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1. INTRODUCTION

James Pickands III (see Pickands [18] and [19]) gave a smart and sophisticated
way of finding the asymptotic behavior of the probability

IP
(
sup
t∈T

X(t) > u
)

as u→∞, where X is a Gaussian process. More precisely, for t ∈ [0, p] let X(t)
be a continuous stationary Gaussian process with expected value IEX(t) = 0 and
covariance

r(t) = IE
(
X(t+ s)X(s)

)
= 1− |t|α + o(|t|α),

where 0 < α ¬ 2. Furthermore, we assume that r(t) < 1 for all t > 0. Then

IP
(
sup
t∈[0,p]

X(t) > u
)
= Hα p u

2/αΨ(u)
(
1 + o(1)

)
,
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where Hα is a positive and finite constant (Pickands constant), and Ψ(u) is the
tail of standard normal distribution. The classical definition of Pickands constant
is given by the limit

Hα = lim
T→∞

1

T
IE exp

(
sup

t∈[0,T ]
Zα(t)

)
,

where

(1.1) Zα(t) =
√
2Bα(t)− |t|α,

and Bα is a fractional Brownian motion with Hurst parameter α/2 that is a cen-
tered Gaussian process with the covariance IE

(
Bα(t)Bα(s)

)
= 1

2(|t|
α + |s|α −

|t− s|α), where t, s ∈ R and 0 < α ¬ 2.
First we prove the Pickands theorem following Piterbarg’s proof and ideas

which are based on the Borell inequality and Slepian lemma. Lemma 2.5 below is
slightly different than Lemma D.2 in Piterbarg [20], that is, the constant before the
exponent depends on T .

The original Pickands’ proof is rather complicated and is mixed with upcross-
ing probabilities for Gaussian stationary processes. In his paper this theorem is
a lemma (see Pickands [19]). Moreover, Qualls and Watanabe [21] proved the
Pickands theorem in a more general setting, that is, for a regularly varying co-
variance function. The proof of Pickands’ theorem uses the elementary Bonferroni
inequality, and therefore this idea of proof is called the double sum method; how-
ever, in the literature the Bonferroni inequality appears in a stronger version. In
this paper we present a sharper version of the Bonferroni inequality which has an
impact on some lower bounds of Pickands constant (see Dębicki et al. [12] and
Shao [22]). Finally, we review equivalent definitions, simulations and bounds of
Pickands constant.

2. LEMMAS AND AUXILIARY THEOREMS

In the paper we will consider real-valued stochastic processes and fields. Let
us write

Ψ(u) = 1− Φ(u) =
1√
2π

∞∫
u

e−s
2/2 ds,

and notice that

(2.1) Ψ(u) =
1√
2πu

e−u
2/2

(
1 + o(1)

)
as u→∞.
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LEMMA 2.1. Let (X1, X2) be a Gaussian vector with values in IR2 with
IEX1 = m1, IEX2 = m2, VarX1 = σ2

1, VarX2 = σ2
2 and ρ = Cov(X1, X2).

Then
X2 = aX1 + Z,

where
a =

ρ

σ2
1

,

and Z is independent of X1 and is normally distributed with mean m2 − αm1 and
variance

σ2
2 −

ρ2

σ2
1

.

The next lemma can easily be proved by mathematical induction.

LEMMA 2.2 (Bonferroni’s inequality [4]). Let (Ω,S, IP) be a probability space,
and A1, A2, . . . , An ∈ S for n  2. Then

IP
( n∪
i=1

Ai

)


n∑
i=1

IP(Ai)−
∑

1¬i<j¬n
IP(Ai ∩Aj).

Using the above Bonferroni inequality, we obtain a sharper lower bound of
Pickands constant than in Dębicki et al. [12] (twice bigger). We skip the proof
which goes the same way as in Dębicki et al. [12].

THEOREM 2.1. We have

Hα 
α

22+2/αΓ
(
1
α

) .
The following theorem plays a crucial role in extremes of Gaussian processes.

THEOREM 2.2 (Slepian’s inequality [23]). Let Gaussian fields X(t) and Y (t)
be separable, where t ∈ T, and T is an arbitrary parameter set. Moreover, we as-
sume that the covariance functions rX(t, s)=IE

(
X(t)−IEX(t)

)(
X(s)−IEX(s)

)
and rY (t, s) = IE

(
Y (t)− IEY (t)

)(
Y (s)− IEY (s)

)
satisfy

rX(t, t) = rY (t, t),

rX(t, s) ¬ rY (t, s)

for all t, s ∈ T, and their expected values fulfill

IEX(t) = IEY (t)

for all t ∈ T. Then for any u

IP(sup
t∈T

Xt < u) ¬ IP(sup
t∈T

Yt < u).
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The most important tool in the theory of Gaussian processes (see Borell [5]
or, e.g., Adler and Taylor [1]) is the following inequality.

THEOREM 2.3 (Borell’s inequality). Let X(t) be a centered a.s. bounded
Gaussian field, where t ∈ T, and T is an arbitrary parameter set. Then

IE sup
t∈T

X(t) = m <∞, sup
t∈T

VarX(t) = σ2 <∞,

and for all w  m

IP
(
sup
t∈T

X(t) > w
)
¬ exp

(
−(w −m)2

2σ2

)
.

In the rest of the paper we will tacitly assume that 0 < α ¬ 2. The next lemma
can be found in Piterbarg [20]. Following ideas from Piterbarg [20], we provide its
detailed proof.

