PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 34, Fasc. 2 (2014), pp. 279-291

BARGMANN MEASURES FOR {-DEFORMED PROBABILITY*

BY

ANNA DOROTA KRYSTEK anp LUKASZ JAN WOJAKOWSKI

Abstract. It is shown that the Bargmann representation of a t-deformed
probability measure can be obtained by taking away some ¢-dependent
amount of mass at zero of the Bargmann representation of the original mea-
sure and scaling of the remaining part. This allows us to formulate condi-
tions on existence of the Bargmann representation of a ¢-deformed proba-
bility measure and to study some prominent examples.
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1. MOTIVATION

Bargmann [B], [4] showed that there is a unitary isomorphism from the Hilbert
space L?(R™, (27) "2 exp(— ||z ||/ 2)dz) with the usual scalar product onto the
Hilbert space of all holomorphic functions in n complex variables, equipped with
the scalar product

(f,9)= Cfnf(Z)g(Z)%(dZ),

where 7, (dz) = 7™ exp(— ||z]|*)dz for z € C", which maps orthogonal poly-
nomials of the first space onto monomials of the same degree in the second. That
mapping is usually called the Segal-Bargmann transform. A similar result was
shown by Asai et al. [?] for the Gaussian and Poisson measures. There are also
other contributions to the subject, for instance Krélak [[I1], who studied ¢g-Gaussian
measures, and Penson and Solomon [12], with Gaussian and g-Gaussian in a more
physical setting. It is therefore natural to ask if the Segal-Bargmann transform has
the desired properties for Hilbert spaces constructed with other measures on R.
A necessary condition for that is the existence of an analogue of the measure 7,

* This paper was sponsored by the Polish National Science Center grant No. 2012/05/
B/ST1/00626.
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as a solution to a complex moment problem depending on the initial measure. In
the present paper we are studying some general facts about such moment prob-
lems, and calculating a few examples for central limit measures of convolutions
appearing around the free probability theory.

2. INTRODUCTION

Let 1 be a probability measure on R having finite moments m,(n) of all or-
ders. Then the Cauchy transform of the measure 1 can be conveniently written in
the continued fraction form

1) G, f “_ - :
- 2~ a(1) Au(1)

z—au(2) -

Z_O‘u(?))_)\ﬂi(g)

which has to be understood either formally in the general case or as a completely
convergent continued fraction in the case when the measure p is determined by its
moments, due to a theorem that can be found, for instance, in [I3].

From [[] and [9] it is known that for such a p there exists a complete orthogo-
nal system { P} (z)}_, of polynomials for L? (R; s1(dx)), a sequence {\,,(n)} >

n=0"
Au(n) > 0, and a sequence {c,(n)} a,(n) € R, the same as in the Cauchy
transform, such that

%)
n=0"

Pl =1, Pix) = —ay(1),
($_au(n+1))Pu( )= P#+1(x)+)‘u(”) _1(2),
(B (), (%)) 1) = OnmAu(1) - Au(n) =: pmAp(n).

The sequence of the orthonormal polynomials associated with p is given by

z — au(l)
Au(1)
(1' —au(n+ 1))1’5(%) =/ Au(n + 1)pﬁ+1(x) + 1/ Au(n) ol (2).

po(x) =1, ph(z) =

)

DEFINITION 2.1. The Bargmann representation of a probability measure p
on R with symmetric Jacobi coefficients A, (n) is a probability measure /3, on the
complex plane C such that for all m,n € N

(2.2) f Z"Z" Bu(dz) = Onm Ap(1) ... Au(n) = dpmAu(n).
C
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REMARK 2.1. Since the Bargmann representation [3,, depends only on the
symmetric Jacobi coefficients \,(n) of the original measure yu, it is also the Barg-
mann representation of all other probability measures v that differ from p by the
coefficients o, (n). In the sequel, we shall therefore restrict our attention to the
symmetric probability measures, that is, measures with c,,(n) = 0 for all n.

A discussion of when a complex bisequence is a complex moment sequence
can be found in [T5]. The authors show in Theorem 1 that the sequence {¢m n ;o

is a complex moment sequence, that is, there exists a positive Borel measure -y on
C fulfilling

Cnm = fz"?m’y(dz
C

if and only if there exists a sequence {¢nm }pei 50 C C such that
Cnym = Cnym  form,n=20,1,...
and for any finite {2y, » }m4n>0 C C

(2.3) > CmtqntpZmanZpg > 0.
m—+n=>0
p+q=0

Moreover, Stochel and Szafraniec [I5] show in Corollary 4 that if the bise-
quence {¢,  } admits a decomposition ¢y, y, = Apm4rbm—n With {an }nen positive
definite on the semigroup N and {b,, },cz positive definite on the group Z, then
the extension {¢, ,, } satisfying (Z3) can be found. Consequently, we have

PROPOSITION 2.1. If {A,(n)}52q and {A,(n)}o2, are positive definite, p
admits a Bargmann representation [3,,.

