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Abstract. We consider a spatial stochastic model of wireless cellular
networks, where the base stations (BSs) are deployed according to a simple
and stationary point process on Rd, d > 2. In this model, we investigate tail
asymptotics of the distribution of signal-to-interference ratio (SIR), which
is a key quantity in wireless communications. In the case where the path-
loss function representing signal attenuation is unbounded at the origin, we
derive the exact tail asymptotics of the SIR distribution under an appro-
priate sufficient condition. While we show that widely-used models based
on a Poisson point process and on a determinantal point process meet the
sufficient condition, we also give a counterexample violating it. In the case
of bounded path-loss functions, we derive a logarithmically asymptotic up-
per bound on the SIR tail distribution for the Poisson-based and α-Ginibre-
based models. A logarithmically asymptotic lower bound with the same or-
der as the upper bound is also obtained for the Poisson-based model.
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1. INTRODUCTION AND MODEL DESCRIPTION

In this paper, we consider a spatial stochastic model of downlink cellular net-
works described as follows. Let Φ = {Xi}i∈N denote a point process on Rd, d > 2
(mostly d = 2 is supposed), where the points are ordered according to the dis-
tance from the origin such that |X1| 6 |X2| 6 . . . Each point Xi, i ∈ N, repre-
sents the location of a base station (BS) of the cellular network, and we refer to
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the BS located at Xi as BS i. The point process Φ is assumed to be simple al-
most surely in probability P (P-a.s.) and stationary in P with positive and finite
intensity λ = EΦ([0, 1]d). Assuming further that all the BSs transmit signals at
the same power level and each user is associated with the nearest BS, we focus
on a typical user located at the origin o = (0, 0, . . . , 0) ∈ Rd. For each i ∈ N,
let Hi denote a nonnegative random variable representing the propagation effect
of fading and shadowing on the signal from BS i to the typical user, where Hi,
i ∈ N, are mutually independent and identically distributed (i.i.d.), as well as in-
dependent of the point process Φ. The path-loss function representing attenuation
of signals with distance is denoted by ℓ, which is a nonincreasing function satisfy-
ing

∫∞
ϵ

rd−1 ℓ(r) dr <∞ for any ϵ > 0. What we have in mind is, for example,
ℓ(r) = r−dβ or ℓ(r) = (1 + rdβ)−1 with β > 1, the former of which is an example
of unbounded path-loss functions, and the latter is bounded.

In this model, the signal-to-interference ratio (SIR) for the typical user is de-
fined as

(1.1) SIRo =
H1 ℓ(|X1|)
∞∑
i=2

Hi ℓ(|Xi|)
,

where we recall that X1 is the nearest point of Φ from the origin, and the typical
user at the origin is associated with BS 1 at X1. We can see that SIRo in (1.1) is
invariant to the intensity λ of the point process Φ when ℓ(r) = r−dβ . While SIR is
a key quantity in design and analysis of wireless networks, spatial cellular network
models where the SIR distribution is obtained exactly in a closed form or a nu-
merically computable form are limited (see, e.g., [1], [22]). In addition, even when
it is numerically computable, the actual computation can be time-consuming (see
[22]). Several researchers therefore resort to some approximation and/or asymp-
totic approaches recently (see, e.g., [5], [12], [14], [16], [19], [23], [25], [27]). In
the current paper, we investigate tail asymptotics of the SIR distribution; that is, the
asymptotic behavior of P(SIRo > θ) as θ →∞, for the two cases where the path-
loss function is unbounded at the origin and where it is bounded. The part of the
unbounded path-loss function is a slight refinement of [25], and we derive the exact
tail asymptotics of the SIR distribution under an appropriate sufficient condition.
While we show that the widely-used models on R2, where the BS configuration Φ
is given as a homogeneous Poisson point process and where Φ is a stationary and
isotropic determinantal point process, meet the sufficient condition, we also give a
counterexample violating it. For the case of bounded path-loss functions, we de-
rive a logarithmically asymptotic upper bound on the SIR tail distribution for the
homogeneous Poisson-based and α-Ginibre-based models, where the α-Ginibre
point process is one of the main examples of stationary and isotropic determinan-
tal point processes on C ≃ R2. We also derive a logarithmically asymptotic lower
bound with the same order as the upper bound for the homogeneous Poisson-based
model.
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The paper is organized as follows. In the next section, we consider the BS
configuration Φ as a general simple and stationary point process on Rd and the
path-loss function ℓ as ℓ(r) = r−dβ , r > 0. In this case, we derive P(SIRo > θ)
∼ c θ−1/β as θ → ∞ for some constant c ∈ (0,∞) under an appropriate suffi-
cient condition. In Section 3, we show that the widely-used Poisson-based and
determinantal-based models on R2 meet the sufficient condition while we also
give a counterexample to it. In Section 4, we consider bounded and regularly vary-
ing path-loss functions and derive a logarithmically asymptotic upper bound on
P(SIRo > θ) as θ →∞ when the propagation effect distribution is light-tailed and
Φ is a homogeneous Poisson point process or an α-Ginibre point process. When Φ
is a homogeneous Poisson point process and the propagation effects are exponen-
tially distributed, a logarithmically asymptotic lower bound with the same order as
the upper bound is also obtained.