LEMMA 2.3. Let χ(t) be a continuous Gaussian field, where t = (t1, t2) ∈
IR2 with IEχ(t) = −|t1|α − |t2|α and Cov

(
χ(t), χ(s)

)
= |t1|α + |t2|α + |s1|α +

|s2|α − |t1 − s1|α − |t2 − s2|α, s = (s1, s2), and let X(t) be a continuous homo-
geneous Gaussian field, where t = (t1, t2) ∈ IR2 with expected value IEX(t) = 0
and covariance

r(t) = IE
(
X(t+ s)X(s)

)
= 1− |t1|α − |t2|α + o(|t1|α + |t2|α).

Then for any compact set T ⊂ IR2

IP
(

sup
t∈u−2/αT

X(t) > u
)
= Ψ(u)H(T)

(
1 + o(1)

)
as u→∞, where

H(T) = IE exp
(
sup
t∈T

χ(t)
)
<∞ .

REMARK 2.1. The continuity of the field χ(t) follows from the Sudakov, Dud-
ley and Fernique theorem (see, e.g., Piterbarg [20]).

P r o o f. Let u > 0; then

IP
(

sup
t∈u−2/αT

X(t) > u
)
=

1√
2π

∞∫
−∞

e−v
2/2 IP

(
sup

t∈u−2/αT

X(t)>u|X(0)=v
)
dv.

Substituting v = u − w/u, we obtain the right-hand side of this equality in the
form

1√
2πu

e−u
2/2

∞∫
−∞

ew−w
2/(2u2) IP

(
sup

t∈u−2/αT

X(t) > u|X(0) = u− w/u
)
dw.
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Let us put
χu(t) = u

(
X(u−2/αt)− u

)
+ w.

Thus, let us rewrite the last integral (without the function before the integral, which
is Ψ(u) as u→∞) as

(2.2)
∞∫
−∞

ew−w
2/(2u2) IP

(
sup
t∈T

χu(t) > w|X(0) = u− w/u
)
dw.

Next, compute the expected value and variance of the distribution χu(t) under
the condition X(0) = u − w/u (this distribution is Gaussian by Lemma 2.1). By
Lemma 2.1, we get

IE
(
χu(t)|X(0)

)
= uIE

(
X(u−2/αt)|X(0)

)
− u2 + w = uaX(0)− u2 + w,

where a = r(u−2/αt). Hence

ex(u, t) := IE
(
χu(t)|X(0) = u− w/u

)
(2.3)

= −u2[1− r(u−2/αt)] + w[1− r(u−2/αt)],

which, by the assumption on the covariance r, tends to −|t1|α − |t2|α as u→∞.
Now, let us calculate the variance

Var
(
χu(t)|X(0) = u− w/u

)
= u2Var

(
X(u−2/αt)|X(0) = u− w/u

)
(2.4)

= u2Var (Z) = u2
(
1− r2(u−2/αt)

)
,

where Z is a suitable random variable from Lemma 2.1. By the assumption on the
covariance r, the variance in (2.4) tends to 2(|t1|α + |t2|α) as u→∞. Similarly
we compute

Var
(
χu(t)− χu(s)|X(0) = u− w/u

)
= u2Var

(
X(u−2/αt)−X(u−2/αs)|X(0) = u− w/u

)
,

which, by Lemma 2.1, equals

u2
[
Var

(
X(u−2/αt)−X(u−2/αs)

)
− [r(u−2/αt)− r(u−2/αs)]2

]
.

Thus we get

Var
(
χu(t)− χu(s)|X(0) = u− w/u

)
= u2

[
2
[
1− r

(
u−2/α(t− s)

)]
− [r(u−2/αt)− r(u−2/αs)]2

]
,
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and one can estimate

Var
(
χu(t)− χu(s)|X(0) = u− w/u

)
¬ 2u2

[
1− r

(
u−2/α(t− s)

)]
= 2(|t1 − s1|α + |t2 − s2|α) + u2o(u−2[|t1 − s1|α + |t2 − s2|α])
= (|t1 − s1|α + |t2 − s2|α)

(
2 + o(1)

)
,

where o(1)→ 0 if u→∞ or |t1 − s1| → 0 and |t2 − s2| → 0. Hence

(2.5) Var
(
χu(t)− χu(s)|X(0) = u− w/u

)
¬ 3(|t1 − s1|α + |t2 − s2|α)

for u sufficiently large and t, s belonging to any bounded set of IR2. One can also
show that the covariance of χu(t) and χu(s) under the condition X(0) = u − w

u
tends to |t1|α + |t2|α + |s1|α + |s2|α − |t1 − s1|α − |t2 − s2|α. Thus the finite-
dimensional distributions of the field χu(t) under the condition X(0) = u − w

u
converge to the finite-dimensional distributions of χ(t), and, by (2.5), the distribu-
tion of the field χu(t) under the condition X(0) = u − w

u is tight, which implies
that the field χu(t) under the condition X(0) = u − w

u converges weakly to χ(t)
as u→∞.

