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Abstract. In this paper, Lukacs type characterization of Marchenko–
Pastur distribution in free probability is studied. We prove that for
free X and Y, if conditional moments of order 1 and −1 of
(X+ Y)−1/2X(X+ Y)−1/2 given X+ Y are constant, then X and Y fol-
low the Marchenko–Pastur distribution.
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1. INTRODUCTION

Since the publication of the paper [13] free probability theory has been devel-
oped in many various directions. It turns out that many classical results for indepen-
dent random variables such as, for example, the Central Limit Theorem have their
free analogues. One of the deepest relations between classical and free probability
is constituted by so-called Bercovici–Pata bijections which give bijection between
infinitely divisible distributions with respect to free and classical convolution.

In this paper we are interested in characterization problems in free probabil-
ity. This seems to be another field which gives some interesting connections be-
tween classical and free probability. Our result is a new example of known, but not
completely well understood phenomena of analogies between characterizations in
classical and free probability. A basic example of such analogy is Bernstein’s theo-
rem which characterizes the Gaussian distribution by independence of X + Y and
X − Y for independent X and Y . In [7] it is proved that a similar result holds for
the Wigner semicircle law when independence is replaced by freeness assumption.

The main result of this paper is closely related to the Lukacs theorem which
provides a characterization of the gamma distribution by independence of V =
X + Y and U = X/(X + Y ) for independent X and Y (see [6]). It is known
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that the assumption of independence of U and V can be replaced by a weaker
assumption, i.e. the assumption of constancy of regressions E(U |V ) and E(U2|V )
(see [5]). In [15] it is proved that constancy of regressions E(U |V ) and E(U−1|V )
also characterizes the gamma distribution.

The Lukacs property was also studied in a context of free probability in [1]
where the Laha–Lukacs regression of free Meixner family is considered (see also
[3] and [4]). Theorem 3.1 from [1] contains, as a special case, a free analogue of the
Lukacs regressions in the case of constancy of regressions of U and U2 given by V.
It turns out that such conditions characterize the Marchenko–Pastur (free Poisson)
distribution. The proof that the Marchenko–Pastur distributed, free X and Y have
the property that V = X+ Y and U = (X+Y)−1/2X(X+Y)−1/2 are free can be
found in [10]. The aim of this paper is to complete the picture of the analogy of
the Lukacs independence property in classical and free probability. We will prove
a free analogue of the result from [15]. The proof of the main result relies mainly
on the technique developed in our previous papers [11], [9].

The paper is organized as follows: in Section 2 we briefly introduce basic
notions of free probability and known facts which are needed to prove the main
result. In Section 3 we state and prove the main result of the paper.

2. PRELIMINARIES

In this section we give a collection of facts which we need in this paper. For
a more detailed introduction we refer to our previous papers [11], [9]. A compre-
hensive introduction to free probability can be found in [8] or [14].

By a non-commutative probability space we understand a pair (A, φ), where
A is a unital algebra, and φ is a faithful, normal, tracial state; elements of A are
called random variables.

We say that probability measure µ is the distribution of a self-adjoint random
variable X ∈ A if φ (Xn) =

∫
R tndµ(t) for n = 1, 2, . . .

Let χ = {B1, B2, . . .} be a partition of the set of numbers {1, . . . , k}. The
partition χ is a crossing partition if there exist distinct blocks Br, Bs ∈ χ and
numbers i1, i2 ∈ Br, j1, j2 ∈ Bs such that i1 < j1 < i2 < j2. Otherwise, χ is
called a non-crossing partition. The set of all non-crossing partitions of {1, . . . , k}
is denoted by NC(k).