2. TAIL ASYMPTOTICS FOR UNBOUNDED PATH-LOSS MODELS

In this section, we consider the path-loss function ℓ(r) = r−dβ , r > 0, and
derive P(SIRo > θ) ∼ c θ−1/β as θ →∞ with some constant c > 0 under an ap-
propriate set of conditions. Prior to providing the main theorem, we need a short
preliminary.

Let Po and Eo denote respectively the Palm probability and the correspond-
ing expectation with respect to the marked point process ΦH = {(Xi,Hi)}i∈N
viewed at the origin (see, e.g., [3], Section 1.4, or [10], Chapter 13). Note that,
due to the independence of Φ = {Xi}i∈N and {Hi}i∈N, we have Po(H1 ∈ C) =
P(H1 ∈ C) for any C ∈ B(R+). When we consider the point process Φ under
the Palm distribution Po, we use index 0 for the point at the origin; that is, X0 =
o = (0, 0, . . . , 0) ∈ Rd under Po. For the point process Φ and a point Xi of Φ, the
Voronoi cell of Xi with respect to Φ is defined as

C(Xi) = {x ∈ Rd : |x−Xi| 6 |x−Xj |, Xj ∈ Φ};

that is, the set of points in Rd whose distance to Xi is not greater than that to any
other points of Φ. The typical Voronoi cell is then C(o) under the Palm distribu-
tion Po and its circumscribed radius, denoted by R(o), is the radius of the smallest
ball centered at the origin and containing C(o) under Po.

THEOREM 2.1. For the cellular network model described in the preceding
section with the path-loss function ℓ(r) = r−dβ, r > 0, we suppose the following.

(A) For the propagation effects Hi, i ∈ N, E(H1/β
1 ) < ∞ and there exist

p > 0 and cH > 0 such that the Laplace transform LH of Hi, i ∈ N, satisfies
LH(s) 6 cH s−p for s > 1.

(B) For the point process Φ = {Xi}i∈N, Eo
(
R(o)d

)
<∞ and there exists a

k > (p β)−1 such that Eo(|Xk|d) <∞, where p is that in condition (A) above.
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Then we have

(2.1) lim
θ→∞

θ1/β P(SIRo > θ) = πd λE(H1
1/β)Eo

[( ∞∑
i=1

Hi

|Xi|d β

)−1/β]
,

where πd = πd/2/Γ(d/2+ 1) denotes the volume of a d-dimensional unit ball with
the gamma function Γ(x) =

∫∞
0

tx−1 e−t dt.

Theorem 2.1 is a slight extention of [25] to higher dimensions. Recall that
SIRo in (1.1) is invariant to the intensity λ of the point process Φ. Thus, we can
show that the right-hand side of (2.1) does not depend on λ (see, e.g., the remark
of Definition 4 in [12]).

REMARK 2.1. When d = 2, the right-hand side of (2.1) in Theorem 2.1 coin-
cides with EFIRδ in Theorem 4 of [12]; that is, that theorem and our Theorem 2.1
assert the same result. A difference between the two theorems (besides our exten-
tion to higher dimensions) is that we offer the set of conditions (A) and (B), the
role of which is discussed in the proof and the remarks thereafter.