By weak convergence,

(2.6) IP
(
sup
t∈T

χu(t) > w|X(0) = u− w/u
)
→ IP

(
sup
t∈T

χ(t) > w
)

as u→∞. Since the process χu(t) under the condition X(0) = u− w
u is contin-

uous on T, we infer by the Borell theorem (Theorem 2.3) that

IE
(
sup
t∈T

(
χu(t)− ex(u, t)

)∣∣X(0) = u− w/u
)
¬ m <∞,

sup
t∈T

Var
(
χu(t)|X(0) = u− w/u

)
¬ σ2 <∞,

where, by (2.3), (2.4) and (2.6), m and σ2 depend only on α, and

(2.7)

IP
(
sup
t∈T

(
χu(t)− ex(u, t)

)
> w|X(0) = u− w/u

)
¬ exp

(
−(w −m)2

2σ2

)
for all w  m for sufficiently large u. Since

IP
(
sup
t∈T

(
χu(t)−m

)
> w

∣∣X(0) = u− w/u
)

¬ IP
(
sup
t∈T

(
χu(t)− ex(u, t)

)
> w

∣∣X(0) = u− w/u
)
,
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by (2.7) we have

(2.8) IP
(
sup
t∈T

χu(t) > w|X(0) = u− w/u
)
¬ exp

(
−(w − 2m)2

2σ2

)
.

Then, using (2.8) and the dominated convergence theorem, we get

IE
[
exp

(
sup
t∈T

χu(t)
)∣∣X(0) = u− w/u

]
→ IE

[
exp

(
sup
t∈T

χ(t)
)]

as u→∞ and IE
[
exp

(
supt∈T χ(t)

)]
<∞. Thus, taking into account (2.2), we

get the assertion. �

COROLLARY 2.1. If T = [a, b]× [c, d], then

H(T) ¬ ⌈b− a⌉ ⌈d− c⌉H([0, 1]× [0, 1]),

where ⌈x⌉ is the smallest integer greater than or equal to x.

P r o o f. We augment our rectangle to the rectangle with sides of length ⌈b−a⌉
and ⌈d− c⌉. This rectangle can be divided into ⌈b− a⌉ ⌈d− c⌉ unit squares. By
the homogeneity of the random field X we get the assertion. �

Reducing one dimension in the previous lemma, we get the following

LEMMA 2.4. Let Zα(t) be the process defined in (1.1), and X(t) be a contin-
uous centered Gaussian process with covariance

r(t) = IE
(
X(t+ s)X(s)

)
= 1− |t|α + o(|t|α).

Then for any T > 0

IP
(

sup
t∈ [0, u−2/αT ]

X(t) > u
)
= Ψ(u)H(T )

(
1 + o(1)

)
as u→∞, where

(2.9) H(T ) = IE exp
(

sup
t∈[0, T ]

Zα(t)
)
<∞.

P r o o f. The proof goes the same way as the proof of Lemma 2.3. �

COROLLARY 2.2. For T > 0 we have

H(T ) ¬ ⌈T ⌉H([0, 1]).

The next lemma is different than Lemma D.2 in Piterbarg [20], that is, the
constant before the exponent depends on T .
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LEMMA 2.5. Let 0 < ϵ < 1/2 and 0 < ϵα < 1/2, and 1 − 2|t|α ¬ r(t) ¬
1 − 1

2 |t|
α for all t ∈ [0, ϵ], where X(t) is defined in Lemma 2.4. Then for T > 0,

t0 > T and u sufficiently large

IP
(

sup
t∈ [0, u−2/αT ]

X(t)>u, sup
t∈ [u−2/αt0, u−2/α(t0+T )]

X(t)>u
)
¬C(α, t0, T )Ψ(u),

where

C(α, t0, T ) = 4⌈DT ⌉ ⌈D (t0 + T )⌉ exp
(
− 1

8(t0 − T )α
)
H([0, 1]× [0, 1]),

and D = (2
√
2/
√
7)2/α161/α.

REMARK 2.2. Let us notice that the assumption r(t) = 1 − |t|α + o(|t|α)
implies that there exists ϵ > 0 such that 1 − 2|t|α ¬ r(t) ¬ 1 − 1

2 |t|
α for all

t ∈ [0, ϵ].

P r o o f. Let us consider a Gaussian field Y (t, s) = X(t) +X(s). Then

(2.10) IP
(
sup
t∈A

X(t) > u, sup
t∈B

X(t) > u
)
¬ IP

(
sup

(t,s)∈A×B
Y (t, s) > 2u

)
,

where A = [0, u−2/αT ] and B = [u−2/αt0, u
−2/α(t0 + T )]. Let us notice that

(2.11) σ2(t, s) = VarY (t, s) = 2 + 2r(t− s) = 4− 2
(
1− r(t− s)

)
.

By the assumptions of the lemma, for |t− s| ¬ ϵ we have

1

2
|t− s|α ¬ 1− r(t− s) ¬ 2|t− s|α,

which gives
4− 4|t− s|α ¬ σ2(t, s) ¬ 4− |t− s|α.

Thus, for sufficiently large u we get

(2.12) inf
(t,s)∈(A×B)

σ2(t, s)  4− 4 sup
(t,s)∈(A×B)

|t− s|α  4− 4ϵα > 2,

where in the last inequality we used the assumption of the lemma. Similarly for
sufficiently large u we obtain

sup
(t,s)∈(A×B)

σ2(t, s) ¬ 4− inf
(t,s)∈(A×B)

|t− s|α(2.13)

¬ 4− |u−2/α(t0 − T )|α = 4− u−2(t0 − T )α.