Proof. Take

. 1, m=0, Ay (k), n =2k,
m = ap =
0, meZ\Do, 0, n=2k+1,

since {A,(n)}>2, are moments of a Stieltjes measure, a, are moments of the
symmetrization of its composition with square root, and are positive definite. Now,
use the above-mentioned Corollary 4 of [15]. =

Assume that for a given y the Bargmann measure 3, exists, that is, there exists
a solution of the following moment problem:

[ 2727 8,(d2) = 6 mhu(n).
C
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We would like to make a polar decomposition of the measure on the complex plane.
Let us take a random variable Z whose distribution is the Bargmann measure f3,,
and some integrable function f. We have

J f(2)Bu(dz) =E f(Z) =E [E f(Z)||Z] = 7]
= [ [Lioy(")f(0) + Loy (r) [ f(re'®)On(d0)]ou(dr).

[0,00) [0,27)

DEFINITION 2.2. The Bargmann measure will be called rotation-invariant (or
radial) if O, zﬂ)‘[O o) for g,-almost all 7.

The following theorem has been noted in [I6].

THEOREM 2.1. If a measure ;i admits a Bargmann representation (3,(dz) =
©),(d0)o,(dr), then it also admits a rotation-invariant Bargmann representation.

Proof. Take f(z) = z¥Z!. Observe that for k = I

fzkzlﬂu(dz)
C
= [ [Loyr)0" T + 100y (r) [ e ED0OT (d0)] o, (dr)
[0,00) [0,27)
= f TkHQu(dT):Au(k)-
[0,00)

This means that m,, (2k) = A, (k), and integration with respect to the product
measure 5- )\[0 2r)(d0) o, (dr) yields for k =1

Lo 1
[ f) ]1{0}(7«)0’“%11(0,00)(@[ [ )rk+l etk ngm,%)(de) 0,(dr)
0,00 0,27

f rk QM (dr) = Au(k),
[0,00)

and zero for k£ # [, so it is also a Bargmann representation for y. m

The radial measure ¢, is convenient for taking into product measures, but
since its moments are only partially specified, it is inconvenient to handle it di-
rectly. Instead, we may use, along the lines of [6], the bijection j: RT — RT,
j(x) = 22, that produces a bijection between Stieltjes measures via the equation

J @y (de) = [ f(i@)v(d

Then let us define the following:
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DEFINITION 2.3. Define the square-radial measure §,, to be
gu = QL
Now we have
(2.4) me, (n) = Ayu(n)

and the existence and uniqueness of §,, can be studied by using standard Stieltjes
moment problem techniques, while the measure g, can be easily recovered from &,
by inverting j. Hence, as noticed in Proposition 2.1 of [6], we have the following:

COROLLARY 2.1. There is a one-to-one correspondence between radial so-
lutions of (Z2) and solutions of the Stieltjes moment problem:

Ap(n) =Au(1) ... Au(n) = ?x"fu(dz).

From the above discussion we have the following remark:

REMARK 2.2. The Bargmann measure [3,, exists if and only if the sequences
{Au(n)}oy and {A,(n)}o2, are positive definite.

We remind a criterion for the determinate moment problem (see [T4], Propo-
sition 1.5):

PROPOSITION 2.2. If{dy} -, is a Stieltjes moment sequence (that is, if there
is a measure pq on [0,00) such that d,, = fooo x"pq(dx)) and for some C, R > 0

|d,| < CR™(2n)!,
then the Stieltjes moment problem is determinate.

3. THE t-DEFORMATION OF MEASURES AND OF BARGMANN REPRESENTATIONS

DEFINITION 3.1. Lett > 0. The t-deformation of a probability measure 1 €
P (R) is the measure Uy 11 corresponding to the reciprocal of the Cauchy transform
given by
1 t

3.1) G-t (1—1t)z

The properties of the transformation U; were studied in [[], [R], and [TZ].
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Given a measure p with all moments finite, the ¢t-deformed measure U, has
the Cauchy transform given by

GUt# (2) =

z—ta,(l) —

z—opu(2) -

o) 0

Using the ¢-transformation Bozejko and Wysoczanski [[7] defined the associ-
ated deformation of convolutions in the following way:

DEFINITION 3.2. Given a convolution & and ¢ > 0, the t-deformed convolu-
tion @ is defined as

p @y = U ((Up) @ (Uw))

for any two probability measures p and v.

Let us now recall the fundamental observation of [[4], the central limit theorem.

THEOREM 3.1. Let ju € P (R) be such that m, (1) =0, m,(2) = 1, and let
t > 0. Then

Dl/\/ﬁu@t...@tml/\/ﬁunﬂolﬁ

in the weak-* topology, where the limiting measure vy is a related measure appear-
ing in the central limit theorem for the convolution & by vy = Uy 4D sv, where the

dilation D is defined as usual by Dsv(A) = v(s~LA).