P r o o f. Let FH denote the distribution function of Hi, i ∈ N, and let FH(x)
= 1− FH(x). By (1.1) with ℓ(r) = r−dβ , r > 0, the tail probability of the SIR for
the typical user is expressed as

(2.2) P(SIRo > θ) = EFH

(
θ |X1|d β

∞∑
i=2

Hi

|Xi|d β

)
.

Applying the Palm inversion formula (see, e.g., [3], Section 4.2) to the right-hand
side above, we have

P(SIRo > θ)

= λ
∫
Rd

Eo

[
FH

(
θ |x|d β

∞∑
i=1

Hi

|Xi − x|d β

)
1C(o)(x)

]
dx

= θ−1/β λ
∫
Rd

Eo

[
FH

(
|y|d β

∞∑
i=1

Hi

|Xi − θ−1/(d β) y|d β

)
1C(o)(θ

−1/(d β) y)

]
dy,

where the second equality follows from the substitution of y = θ1/(d β) x. There-
fore, if we can find a random function A satisfying

FH

(
|y|d β

∞∑
i=1

Hi

|Xi − θ−1/(d β) y|d β

)
1C(o)(θ

−1/(d β) y) 6 A(y), Po-a.s.,(2.3) ∫
Rd

EoA(y) dy <∞,(2.4)
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the dominated convergence theorem yields

(2.5) lim
θ→∞

θ1/β P(SIRo > θ) = λ
∫
Rd

EoFH

(
|y|d β

∞∑
i=1

Hi

|Xi|d β

)
dy.

We postpone finding such a function A and admit (2.5) for a moment. Then, sub-
stituting z =

(∑∞
i=1Hi/|Xi|d β

)1/(d β)
y to the integral in (2.5), we have

(2.6)∫
Rd

EoFH

(
|y|d β

∞∑
i=1

Hi

|Xi|d β

)
dy = Eo

[( ∞∑
i=1

Hi

|Xi|d β

)−1/β] ∫
Rd

FH(|z|d β) dz,

and the integral on the right-hand side above further reduces to∫
Rd

FH(|z|d β) dz = d πd
∞∫
0

FH(rd β) rd−1 dr(2.7)

=
πd
β

∞∫
0

FH(s) s−1+1/β ds = πd E(H1
1/β).

Hence, applying (2.6) and (2.7) to (2.5), we obtain (2.1).
It remains to find a function A satisfying (2.3) and (2.4). Since FH is nonin-

creasing and |Xi − y| 6 |Xi|+R(o) Po-a.s. for y ∈ C(o), we can set a function A
satisfying (2.3) as

A(y) = FH

(
|y|d β

∞∑
i=1

Hi(
|Xi|+R(o)

)d β).
We now confirm that this function A satisfies condition (2.4). By substituting z =(∑∞

i=1Hi /
(
|Xi|+R(o)

)d β)1/(d β)
y and using (2.7) again, we have

(2.8)
∫
Rd

EoA(y) dy = πd E(H1
1/β)Eo

[( ∞∑
i=1

Hi(
|Xi|+R(o)

)d β)−1/β],
where E(H

1/β
1 ) <∞ by condition (A). Applying the identity

x−1/β =
1

Γ(1/β)

∞∫
0

e−x s s−1+1/β ds

to the second expectation on the right-hand side of (2.8), we have

Eo

[( ∞∑
i=1

Hi(
|Xi|+R(o)

)d β)−1/β]
=

1

Γ(1/β)

∞∫
0

s−1+1/β Eo

[ ∞∏
i=1

LH
(

s(
|Xi|+R(o)

)d β)]ds.
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Recall that Xi, i ∈ N, are ordered such that |X1| < |X2| < . . . By truncating the
infinite product above by a finite k ∈ N such that p β k > 1 and applying LH(s) 6
cH s−p for s > 1 from condition (A), we can bound the integral on the right-hand
side above by

∞∫
0

s−1+1/β Eo

[
k∏

i=1

LH
(

s(
|Xi|+R(o)

)d β)]ds
6
∞∫
0

s−1+1/β Eo

[{
LH

(
s(

|Xk|+R(o)
)d β)}k]

ds

6 Eo
[ (|Xk|+R(o))d β∫

0

s−1+1/β ds
]

+ cH
k Eo

[(
|Xk|+R(o)

)d p β k
∞∫

(|Xk|+R(o))d β

s−1+1/β−p k ds
]

= β

(
1 +

cH
k

p β k − 1

)
Eo

[(
|Xk|+R(o)

)d]
.