Let us put

Y ∗(t, s) =
Y (t, s)

σ(t, s)
,
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where σ(t, s) is defined in (2.11). Let us estimate the right-hand side of (2.10).
Thus, for sufficiently large u we have

(2.14) IP
(

sup
(t,s)∈A×B

Y (t, s) > 2u
)
= IP

(
∃(t, s) ∈ A×B :

Y (t, s)

σ(t, s)
>

2u

σ(t, s)

)
¬ IP

(
sup

(t,s)∈A×B
Y ∗(t, s) >

2u√
4− u−2(t0 − T )α

)
,

where in the last line we used (2.13). Let us compute the following expectation for
(t, s) ∈ A×B and (t1, s1) ∈ A×B. We have

IE[Y ∗(t, s)−Y ∗(t1, s1)]2 = IE

[
Y (t, s)−Y (t1, s1)

σ(t, s)
+
Y (t1, s1)

σ(t, s)
−Y (t1, s1)

σ(t1, s1)

]2
¬ 2IE

[
Y (t, s)− Y (t1, s1)

σ(t, s)

]2
+2

[
1

σ(t, s)
− 1

σ(t1, s1)

]2
IEY 2(t1, s1) =: I1,

where in the last inequality we used the relation (a+ b)2 ¬ 2a2 + 2b2. Continuing
the computation, we get

I1 ¬
2

inf(t,s)∈A×B σ2(t, s)
IE [Y (t, s)− Y (t1, s1)]

2

+ 2

[
1

σ(t, s)
− 1

σ(t1, s1)

]2
σ2(t1, s1)

=
2

inf(t,s)∈A×B σ2(t, s)
IE [Y (t, s)− Y (t1, s1)]

2 + 2

[
σ(t1, s1)− σ(t, s)

σ(t, s)

]2
¬ 2

inf(t,s)∈A×B σ2(t, s)

[
IE [Y (t, s)−Y (t1, s1)]

2+[σ(t1, s1)−σ(t, s)]2
]
=: I2.

Using (2.12) for sufficiently large u, we get

I2 ¬ IE [Y (t, s)− Y (t1, s1)]
2 + [σ(t1, s1)− σ(t, s)]2

= IE[X(t)−X(t1) +X(s)−X(s1)]
2 + [σ(t1, s1)− σ(t, s)]2

¬ 2IE[X(t)−X(t1)]
2 + 2IE[X(s)−X(s1)]

2 + [σ(t1, s1)− σ(t, s)]2 =: I3,

where in the last inequality we used again the relation (a+ b)2 ¬ 2a2 + 2b2. Con-
tinuing the reasoning, we see that

I3 = 2IE[X(t)−X(t1)]
2 + 2IE[X(s)−X(s1)]

2

+ σ2(t1, s1)− 2σ(t1, s1)σ(t, s) + σ2(t, s)

= 2IE[X(t)−X(t1)]
2 + 2IE[X(s)−X(s1)]

2

+ IEY 2(t1, s1)− 2
√
IEY 2(t1, s1)IEY 2(t, s) + IEY 2(t, s) =: I4.
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By Schwarz’s inequality we obtain

I4 ¬ 2IE[X(t)−X(t1)]
2 + 2IE[X(s)−X(s1)]

2

+ IEY 2(t1, s1)− 2IE[Y (t1, s1)Y (t, s)] + IEY 2(t, s)

= 2IE[X(t)−X(t1)]
2 + 2IE[X(s)−X(s1)]

2 + IE[Y (t, s)− Y (t1, s1)]
2

= 2IE[X(t)−X(t1)]
2 + 2IE[X(s)−X(s1)]

2

+ IE[X(t)−X(t1) +X(s)−X(s1)]
2 =: I5.

Using the inequality (a+ b)2 ¬ 2a2 + 2b2, we get

(2.15) I5 ¬ 4IE[X(t)−X(t1)]
2 + 4IE[X(s)−X(s1)]

2.

For |t− t1| ¬ ϵ we have

(2.16) IE[X(t)−X(t1)]
2 = 2− 2r(|t− t1|) ¬ 4|t− t1|α,

where in the last inequality we used the assumption of the lemma. Thus, by (2.15)
and (2.16), we have for (t, s) ∈ A × B and (t1, s1) ∈ A × B and u sufficiently
large

(2.17) IE[Y ∗(t, s)− Y ∗(t1, s1)]
2 ¬ 16[|t− t1|α + |s− s1|α].

Since IE[Y ∗(t, s)]2 = 1, by (2.17) we get

(2.18) IE[Y ∗(t, s)Y ∗(t1, s1)]  1− 8|t− t1|α − 8|s− s1|α.

