∣∣∣∣∣∣∣∣
mν(1) mν(2) . . . mν(n+ 1)
mν(2) mν(3) . . . mν(n+ 2)

...
...

...
mν(n+ 1) mν(n+ 2) . . . mν(2n+ 1)

∣∣∣∣∣∣∣∣∣
are nonnegative. Let us now consider the sequence m

(t)
ν (0) = mν(0), m

(t)
ν (n) =

tn−1mν(n), n ­ 1. We would like to determine whether the moment problem
m

(t)
ν (n) also has a Stieltjes solution, that is, whether the determinants

(4.1)

Tn =

∣∣∣∣∣∣∣∣∣
mν(0) mν(1) . . . tn−1mν(n)
mν(1) tmν(2) . . . tnmν(n+ 1)

...
...

...
tn−1mν(n) tnmν(n+ 1) . . . t2n−1mν(2n)

∣∣∣∣∣∣∣∣∣ ,

T ′n =

∣∣∣∣∣∣∣∣∣
mν(1) tmν(2) . . . tnmν(n+ 1)
tmν(2) t2mν(3) . . . tn+1mν(n+ 2)

...
...

...
tnmν(n+ 1) tn+1mν(n+ 2) . . . t2nmν(2n+ 1)

∣∣∣∣∣∣∣∣∣
are also nonnegative. Let us start with a few facts on determinants, moments, and
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orthogonal polynomials. Since

T ′n = t · t2 . . . tn

∣∣∣∣∣∣∣∣∣
mν(1) tmν(2) . . . tnmν(n+ 1)
mν(2) tmν(3) . . . tnmν(n+ 2)

...
...

...
mν(n) tmν(n+ 1) . . . tnmν(2n+ 1)

∣∣∣∣∣∣∣∣∣(4.2)

= t[n(n+1)]/2t · t2 . . . tnD′n = tn(n+1)D′n,

we see that we need to care only about the nonnegativity of Tn.
Let pνn(x) be a sequence of orthonormal polynomials associated with the prob-

ability measure ν. Let

hnν (x, y) =
n∑

k=0

pνk(x)p
ν
k(y),

h∞ν (x, x) =
∞∑
n=0

pνn(x)p
ν
n(x) ∈ (0,∞]

be the Christoffel–Darboux kernel of polynomials pνn(x). The following proposi-
tion links the determinants Dn with the kernel hnν (x, y):

PROPOSITION 4.1. Let us denote by D∗n the following determinant:

D∗n =

∣∣∣∣∣∣∣∣∣
mν(2) mν(3) . . . mν(n+ 1)
mν(3) mν(4) . . . mν(n+ 2)

...
...

...
mν(n+ 1) mν(n+ 1) . . . mν(2n)

∣∣∣∣∣∣∣∣∣ .
Then we have

D∗n = hnν (0, 0)Dn.

For the proof we refer to [1], Chapter 2, Exercise 3.

Now we have tools to prove the following

THEOREM 4.1. Let ν be a probability measure with all moments mν(n) and
let pνn(x) be the associated orthonormal polynomials. Then all the determinants
Tn of (4.1) are all positive if and only if

t ­ 1− 1

h∞ν (0, 0)
= 1− 1

∞∑
n=0

pνn(x)p
ν
n(x)

.
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P r o o f. We have

Tn =

∣∣∣∣∣∣∣∣∣
t−1 + 1− t−1 mν(1) . . . tn−1mν(n)

mν(1) tmν(2) . . . tnmν(n+ 1)
...

...
...

tn−1mν(n) tnmν(n+ 1) . . . t2n−1mν(2n)

∣∣∣∣∣∣∣∣∣ = Rn + Sn,

where

Rn =

∣∣∣∣∣∣∣∣∣
t−1 mν(1) . . . tn−1mν(n)

mν(1) tmν(2) . . . tnmν(n+ 1)
...

...
...

tn−1mν(n) tnmν(n+ 1) . . . t2n−1mν(2n)

∣∣∣∣∣∣∣∣∣ ,

Sn =

∣∣∣∣∣∣∣∣∣
1− t−1 mν(1) . . . tn−1mν(n)

0 tmν(2) . . . tnmν(n+ 1)
...

...
...

0 tnmν(n+ 1) . . . t2n−1mν(2n)

∣∣∣∣∣∣∣∣∣ .
Because by calculations similar to (4.2) we have Rn = tn

2−1Dn, and

Sn =

(
1− 1

t

) ∣∣∣∣∣∣∣
tmν(2) t2mν(3) . . . tnmν(n+ 1)

...
...

...
tnmν(n+ 1) tn+1mν(n+ 2) . . . t2n−1mν(2n)

∣∣∣∣∣∣∣
=

(
1− 1

t

)
t · t2 . . . tn

∣∣∣∣∣∣∣
mν(2) tmν(3) . . . tn−1mν(n+ 1)

...
...