Hence, the inequality (a+ b)d 6 2d−1 (ad + bd) ensures (2.4) under condition (B)
of the theorem. �

REMARK 2.2. The differences between the proof in [12] and ours are as fol-
lows. The first and less essential one is that, in [12], they arrange the right-hand
side of (2.2) into a certain appropriate form and then apply the Campbell–Mecke
formula (see, e.g., [3], Section 1.4). On the other hand, we apply the Palm inver-
sion formula directly. Second, [12] does not specify any condition under which the
result holds. However, equality (2.5) requires some kind of uniform integrability
condition to change the order of the limit and integrals. Our set of conditions (A)
and (B) gives a sufficient condition for this order change to be valid and comple-
ments the proof of [12].

REMARK 2.3. Condition (A) claims that the Laplace transform of Hi, i ∈ N,
decays faster than or equal to power laws. Though this condition excludes dis-
tributions with a mass at the origin, it covers many practical distributions. For
example, gamma distribution Gam(p, q), p > 0, q > 0, has the Laplace trans-
form LH(s) = (1 + q s)−p, and we can take cH > q−p. In addition, we can see
from the results of [2] that lognormal distributions also satisfy condition (A).

The asymptotic constant in (2.1) of Theorem 2.1 depends on the point pro-
cess Φ and the distribution FH of the propagation effects. The following propo-
sition indicates an impact of the propagation effect distribution on the asymptotic
constant by comparing with the case without propagation effects.
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PROPOSITION 2.1. Let C(β, FH) denote the asymptotic constant on the right-
hand side of (2.1), specifying the dependence on β and the distribution FH of
propagation effects. When EH1 <∞, we have

(2.9) C(β, FH) > E(H1
1/β)

(EH1)1/β
C(β, δ1),

where δ1 denotes the Dirac measure with mass at one.

P r o o f. The result immediately follows from Jensen’s inequality conditioned
on Φ = {Xi}i∈N. On the right-hand side of (2.1), since f(x) = x−1/β is convex
for x > 0,

Eo

[( ∑
i∈N

Hi

|Xi|d β

)−1/β]
> Eo

[( ∑
i∈N

EHi

|Xi|d β

)−1/β]

=
1

(EH1)1/β
Eo

[( ∑
i∈N

1

|Xi|d β

)−1/β]
,

and (2.9) holds. �

REMARK 2.4. When FH = Exp(1), denoting the exponential distribution
with unit mean (which assumes Rayleigh fading and ignores shadowing), the re-
sult of Proposition 2.1 reduces to the second part of Theorem 2 in [24] since
E(H

1/β
1 ) = Γ(1 + 1/β) in this case (though only the Ginibre point process Φ

is considered there). In inequality (2.9), it is easy to see (by Jensen’s inequality
for a concave function f(x) = x1/β) that the coefficient E(H1/β

1 )/(EH1)
1/β is not

greater than one. Now, suppose that EH1 = 1. Then, the dominated convergence
theorem (due to H

1/β
1 6 1 + H1 a.s.) leads to E(H

1/β
1 ) → 1 as both β ↓ 1 and

β ↑ ∞, which implies that C(β, FH) tends to be larger than or equal to C(β, δ1)
when β is close to one or sufficiently large.

3. EXAMPLES FOR UNBOUNDED PATH-LOSS MODELS

In this section, we restrict ourselves to the case of d = 2 and provide a few
examples demonstrating Theorem 2.1 of the preceding section. We also give a
counterexample violating condition (B) of the theorem.

3.1. Poisson-based model. We consider here the BS configuration Φ as a ho-
mogeneous Poisson point process on R2 with positive and finite intensity. We first
confirm that Φ satisfies condition (B) of Theorem 2.1.
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LEMMA 3.1. Let Φ = {Xi}i∈N denote a homogeneous Poisson point process
on R2 with positive and finite intensity. Then, for ϵ > 0,

Eoeϵ|Xk| <∞, k ∈ N,(3.1)

EoeϵR(o) <∞.(3.2)

This lemma ensures that |Xk|, k ∈ N, and R(o) have any order of moments.