Let us define the random field

(2.19) Z(t, s) =
1√
2

(
η1(t) + η2(s)

)
,

where η1 and η2 are independent Gaussian stationary processes with IEη1(t) =
IEη2(t) = 0 and IE[ηi(t)ηi(s)] = exp(−32|t− s|α) for i = 1, 2. Hence

IE[Z(t, s)Z(t1, s1)] =
1

2

(
IE[η1(t)η1(t1)] + IE[η2(s)η2(s1)]

)
(2.20)

=
1

2
[exp(−32|t− t1|α) + exp(−32|s− s1|α)]

¬ 1− 8|t− t1|α − 8|s− s1|α

for sufficiently small |t− t1| and |s− s1|, by the fact that e−x ¬ 1− 1
2x for suffi-

ciently small and positive x. Thus, by (2.18) and (2.20) we obtain

(2.21) IE[Y ∗(t, s)Y ∗(t1, s1)]  IE[Z(t, s)Z(t1, s1)]
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for sufficiently small |t − t1| and |s − s1|. Hence, by the Slepian inequality, we
have for large u

(2.22) IP
(

sup
(t,s)∈A×B

Y ∗(t, s) > u∗
)
¬ IP

(
sup

(t,s)∈A×B
Z(t, s) > u∗

)
,

where
u∗ =

2u√
4− u−2(t0 − T )α

(see (2.14)). Let us put

η(t, s) = Z

(
t

161/α
,

s

161/α

)
;

then

(2.23) IP
(

sup
(t,s)∈A×B

Z(t, s) > u∗
)
= IP

(
sup

(t,s)∈A′×B′
η(t, s) > u∗

)
,

where A′ = [0, u−2/αT161/α] and B′ = [u−2/αt016
1/α, u−2/α(t0 + T )161/α].

Notice that η(t, s) satisfies the assumptions of Lemma 2.3 (for the field X). For

u  u0 =

[
t0 − T

ϵ

]α/2
we get

u∗

u
=

2√
4− u−2(t0 − T )α

¬ 2√
4− u−20 (t0 − T )α

=
2√

4− ϵα
<

2
√
2√
7
,

where in the last inequality we used the assumption of the lemma that ϵα< 1
2 . Thus,

we get A′⊂
[
0,

(
u∗
√
7

2
√
2

)−2/α
T161/α

]
and B′⊂

[
0,

(
u∗
√
7

2
√
2

)−2/α
(t0 + T )161/α

]
.

Let us define T=
[
0,

( √
7

2
√
2

)−2/α
T161/α

]
×
[
0,

( √
7

2
√
2

)−2/α
(t0 +T )161/α

]
. Hence

IP
(

sup
(t,s)∈A′×B′

η(t, s) > u∗
)
¬ IP

(
sup

(t,s)∈ (u∗)−2/αT

η(t, s) > u∗
)

(2.24)

= Ψ(u∗)H(T)
(
1 + o(1)

)
as u → ∞, where in the last line we used Lemma 2.3. Since 1

1−x  1 + x for
x < 1, we get for sufficiently large u

(u∗)2 =
4u2

4− u−2(t0 − T )α
 u2

[
1+ 1

4u
−2(t0− T )α

]
= u2 + 1

4(t0− T )α  u2.
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Thus, using (2.1), we deduce that for sufficiently large u

Ψ(u∗) ¬ 2Ψ(u) exp
(
− 1

8(t0 − T )α
)
.

Hence, by (2.24) it follows that for sufficiently large u

(2.25) IP
(

sup
(t,s)∈A′×B′

η(t, s) > u∗
)

¬ 2Ψ(u) exp
(
− 1

8(t0−T )
α
)
H(T)

(
1+o(1)

)
¬4Ψ(u) exp

(
− 1

8(t0−T )
α
)
H(T).

From Corollary 2.1 we obtain

(2.26)

H(T) ¬ H([0, 1]×[0, 1])
⌈( √

7

2
√
2

)−2/α
T161/α

⌉⌈( √
7

2
√
2

)−2/α
(t0 + T )161/α

⌉
.

Thus, using (2.10), (2.14), (2.22), (2.23), (2.25) and (2.26), we get the assertion of
the lemma. �

3. PICKANDS’ THEOREM

THEOREM 3.1 (Pickands’ theorem). Let X(t), where t ∈ [0, p], be a contin-
uous stationary Gaussian process with expected value IEX(t) = 0 and covariance

r(t) = IE
(
X(t+ s)X(s)

)
= 1− |t|α + o(|t|α).

Furthermore, we assume that r(t) < 1 for all t > 0. Then

IP
(
sup
t∈[0,p]

X(t) > u
)
= Hα p u

2/αΨ(u)
(
1 + o(1)

)
as u→∞,

where

Hα = lim
T→∞

H(T )

T

is positive and finite (Pickands constant), and H(T ) is defined in (2.9).

P r o o f. Put
∆k = [ku−2/αT, (k + 1)u−2/αT ],

where k ∈ IN and T  p, and Np =
⌊
p/(u−2/αT )

⌋
. Thus,

IP
(
sup
t∈[0,p]

X(t) > u
)
¬

Np∑
k=0

IP
(
sup
t∈∆k

X(t) > u
)

= (Np + 1)IP
(
sup
t∈∆0

X(t) > u
)
,
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where in the last equality we use stationarity of the process X . Thus, by Lemma 2.4,
we get

(3.1) lim sup
u→∞

IP
(
supt∈[0,p]X(t) > u

)
u2/αΨ(u)

¬ p

T
H(T ).