The above theorem suggests that instead of considering the original deforma-
tion Uy it is preferable to use Uy ;D ;. In the remaining part of the present paper we
shall be concerned with the existence of Bargmann representations of (U ;D \/g)—
deformations of probability measures. To this end we have the following

PROPOSITION 3.1. Assume that a measure L is symmetric with finite moments
of all orders. If the symmetric Jacobi coefficients of | are equal to X, (n), then to
the measure p = Uy D s ju there corresponds the sequence of symmetric Jacobi
coefficients

)‘Ht(l) = )‘M(l)a )‘Ht(n) :t)‘,u(n)v n > 2.
Hence, the moments associated with the Bargmann measures are related by

AL (0)=AL0) =1, Ay (n)=t""1Au(n).
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THEOREM 3.2. The measures §,,,, 0,,, when they exist, are given by
1 1
f,ut =(1-= 50 + *]D)tf,uv
t t
1 1
Our = (1 - t) do + ED\/{Qu-

Proof. Itis easily checked by computing the moments of the measures. =

4. POSITIVE DEFINITENESS OF THE ¢-TRANSFORMED MOMENTS

Assume that the Stieltjes moment problem {m, (n)}>° , with m, (0) = 1 has
indeed a solution v, that is, all the determinants

Y T A
Dy, = : : . ;
ml,(n) ml,(n +1) ... m,,(.Qn)
my, (1) m,(2) ceoo my(n+1)
D= mV.(2) mV.(3) e m,,(n +2)
my(n+1) my(n+2) ... mo(2n+1)

are nonnegative. Let us now consider the sequence m) (0) = my(0), m) (n) =
t"~1m,(n), n > 1. We would like to determine whether the moment problem

ml(,t) (n) also has a Stieltjes solution, that is, whether the determinants

m,,(0) m, (1) oo " Imy(n)
my (1) tm,(2) v t"my(n+1)
Tn = . )
=t rﬁu(n) " my(n +1) ... ¢t 7;1V(2n)
4.1)
m, (1) tm,(2) v t"my(n+1)
_ tmy,(2) t2m,(3) e " my(n +2)
t" my(‘n—i- 1) ¢l m;(n+2) I m,,(‘2n+ 1)

are also nonnegative. Let us start with a few facts on determinants, moments, and
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orthogonal polynomials. Since

my(1)  tmy(2) ... t"my(n+1)
@42) T =t 4" m”:(Q) tm:”(g) et m”(.n+2)
mo(n) tmu(n+1) ... (204 1)

= ¢+ D124 42 gn pl = ¢gr(nt D) pr

we see that we need to care only about the nonnegativity of 7;,.
Let pY (x) be a sequence of orthonormal polynomials associated with the prob-
ability measure v. Let

B ) = 3 pU)BL),
k=0
hzcio(xﬂx) = Z:OPZ(m)pZ(x) € (07 OO]

be the Christoffel-Darboux kernel of polynomials pY (x). The following proposi-
tion links the determinants D,, with the kernel h]'(x, y):

PROPOSITION 4.1. Let us denote by D}, the following determinant:

my(2) my(3) ceo my(n+1)
D = ml,(3) ml,(4) e ml,(n +2)
my(n+1) mymn+1) ... my(2n)

Then we have

DI = h™(0,0) D,

For the proof we refer to [[I], Chapter 2, Exercise 3.

Now we have tools to prove the following

THEOREM 4.1. Let v be a probability measure with all moments m,,(n) and
let p¥ (x) be the associated orthonormal polynomials. Then all the determinants
T, of (B) are all positive if and only if

1 1
-1

t>1— —vx
hi2(0,0) 5
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Proof. We have

tl41—¢t my (1) oot Imy(n)
my (1) tm,(2) oo "my(n+1)
T, = V. V Y . =R, + Sna
t"tm,(n) t"my(n+1) t2"=1m,(2n)
where
tt m, (1) oo " Imy(n)
m, (1) tm,(2) oo t"my(n+1)
R, = . . . )
" tm,(n) "my(n+1) ... t*""Im,(2n)
11—ttt m, (1) oo " Imy(n)
0 tm,(2) oo t"my(n+1)
0 t"my,(n+1) ... t?"Im,(2n)

Because by calculations similar to (B2) we have R,, = -1 D,,, and

. tm,(2) t2m,,(3) s t"my(n+1)
Sn = <1 - t> : : :
t"my(n+1) t"m,(n+2) ... 2" "Im,(2n)

my(2) tm,(3) coo v imy(n+ 1)