For any k = 1, 2, . . ., (joint) cumulants of order k of non-commutative random
variables X1, . . . ,Xn are defined recursively as k-linear mapsRk : A → C by the
equations

φ(Y1 · . . . · Ym) =
∑

χ∈NC(m)

∏
B∈χ
R|B|(Yi, i ∈ B)

which are satisfied for any Yi∈{X1, . . . ,Xn}, i=1, . . . ,m, and any m = 1, 2, . . .,
with |B| denoting the number of elements in the block B.
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The notion of freeness can be characterized in terms of behaviour of cumulants
in the following way. Consider unital subalgebras (Ai)i∈I of an algebraA in a non-
commutative probability space (A, φ). Subalgebras (Ai)i∈I are freely indepen-
dent iff for any n = 2, 3, . . . and for any Xj ∈ Ai(j) with i(j) ∈ I , j = 1, . . . , n,
any n-cumulant

Rn(X1, . . . ,Xn) = 0

if there exists a pair k, l ∈ {1, . . . , n} such that i(k) ̸= i(l).
In the sequel we will use the following formula from [2] which connects cu-

mulants and moments for non-commutative random variables:
(2.1)

φ(X1 . . .Xn)=
n∑

k=1

∑
1<i2<...<ik¬n

Rk(X1,Xi2 , . . . ,Xik)
k∏

j=1

φ(Xij+1 . . .Xij+1−1)

with i1 = 1 and ik+1 = n+ 1 (empty products are equal to one).
Non-commutative conditional expectation is well defined in so-called W ∗-

probability spaces, i.e. non-commutative probability spaces where the algebra A
is a von Neumann algebra. Non-commutative conditional expectation has many
properties analogous to those of classical conditional expectation. For more details
one can consult, e.g., [12]. Here we state two of them which we need in the sequel.

LEMMA 2.1. Consider a W ∗-probability space (A, φ).
• If X ∈ A and Y ∈ B, where B is a von Neumann subalgebra of A, then

(2.2) φ(XY) = φ
(
φ(X|B)Y

)
.

• If X, Z ∈ A are free, then

(2.3) φ(X|Z) = φ(X) I.

Now we give some basic analytical tools used to deal with non-commutative
random variables and their distributions.

For a non-commutative random variable X its r-transform is defined as

rX(z) =
∞∑
n=0

Rn+1(X) zn.

In [13] it is proved that r-transform of a random variable with compact support is
analytic in a neighbourhood of zero. From properties of cumulants it is immediate
that for X and Y which are freely independent

(2.4) rX+Y = rX + rY.

If X has the distribution µ, then we will often write rµ instead of rX. The Cauchy
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transform of a probability measure ν is defined as

Gν(z) =
∫
R

ν(dx)

z − x
, ℑ(z) > 0.

Cauchy transforms and r-transforms are related by

(2.5) Gν

(
rν(z) +

1

z

)
= z.

Finally, we define a moment generating function MX of a random variable X by

MX(z) =
∞∑
n=0

φ(Xn) zn.

It is easy to see that

MX(z) =
1

z
GX

(
1

z

)
.(2.6)

We will need the following lemma proved in [9].

LEMMA 2.2. Let V be a compactly supported, invertible non-commutative
random variable. Define Cn = Rn(V−1,V, . . . ,V), and C(z) =

∑∞
i=1Ciz

i−1.
Then, for z in a neighbourhood of zero, we have

(2.7) C(z) =
z + C1

1 + zr(z)
,

where r(z) is the R-transform of V. In particular,

(2.8) C2 = 1− C1R1(V), Cn = −
n−1∑
i=1

CiRn−i(V), n  2.

The main result of this paper is a characterization of the Marchenko–Pastur
distribution. A random variable X is said to be Marchenko–Pastur (or free Poisson)
distributed if it has the distribution ν = ν(λ, α), λ, α > 0, defined by the formula

(2.9) ν = max{0, 1− λ} δ0 + λν̃,

where the measure ν̃ is supported on the interval
(
α(1−

√
λ)2, α(1 +

√
λ)2

)
and

has the density (with respect to the Lebesgue measure)

ν̃(dx) =
1

2παx

√
4λα2 −

(
x− α(1 + λ)

)2
dx.

The parameters λ and α are called the rate and the jump size, respectively.
It is easy to see that if the distribution of X is free Poisson ν(λ, α), thenRn(X)

= αnλ, n = 1, 2, . . . Therefore, its r-transform has the form

rν(λ,α)(z) =
λα

1− αz
.
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3. MAIN RESULT

In this section we study a regressive characterization of the Marchenko–Pastur
distribution which is a free counterpart of the characterization of the gamma distri-
bution proved in [15].