P r o o f. Let λ denote the intensity of Φ and let Dr denote the disk centered
at the origin with radius r > 0. Recalling that Xi, i ∈ N, are ordered such that
|X1| < |X2| < . . ., we have

Po(|Xk| > r) = P(|Xk| > r) = P
(
Φ(Dr) < k

)
= e−λπr

2
k−1∑
j=0

(λπ r2)j

j!
.

Thus, we can use the density function of |Xk| and show (3.1).
On the other hand, for the circumscribed radius R(o) of the typical Voronoi

cell of Φ, Calka [8], Theorem 3, shows that there exists an r0 ∈ (0,∞) such that

Po
(
R(o) > r

)
6 4π λ r2 e−πλr

2
for r > r0,

and we can show (3.2) by applying EoeϵR(o) = 1 + ϵ
∫∞
0

eϵr Po
(
R(o) > r

)
dr. �

Now, we apply Theorem 2.1 and obtain the following.

COROLLARY 3.1. Suppose that Φ = {Xi}i∈N is a homogeneous Poisson point
process on R2. When the propagation effects Hi, i ∈ N, satisfy condition (A) of
Theorem 2.1, the right-hand side of (2.1) reduces to (β/π) sin(π/β).

P r o o f. Since the conditions of Theorem 2.1 are fulfilled, the result follows
from the proof of Lemma 6 in [12]. �

REMARK 3.1. The asymptotic result in Corollary 3.1 agrees with that in Re-
mark 4 of [22], where only Rayleigh fading is considered. Corollary 3.1 states
that the SIR tail probability in the homogeneous Poisson-based model is asymp-
totically insensitive to the distribution of propagation effects as far as it satisfies
condition (A) of Theorem 2.1.

3.2. Determinantal-based model. In this subsection, we consider Φ as a gen-
eral stationary and isotropic determinantal point process on C ≃ R2 with inten-
sity λ. Let K: C2 → C denote the kernel of Φ with respect to the Lebesgue mea-
sure. The product density functions (joint intensities) ρn, n ∈ N, with respect to
the Lebesgue measure are given by

ρn(z1, z2, . . . , zn) = det
(
K(zi, zj)

)
i,j=1,2,...,n

for z1, z2, . . . , zn ∈ C,
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where det denotes the determinant. In order for the point process Φ to be well-
defined, we assume that (i) the kernel K is continuous on C × C; (ii) K is Her-
mitian in the sense that K(z, w) = K(w, z) for z, w ∈ C, where z denotes the
complex conjugate of z ∈ C; and (iii) the integral operator on L2(C) correspond-
ing to K is of locally trace class with the spectrum in [0, 1]; that is, for a compact
set C ∈ B(C), the restriction KC of K on C has the eigenvalues κC,i, i ∈ N,
satisfying

∑
i∈N κC,i <∞ and κC,i ∈ [0, 1] for each i ∈ N (see, e.g., [18], Chap-

ter 4). Furthermore, for stationarity and isotropy, the kernel K is assumed to satisfy
|K(z, w)|2 = |K(0, z −w)|2 which depends only on the distance |z −w| of z and
w ∈ C. The product density functions ρn, n ∈ N, are then motion-invariant (invari-
ant to translations and rotations), and we infer that ρ1(z) = K(z, z) = λ and that
ρ2(0, z) = λ2 − |K(0, z)|2 depends only on |z| for z ∈ C. An α-Ginibre point
process with α ∈ (0, 1] is one of the main examples of stationary and isotropic
determinantal point processes on C, and its kernel is given by

(3.3) Kα(z, w) =
1

π
e−(|z|

2+|w|2)/(2α) ez w/α, z, w ∈ C,

with respect to the Lebesgue measure (see, e.g., [13], [26]). We can see that the
intensity and the second product density of the α-Ginibre point process are λ =

ρ
(α)
1 (0) = π−1 and ρ

(α)
2 (0, z) = (1− e−|z|

2/α)/π2, respectively.
First, concerning condition (B) of Theorem 2.1, we show the following.