...
mν(n+ 1) tmν(n+ 2) . . . tn−1mν(2n)

∣∣∣∣∣∣∣
=

(
1− 1

t

)
t[n(n+1)]/2 · t . . . tn−1D∗n =

(
1− 1

t

)
t[n(n+1)]/2 t[n(n−1)]/2D∗n

= (t− 1) tn
2−1Dn h

n
ν (0, 0),

we obtain

Tn = tn
2−1Dn + (t− 1) tn

2−1Dn hn(0, 0) = tn
2−1Dn

(
1 + (t− 1)hnν (0, 0)

)
and

Tn ­ 0⇔ 1 + (t− 1)hnν (0, 0) ­ 0,

that is, when

t ­ 1− 1

hnν (0, 0)
.
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Because the sequence hnν (0, 0) is non-decreasing, 1/hnν (0, 0) is non-increasing,
1/hnν (0, 0)→ 1/h∞ν (0, 0) as n→∞, and it follows that all Tn are positive if and
only if t ­ 1− 1/h∞ν (0, 0). �

The above theorem and Theorem 3.2 are linked together by the following
propositions:

PROPOSITION 4.2. For every x ∈ R, among the solutions of the moment
problem given by the sequence {mν(n)}∞n=0 there is at most one N-extremal mea-
sure ν with an atom at x, and its weight, dependent only on the moment sequence,
is equal to

ν({x}) = 1

h∞ν (x, x)
.

P r o o f. See [14], the note above Theorem 5.21. �

PROPOSITION 4.3. The quantity 1/h∞ν (0, 0) is the maximal weight of the
atom at zero among all the Stieltjes measures that are solutions of the moment
problem given by the sequence {mν(n)}∞n=0.

P r o o f. By Proposition 4.2 this is the weight at zero for measures N -extremal
in the sense of Hamburger. If the measure ν is determinate in the sense of Ham-
burger, it is also N -extremal and Stieltjes. If it is not the case, the weight at zero is
not larger than 1/h∞ν (0, 0) for all the solutions of the moment problem by Theo-
rem 5 of [14], and that weight is reached for the N -extremal Hamburger solution
ν0, and the support of ν0 is nonnegative. �

Applying the above conclusions to the measure ξµ of a Bargmann representa-
tion βµ we get the following

THEOREM 4.2. Assume µ admits a Bargmann representation. Then µt admits
a Bargmann representation if and only if t ­ 1− 1/h∞ξµ(0, 0).

5. CENTRAL MEASURE FOR t-TRANSFORMED CLASSICAL CONVOLUTION

We know (see [7] and [8]) that in the case of t-transformed classical convolu-
tion the central measure γt has the following Cauchy transform:

Gγt (z) =
1

z −
1

z −
2t

z −
3t

z − . . .

.
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Consequently,

λγt(1) = 1, λγt(n) = n t, n ­ 2,

and

Λγt(0) = 1, Λγt(n) = tn−1 n!, n ­ 1.

The solution of the undeformed even moment problem

∞∫
0

r2nϱγ(dr) = n!

is well known (see, e.g., [2]) and the measure ϱγ is given by

ϱγ(dr) = 2 r e−r
2
λ(dr).

From Proposition 2.2 we infer that the Stieltjes moment problem associated
with the moment sequence {Λγ(n)}∞n=0 is determinate. Moreover, since ϱγ does
not have an atom at zero, ξγ also does not. This in turn means that the Bargmann
measure βγt exists if and only if t ­ 1.

By Theorem 3.2 we can now see that ϱγt is given by

ϱγt(dr) =

(
1− 1

t

)
δ0(dr) +

2

t2
r exp

(
−r

2

t
λ(dr)

)
,

which can be checked directly for n ­ 1:

∞∫
0

r2nϱγt(dr) =
∞∫
0

r2n
2

t2
r exp

(
−r

2

t

)
λ(dr)

= tn−1
∞∫
0

2 s2n s exp(−s2)λ(ds) = tn−1 n!.

Thus we have

COROLLARY 5.1. The Bargmann measure βγt(dz) exists for t ­ 1 and is of
the form

βγt(dz) =
λ(dθ)

2π

((
1− 1

t

)
δ0(dr) +

2

t2
r exp

(
−r

2

t

)
λ(dr)

)
for z = r eiθ.
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6. KESTEN MEASURE

From [7] and [8] we know that in the case of t-transformed free convolution
the central measure κt has the following Cauchy transform:

Gκt (z) =
1

z −
1

z −
t

z −
t

z − . . .

.

Consequently,

λκt(1) = 1, λκt(n) = t, n ­ 2,

and

Λκt(0) = 1, Λκt(n) = tn−1, n ­ 1.

So we look for the measure ξκt that solves the determinate Stieltjes moment prob-
lem:

Λκt(n) =
∞∫
0

rnξκt(dr).

Using the moment function

Mξκt
(z) =

∞∑
n=0

Λκt(n)z
n = 1 +

z

1− t z

and the connection

Gξκt
(z) =

1

z
Mξκt

(
1

z

)
=

1

z
· z − t+ 1

z − t
=

(
1− 1

t

)
1

z
+

1

t

1

z − t

we may see that

ξκt =

(
1− 1

t

)
δ0(dr) +

1

t
δt(dr),

which is a probability measure if and only if t ­ 1. For t < 1 the corresponding
sequence {Λξκt

(0)}∞n=0 is not a sequence of moments because it is not positive
definite: ∣∣∣∣Λξκt

(0) Λξκt
(1)

Λξκt
(1) Λξκt

(2)

∣∣∣∣ = ∣∣∣∣1 1
1 t

∣∣∣∣ = t− 1 < 0.

COROLLARY 6.1. In the t-transformed free case, that is, for the Kesten mea-
sure κt, the Bargmann representation exists if and only if t ­ 1. In this case the
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measure is of the form

βκt(dz) =
λ(dθ)

2π

((
1− 1

t

)
δ0(dr) +

1

t
δ√t(dr)

)
for z = r ei θ.
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[7] M. Bożejko and J. Wysoczański, New examples of convolutions and non-commutative
central limit theorems, Banach Center Publ. 43 (1998), pp. 95–103.
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