THEOREM 3.1. Let (A, φ) be a W ∗-probability space, let X and Y be non-
commutative random variables in (A, φ). Assume that X and Y are free, X is
strictly positive, Y is positive, and there exist real numbers c and d such that

(3.1) φ (X|X+ Y) = c(X+ Y)

and

(3.2) φ(X−1|X+ Y) = d(X+ Y)−1.

Then X and Y have the free Poisson distributions ν(cθ, α) and ν
(
(1 − c)θ, α

)
,

respectively, where θ = (d− 1)/(cd− 1), cθ > 1, and α = (cd− 1)/
(
C1(1− c)

)
for some C1 > 0.

REMARK 3.1. Note that since (X+Y)1/2 and (X+Y)−1/2 belong to the von
Neumann algebra generated by X + Y and I, it follows that by the properties of
conditional expectation the above statement can easily be rewritten to have con-
stant right-hand sides of equations (3.1) and (3.2). Therefore, we call the above
result a constant regression characterization.

P r o o f o f T h e o r e m 3.1. Multiplying (3.1) and (3.2) by (X + Y)n and
applying the state to the both sides of the equations, we obtain for n  0

φ
(
X(X+ Y)n

)
= c φ

(
(X+ Y)n+1

)
,(3.3)

φ
(
X−1 (X+ Y)n

)
= dφ

(
(X+ Y)n−1

)
.(3.4)

Let us define three sequences (αn)n−1, (βn)n0 and (δn)n0 as follows:

αn = φ
(
(X+ Y)n

)
,

βn = φ
(
X (X+ Y)n

)
,

δn = φ
(
X−1 (X+ Y)n

)
.

We can rewrite (3.3) and (3.4) as

βn = c αn+1,(3.5)

δn = dαn−1.(3.6)
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Multiplying both sides of the above equations by zn and summing over n=0, 1, . . .
we get

B(z) = c
1

z

(
A(z)− 1

)
,(3.7)

D(z) = d z

(
A(z) +

α−1
z

)
,(3.8)

where

A(z) =
∞∑
n=0

αnz
n, B(z) =

∞∑
n=0

βnz
n, D(z) =

∞∑
n=0

δnz
n.

Using formula (2.1) and freeness of X and Y, for a sequence βn we get

βn = R1αn

+R2 (αn−1 + αn−2α1 + αn−3α2 + . . .+ α1αn−2 + αn−1)

+R3 (αn−2 + αn−3α1 + αn−4α1α1 + . . .)

+ . . .+Rn+1,

whereRn = Rn(X). This gives for n  0

βn =
n+1∑
k=1

Rk

∑
i1+...+ik=n+1−k

αi1 . . . αik .

Using the above equations we get

B(z) =
∞∑
n=0

znβn =
∞∑
n=0

zn
n+1∑
k=1

Rk

∑
i1+...+ik=n+1−k

αi1 . . . αik

=
∞∑
k=1

zk−1Rk

∞∑
n=k−1

∑
i1+...+ik=n+1−k

αi1z
i1 . . . αikz

ik

=
∞∑
k=1

zk−1Rk

∞∑
m=0

∑
i1+...+ik=m

αi1z
i1 . . . αikz

ik =
∞∑
k=1

zk−1Ak(z)Rk.

This implies that

B(z) = A(z)rX
(
zA(z)

)
,(3.9)

where rX(z) =
∑∞

n=0Rn+1z
n. Note that rX is the r-transform of X.

Next we proceed similarly with the sequence (δn)n and we obtain

δn = C1αn

+ C2 (αn−1 + αn−2α1 + αn−3α2 + . . .+ α1αn−2 + αn−1)

+ C3 (αn−2 + αn−3α1 + αn−4α1α1 + . . .)