Let us estimate our probability from below. We have

(3.2) IP
(
sup
t∈[0,p]

X(t) > u
)
 IP

(Np−1∪
k=0

{ sup
t∈∆k

X(t) > u}
)

 Np IP
(
sup
t∈∆0

X(t) > u
)
−

∑
0¬i<j¬Np−1

IP
(
sup
t∈∆i

X(t) > u, sup
t∈∆j

X(t) > u
)
,

where in the last inequality we applied Lemma 2.2. Let us consider the last double
sum (that is why the method is called a double sum method)

Σ2 =
∑

0¬i<j¬Np−1
IP
(
sup
t∈∆i

X(t) > u, sup
t∈∆j

X(t) > u
)

=
Np−1∑
k=1

(Np − k)IP
(
sup
t∈∆0

X(t) > u, sup
t∈∆k

X(t) > u
)

¬ Np IP
(
sup
t∈∆0

X(t) > u, sup
t∈∆1

X(t) > u
)

+Np

Nϵ/4−1∑
k=2

IP
(
sup
t∈∆0

X(t) > u, sup
t∈∆k

X(t) > u
)

+Np

Np−1∑
k=Nϵ/4

IP
(
sup
t∈∆0

X(t) > u, sup
t∈∆k

X(t) > u
)
.

Let us denote the last three terms by A1, A2 and A3, respectively. We will show
that these terms are negligible after dividing them by u2/αΨ(u) and passing with
u→∞ and T →∞. Moreover, bounds on them justify that the Pickands constant
is well defined.

First, let us consider A3 and take u such that u−2/αT ¬ ϵ/16. Then it is easy
to see that the distance of the intervals ∆0 and ∆k is at least ϵ/4 in A3. Hence, in
A3 (for k from A3), for (t, s) ∈ ∆0 ×∆k we have

Var
(
X(t) +X(s)

)
= 2 + 2r(t− s) = 4− 2

(
1− r(t− s)

)
(3.3)

¬ 4− 2 inf
sϵ/4

(
1− r(s)

)
= 4− δ < 4,

where δ = 2 infsϵ/4
(
1− r(s)

)
> 0 (by the assumptions on r(t)). Let us observe

that X(t) +X(s) is a continuous Gaussian field on [0, T ]× [0, T ], which implies
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by Theorem 2.3 that

(3.4) IE sup
(t,s)∈∆0×∆k

(
X(t) +X(s)

)
¬ m;

consequently, by (3.3) and (3.4), we get

IP
(
sup
t∈∆0

X(t) > u, sup
t∈∆k

X(t) > u
)
¬ IP

(
sup

(t,s)∈∆0×∆k

X(t) +X(s) > 2u
)

¬ exp

(
−(2u−m)2

2(4− δ)

)
= exp

(
−(u−m/2)2

2(1− δ/4)

)
¬ exp

(
− 1

2

(
u−m/2

1− δ/8

)2)
,

where in the last inequality we used the fact that 1− δ/4 ¬ (1− δ/8)2. Hence

(3.5) lim sup
u→∞

A3

NpΨ(u)
¬ lim sup

u→∞

N2
p exp

(
− 1

2

(
u−m/2
1−δ/8

)2 )
NpΨ(u)

= lim
u→∞

⌊
p

u−2/αT

⌋√
2π u exp

(
− 1

2

(
u− a/2

1− δ/8

)2

+
1

2
u2

)
= 0,

where the second line follows from (2.1) and the fact that 1− δ/8 < 1 (by assump-
tion, r(t) < 1 for t > 0).

Now, let us consider A2. For k  2 we have from Lemma 2.5 (C1 and C2 are
constants depending on α)

IP
(
sup
t∈∆0

X(t) > u, sup
t∈∆k

X(t) > u
)

¬ C1 ⌈C2T ⌉ ⌈C2(k + 1)T ⌉ exp
(
− 1

8(k − 1)αTα
)
Ψ(u).

Thus

A2 ¬ C1 ⌈C2T ⌉Ψ(u)Np

Nϵ/4−1∑
k=2

⌈C2(k + 1)T ⌉ exp
(
− 1

8(k − 1)αTα
)
.
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Let us estimate
∑Nϵ/4−1

k=2 ⌈C2(k + 1)T ⌉ exp
(
− 1

8(k − 1)αTα
)
. We have

Nϵ/4−1∑
k=2

⌈C2(k + 1)T ⌉ exp
(
− 1

8(k − 1)αTα
)

¬
∞∑
k=2

⌈C2(k + 1)T ⌉ exp
(
− 1

8(k − 1)αTα
)

¬ ⌈C2T ⌉
∞∑
k=2

(k + 1) exp
(
− 1

8(k − 1)αTα
)

= ⌈C2T ⌉
∞∑
k=1

(k + 2) exp
(
− 1

8k
αTα

)
¬ 3 ⌈C2T ⌉

∞∑
k=1

k exp
(
− 1

8k
αTα

)
¬ 3 ⌈C2T ⌉ exp

(
− 1

8T
α
)
+ 3 ⌈C2T ⌉

∞∫
1

s exp
(
− 1

8s
αTα

)
ds =: L1,

where the last inequality is valid for Tα > 8/α (then the function under the in-
tegral sign is decreasing for s > 1). Substituting t = 1

8s
αTα and continuing the

computations (from now on, C will be any positive constant depending on α and
its values can change from line to line), we see that

L1 ¬ C ⌈T ⌉ exp
(
− 1

8T
α
)
+

C ⌈T ⌉
T 2

∞∫
Tα/8

t2/α−1 exp(−t) dt =: L2.