:<1—1>t~t2...t" : : :
my(n+1) tmy(n+2) ... t""1m,(2n)
_ <1 _ 1) fnle D)2 g et pe <1 _ 1) (In(n D)2 n(n-1)/2 e
= (t—1)t" "' D, h™(0,0),
we obtain
T ="' Dy 4 (t — 1) "1 Dy, 1 (0,0) = 1 D,y (1 + (£ — 1) h2(0,0))
and
T, >0« 1+ (t—1)h"(0,0) >0,

that is, when
1

t/ — T <

hi(0,0)°
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Because the sequence h])(0,0) is non-decreasing, 1/h]}(0,0) is non-increasing,
1/h7(0,0) — 1/hS°(0,0) as n — oo, and it follows that all T}, are positive if and
only if ¢ > 1—1/h%(0,0). m

The above theorem and Theorem are linked together by the following
propositions:

PROPOSITION 4.2. For every x € R, among the solutions of the moment
problem given by the sequence {m, (n)}>>, there is at most one N-extremal mea-
sure v with an atom at x, and its weight, dependent only on the moment sequence,
is equal to

Vo) = =iy

Proof. See [I4], the note above Theorem 5.21. m

PROPOSITION 4.3. The quantity 1/h3°(0,0) is the maximal weight of the
atom at zero among all the Stieltjes measures that are solutions of the moment
problem given by the sequence {m,, (n)}> .

Proof. By Proposition B2 this is the weight at zero for measures /V-extremal
in the sense of Hamburger. If the measure v is determinate in the sense of Ham-
burger, it is also /V-extremal and Stieltjes. If it is not the case, the weight at zero is
not larger than 1/h2°(0,0) for all the solutions of the moment problem by Theo-
rem 5 of [T4], and that weight is reached for the /NV-extremal Hamburger solution
Vo, and the support of 1 is nonnegative. m

Applying the above conclusions to the measure §,, of a Bargmann representa-
tion 3, we get the following

THEOREM 4.2. Assume i admits a Bargmann representation. Then iy admits
a Bargmann representation if and only ift > 1 — 1/ hgj (0,0).

5. CENTRAL MEASURE FOR ¢t-TRANSFORMED CLASSICAL CONVOLUTION

We know (see [[Z] and [K]) that in the case of ¢-transformed classical convolu-
tion the central measure 7; has the following Cauchy transform:

G'Yt (Z) =
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Consequently,
A, (1) =1, A,(n)=nt, n>2,

and

Ay(0)=1, Ay(n)=t""tnl, n>1.

The solution of the undeformed even moment problem
o0
il r?" o, (dr) = n!
0
is well known (see, e.g., [2]) and the measure ., is given by

0,(dr) =27 e_TQ)\(dr).

From Proposition 2.2 we infer that the Stieltjes moment problem associated
with the moment sequence {A.(n)}° is determinate. Moreover, since o~ does
not have an atom at zero, &, also does not. This in turn means that the Bargmann
measure 3., exists if and only if ¢ > 1.

By Theorem B2 we can now see that o, is given by

0, (dr) = (1 - > So(dr) + tz r exp (—fA(dr)),

which can be checked directly for n > 1:
00 2 7.2
er"Q% dr) er"—r exp ( " >)\(dr)
0
o0
=1""1 [25*" s exp(—s°)A(ds) = t" "' nl
0

Thus we have

COROLLARY 5.1. The Bargmann measure (3, (dz) exists for t > 1 and is of
the form

By, (dz) = A(;f) ((1 _ >5o(dr) tzr exp ( r:))\(dr)) forz =réi
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6. KESTEN MEASURE

From [[7] and [B] we know that in the case of ¢-transformed free convolution
the central measure x¢ has the following Cauchy transform:

Gf'it (2) =

Consequently,

and
Ae,(0) =1, Ay (n)=t""1 n>1

So we look for the measure &, that solves the determinate Stieltjes moment prob-
lem:

Ay () = Ojjf (dr).

Using the moment function

z
1—-tz

Mgnt(z) = Z Aﬁt(n)zn = ]' +
n=0

and the connection

1 1 1 z2—-t+1 11 1 1
G = - M, -l="——=(1--) -+
é”t(z) PR <z> z z—1 < t) z+tz—t

we may see that

€ = <1 _ 1) So(dr) + %&(dr),

which is a probability measure if and only if £ > 1. For ¢ < 1 the corresponding
sequence {A¢, (0)}5% is not a sequence of moments because it is not positive
definite:

‘Afﬁt (0)  Ag,, (1) ’
Ag,, (1) Ag,, (2)

COROLLARY 6.1. In the t-transformed free case, that is, for the Kesten mea-
sure kg, the Bargmann representation exists if and only if t > 1. In this case the

'11

1 t’:t—1<0.
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measure is of the form

Br.(dz) = A(;f)) <<1 - 1) So(dr) + 1%((17«)) forz=r¢é'".
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