+ . . .+ Cn+1,
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where Cn = Rn

(
X−1,X, . . . ,X︸ ︷︷ ︸

n−1

)
for n  0. Thus for n  0 we have

δn =
n+1∑
k=1

Ck

∑
i1+...+ik=n+1−k

αi1 . . . αik .

The above equation gives us

D(z) =
∞∑
n=0

znδn =
∞∑
n=0

zn
n+1∑
k=1

Ck

∑
i1+...+ik=n+1−k

αi1 . . . αik

=
∞∑
k=1

zk−1Ck

∞∑
n=k−1

∑
i1+...+ik=n+1−k

αi1z
i1 . . . αikz

ik

=
∞∑
k=1

zk−1Ck

∞∑
m=0

∑
i1+...+ik=m

αi1z
i1 . . . αikz

ik =
∞∑
k=1

zk−1Ak(z)Ck.

This implies that

D(z) = A(z)C
(
zA(z)

)
,

where C(z) =
∑∞

n=0Cn+1z
n. Using Lemma 2.2 we get

D(z) = A(z)
zA(z) + C1

1 + zA(z)rX
(
zA(z)

) .(3.10)

Using equations (3.9) and (3.10), we can rewrite (3.7) and (3.8) as

A(z)rX
(
zA(z)

)
= c

1

z

(
A(z)− 1

)
,

A(z)
zA(z) + C1

1 + zA(z)rX
(
zA(z)

) = d z

(
A(z) +

α−1
z

)
.

Let us define an auxiliary function h(z) = zA(z)rX
(
zA(z)

)
. Then we can rewrite

the above equations as

h(z) = c
(
A(z)− 1

)
,(3.11)

A(z)
zA(z) + C1

1 + h(z)
= d z

(
A(z) +

α−1
z

)
.(3.12)

Since h(0) = 0, in some neighbourhood of zero we can multiply (3.12) by 1 + h.
Taking into account that equation (3.2) implies C1 = dα−1, we get

zA2(z) +A(z)C1 − zA(z)d
(
1 + h(z)

)
− C1

(
1 + h(z)

)
= 0.
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In the above equation we can replace one function A in the first and second terms
by (h+ c)/c, which follows from (3.11). After simple transformations we obtain

h(z)

zA(z)
=

c(d− 1)

C1(1− c)− zA(z)(cd− 1)
.(3.13)

Recall that h(z) = zA(z)rX
(
zA(z)

)
. Since r is analytic in a neighbourhood of

zero and limz→0 zA(z) = 0, we get

rX(z) =
c(d− 1)

C1(1− c)− z(cd− 1)
.(3.14)

From equation (3.1) and the assumption that X and Y are positive we get

c = φ(X)/φ (X+ Y) ∈ (0, 1).

Similarly, freeness of X and Y gives us

d = φ
(
X−1(X+ Y)

)
= 1 + φ(X−1)φ(Y) > 1.

The Cauchy–Schwarz inequality implies cd > 1. This means that X has free Pois-
son distribution with parameters

λ = cθ =
c(d− 1)

cd− 1
and α =

cd− 1

C1(1− c)
.

Since c ∈ (0, 1) and cd > 1, we have λ > 1
Next we shall determine the distribution of Y. Substituting in equation (3.11)

h from (3.13), we get

A2(z)z(cd− 1) +A(z)
(
zd(1− c)− C1(1− c)

)
+ C1(1− c) = 0.

Since A is the moment transform of X + Y, we can use the connection between
moment and Cauchy transforms, and after substituting z := 1/z we obtain

G2
X+Y(z)z(cd− 1)+GX+Y(z)d(1− c)−GX+Y(z)zC1(1− c) + C1(1− c)=0.

Now, using equation (2.5) we get the r-transform of X+ Y in the form

rX+Y(z) =
d− 1

C1(1− c)− (cd− 1)z
.

Equation (2.4) gives

rY(z) =
(1− c)(d− 1)

C1(1− c)− (cd− 1)z
.

This implies that Y has the free Poisson distribution with parameters

λ =
(1− c)(d− 1)

cd− 1
= (1− c)θ and α =

cd− 1

C1(1− c)
,

which completes the proof. �
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