Using the property of the incomplete gamma function, i.e.,

∞∫
u

swe−s ds = uwe−u
(
1 +O(1/u)

)
as u→∞,

where w ∈ IR, we get

L2 ¬ C ⌈T ⌉ exp
(
− 1

8T
α
)(
1 +O(T−α)

)
for Tα > 8/α. Thus we obtain

A2 ¬ C ⌈T ⌉2Ψ(u)Np exp
(
− 1

8T
α
)(
1 +O(T−α)

)
,

which yields

(3.6) lim sup
u→∞

A2

Ψ(u)Np
¬ C ⌈T ⌉2 exp

(
− 1

8T
α
)(
1 +O(T−α)

)
.
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Now, let us consider the term A1. Thus

(3.7) IP
(
sup
t∈∆0

X(t) > u, sup
t∈∆1

X(t) > u
)

¬ IP
(
sup
t∈∆0

X(t) > u, sup
t∈u−2/α[T, T+

√
T ]

X(t) > u
)

+ IP
(
sup
t∈∆0

X(t) > u, sup
t∈u−2/α[T+

√
T , 2T+

√
T ]

X(t) > u
)

¬ IP( sup
t∈u−2/α[T, T+

√
T ]

X(t) > u)

+ IP
(
sup
t∈∆0

X(t) > u, sup
t∈u−2/α[T+

√
T , 2T+

√
T ]

X(t) > u
)

= IP
(

sup
t∈[0, u−2/α

√
T ]

X(t) > u
)

+ IP
(
sup
t∈∆0

X(t) > u, sup
t∈u−2/α[T+

√
T , 2T+

√
T ]

X(t) > u
)
.

First let us consider the second term in the last equality of (3.7). By Lemma 2.5 we
have

IP
(
sup
t∈∆0

X(t) > u, sup
t∈u−2/α[T+

√
T , 2T+

√
T ]

X(t) > u
)

¬ 4⌈C T ⌉ ⌈C (2T +
√
T )⌉ exp

(
− 1

8 T
α/2

)
H([0, 1]× [0, 1])Ψ(u).

The first term of the last equality in (3.7) can be estimated by Lemma 2.4:

IP
(

sup
t∈[0, u−2/α

√
T ]

X(t) > u
)
= Ψ(u)H(

√
T )

(
1 + o(1)

)
.

Hence we obtain

(3.8) IP
(
sup
t∈∆0

X(t) > u, sup
t∈∆1

X(t) > u
)

¬ Ψ(u)H(
√
T )

(
1 + o(1)

)
+ C⌈T ⌉ ⌈2T +

√
T ⌉ exp

(
− 1

8 T
α/2

)
Ψ(u)

¬ Ψ(u)⌈
√
T ⌉H(1)

(
1 + o(1)

)
+ C⌈T ⌉ ⌈2T +

√
T ⌉ exp

(
− 1

8 T
α/2

)
Ψ(u),

where in the last inequality we used Corollary 2.2. Thus we get

(3.9) lim sup
u→∞

A1

NpΨ(u)
¬ ⌈
√
T ⌉H(1) + C⌈T ⌉ ⌈2T +

√
T ⌉ exp

(
− 1

8 T
α/2

)
.

Now, consider the lower bound

lim inf
u→∞

IP
(
supt∈[0,p]X(t) > u

)
p u2/αΨ(u)

= lim inf
u→∞

IP
(
supt∈[0,p]X(t) > u

)
NpTΨ(u)

,
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which by Lemma 2.4, (3.2), (3.5), (3.6) and (3.9) is greater than or equal to

f(T ) =
H(T )

T
− C ⌈T ⌉2

T
exp

(
− 1

8T
α
)(
1 +O(T−α)

)
(3.10)

− ⌈
√
T ⌉
T

H(1)− C
⌈T ⌉
T
⌈2T +

√
T ⌉ exp

(
− 1

8 T
α/2

)
.

Let us assume that lim supT→∞H(T )/T > 0; then by (3.1) and (3.10) we get

H(T )

T
 lim sup

u→∞

IP
(
supt∈[0,1]X(t) > u

)
u2/αΨ(u)

 lim inf
u→∞

IP
(
supt∈[0,1]X(t) > u

)
u2/αΨ(u)

 lim sup
S→∞

f(S) = lim sup
S→∞

H(S)

S
,

which implies

∞ > lim inf
T→∞

H(T )

T
 lim sup

T→∞

H(T )

T
> 0,

and limT→∞H(T )/T exists and is finite and positive.
It remains to prove that

lim sup
T→∞

H(T )

T
> 0.

Let us put D =
∪∞

j=0∆2j ∩ [0, 1]. Then

IP
(
sup
t∈[0,1]

X(t) > u
)
 IP

(
sup
t∈D

X(t) > u
)
.

Applying the Bonferroni inequality for the set D (see Lemma 2.2 and (3.2)) and
using Lemma 2.4 and the bound for A2 and (3.5) (note that A1 disappears by the
definition of the set D), we get

H(T )

T
 lim sup

u→∞

IP
(
supt∈[0,1]X(t) > u

)
u2/αΨ(u)

 H(S)

2S
− C ⌈S⌉2

S
exp

(
− 1

8S
α
)(
1 +O(S−α)

)
= S−1

(
H(S)

2
− C ⌈S⌉2 exp

(
− 1

8S
α
)(
1 +O(S−α)

))
,

which is positive for sufficiently large S because H(S) is an increasing function
of S and C ⌈S⌉2 exp

(
− 1

8S
α
)(
1 +O(S−α)

)
tends to zero when S →∞. �
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4. AN OVERVIEW OF THE RESULTS ON PICKANDS CONSTANT

The values of Pickands constants are known only for α = 1 and α = 2, that
is, H1 = 1 in the Brownian motion case (B1(t) is the standard Brownian motion)
and H2 = 1/

√
π in the generate case (B2(t) = tN , whereN is a standard normal

random variable).
There are also equivalent definitions of Pickands constant. In Berman [3], us-

ing the theory of sojourn times, it is proven that

Hα =
∞∫
0+

1

x
dG(x),

where G is the distribution function of the random variable

L =
∞∫
−∞

1I{Zα(s) + η > 0}ds,

Zα is defined in (1.1), and η is a unit mean exponentially distributed random vari-
able independent of Zα. In Hüsler [15] and Albin and Choi [2] it is shown that

Hα = lim
ϵ↓0

1

ϵ
IP
(
sup
k1

Zα(ϵk) + η ¬ 0
)
,

where k is an integer, Zα is defined in (1.1), and η is a unit mean exponentially dis-
tributed random variable which is independent of Zα. A similar form of Pickands
constant is given in Dieker and Yakir [13] where

Hα = lim
ϵ↓0

1

ϵ
IP
(
sup
k∈Z

Zα(ϵk) = 0
)
.

A quite useful representation of Pickands constant is

(4.1) Hα = IE

 supt∈R eZα(t)∫∞
−∞ eZα(t) dt


and its discrete form

(4.2) Hα = IE

supt∈R eZα(t)

ϵ
∑
k∈Z

eZα(ϵk)


for any ϵ > 0, which can be found in Dieker and Yakir [13].

One of the first attempts to simulate the Pickands constant is made in Shao
[22]. In that article some estimators of Pickands constants and the simulation re-
sults are provided. Another attempt of simulation of the Pickands constant is de-
scribed in Michna [17] where the estimator of the probability

(4.3) IP
(
sup
t>0

(
Bα(t)− t

)
> u

)
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for α > 1 is found by using the change of measure technique. More precisely,
the process Bα(t) with a positive linear drift hits a level u > 0 a.s., that is, σa =
inf{t > 0 : Bα(t) + at > u} is finite a.s., where a > 0, which enables us to de-
termine numerically its value, and due to the change of measure technique the
expectation of a certain functional of σa equals the probability (4.3) (see Michna
[17], Proposition 2). Thus, using the Monte Carlo method, it is possible to esti-
mate the probability (4.3). Then, comparing simulation with the exact asymptotic
behavior of the probability (4.3) (see Hüsler and Piterbarg [16]), which contains
Pickands constant, allows us to find numerically Pickands constant. However, the
discretization step (simulation of Bα(t) by using the Cholesky factorization needs
a lot of computer memory) taken in the simulation of Michna [17] is too big, which
gives some aberrations for α close to one. This is noticed in the article of Burnecki
and Michna [6] where the discretization step is sufficiently small to stabilize the
simulation and there the values of Pickands constant are closer to one for α ↓ 1.
Moreover, in the paper of Dębicki [8] it is proven that Pickands constant Hα as a
function of α is continuous in its whole domain.

In Dieker and Yakir [13] a simulation of Pickands constant is conducted. They
used the following estimator of Pickands constant (compare it with (4.1) and (4.2)):

Hϵ
α(T ) = IE

max−T/ϵ¬k¬T/ϵ e
Zα(ϵk)

ϵ
∑

−T/ϵ¬k¬T/ϵ
eZα(ϵk)

,

where k is an integer, ϵ > 0 is sufficiently small, and T > 0 is sufficiently large
(in Dieker and Yakir [13], ϵ = 1/218 and T = 128). Some upper and lower bounds
for Pickands constant can be found in Dieker and Yakir [13] but those bounds
are not given in an explicit form, and therefore they are simulated by using the
Monte Carlo method. Moreover, the simulated values of Pickands constant are
for α ∈ [0.7, 2]. In the literature there was a conjecture stating that Hα = 1/Γ(α)
(see Dębicki and Mandjes [11]), which is due to K. Breitung. It is easy to notice
that Breitung’s hypothesis is true for α = 1 and α = 2. Although the simulation of
Dieker and Yakir [13] gives “a strong evidence that this conjecture is not correct”,
that is, “the confidence interval and error bounds are well above the curve for α in
the range 1.6–1.8”.

The first attempt to find bounds of Pickands constants is the work of Shao [22]
where one can find lower and upper bounds of Pickands constants and the asymp-
totic behavior of Pickands constants when α ↓ 0. We should notice that Breitung’s
hypothesis on Pickands constant fulfills this asymptotic. The results of Shao [22]
use the Slepian and Borell inequalities. In Dębicki et al. [12], a lower bound of
Pickands constant is given (its modification is in this article). Dębicki and Kisowski
[10] provide very ingenious upper bounds of Pickands constants based on some or-
dering of generalized Pickands constants (see Dębicki [7]). However, none of the
bounds disproves Breitung’s hypothesis. This is done in a clever way in Harper
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[14], that is, it is shown that for α sufficiently close to zero Pickands constant is
greater than Breitung’s hypothesis.

There are generalizations of Pickands constants which open new paths to in-
vestigate and show interesting relations with the extremal index of max-stable sta-
tionary processes (see Dębicki [7] and Dębicki and Hashorva [9]).
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[11] K. Dębicki and M. Mandjes, Open problems in Gaussian fluid queueing theory, Queueing
Syst. 68 (2011), pp 267–273.
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