LEMMA 3.2. Let Φ denote a stationary and isotropic determinantal point pro-
cess on C with positive and finite intensity as described above.

(i) Let Xi, i ∈ N, denote the points of Φ such that |X1| < |X2| < . . . Then,
there exist a1 > 0 and a2 > 0 such that, for any k ∈ N, we can take an rk > 0
satisfying

(3.4) Po(|Xk| > r) 6 a1 e
−a2 r2 for r > rk.

(ii) Let R(o) denote the circumscribed radius of the typical Voronoi cell C(o)
of Φ. Then, there exist b1 > 0 and b2 > 0 such that

(3.5) Po
(
R(o) > r

)
6 b1 e

−b2 r2 for r > 0.

By Lemma 3.2, it is easy to confirm, as in Lemma 3.1, that |Xk|, k ∈ N,
and R(o) have any order of moments under Po. To prove Lemma 3.2, we use the
following supplementary lemma.

LEMMA 3.3. The kernel K of a determinantal point process Φ satisfies

(3.6)
∫
C
|K(z, w)|2 dw 6 K(z, z), z ∈ C.

P r o o f. For a compact set C ∈ B(C) such that z ∈ C, let KC denote the
restriction of K on C. Let also κC,i and φC,i, i ∈ N, denote, respectively, the
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nonzero eigenvalues of KC and the corresponding orthonormal eigenfunctions;
that is,

(3.7)
∫
C

φC,i(z)φC,j(z) dz =

{
1 for i = j,
0 for i ̸= j.

Then Mercer’s theorem states that the following spectral expansion holds (see, e.g.,
[21]):

(3.8) KC(z, w) =
∞∑
i=1

κC,i φC,i(z)φC,i(w), z, w ∈ C.

Thus, we have∫
C

|K(z, w)|2 dw =
∫
C

|KC(z, w)|2 dw =
∞∑
i=1

κC,i
2 |φC,i(z)|2

6 KC(z, z) = K(z, z),

where the second equality follows from (3.7) and (3.8), the inequality holds since
κC,i ∈ (0, 1], i ∈ N, and the last equality follows since z ∈ C. Finally, by letting
C ↑ C, we obtain (3.6). �

Note that Lemma 3.3 implies that
∫
C |K(0, z)|2 dz 6 λ in our stationary case

with intensity λ ∈ (0,∞). Using this, we prove Lemma 3.2 as follows.

P r o o f o f L e m m a 3.2. Let P! denote the reduced Palm probability with
respect to the marked point process ΦH = {(Xi,Hi)}i∈N, and let C denote a
bounded set in B(C). Since a determinantal point process is also determinantal
under the (reduced) Palm distribution (see, e.g., [29]), Φ(C) under P! has the same
distribution as

∑
i∈NBC,i with certain mutually independent Bernoulli random

variables BC,i, i ∈ N (see, e.g., [18], Section 4.5). Thus, the Chernoff–Hoeffding
bound for an infinite sum with finite mean (see, e.g., [9], [17] for a finite sum)
states that, for any ϵ ∈ [0, 1), there exists a cϵ > 0 such that

(3.9) P!
(
Φ(C) 6 ϵE!Φ(C)

)
6 e−cϵ E

!Φ(C),

where E! denotes the expectation with respect to P!. On the other hand, the kernel
of Φ under the reduced Palm distribution is given by (see [29])

K !(z, w) =
K(z, w)K(0, 0)−K(z, 0)K(0, w)

K(0, 0)
, z, w ∈ C,

whenever K(0, 0) > 0, which is ensured in our stationary case with K(0, 0) = λ.
Therefore, the intensity function of Φ under P! reduces to

(3.10) ρ!1(z) = K !(z, z) = λ− |K(0, z)|2

λ
,
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so that Lemma 3.3 with K(0, 0) = λ yields

(3.11) E!Φ(C) =
∫
C

ρ!1(z) dz > λµ(C)− 1,

where µ denotes the Lebesgue measure on C.

P r o o f o f (i). Note that Po(|Xk| > r) = P!
(
Φ(Dr) 6 k− 1

)
. Since we have

E!Φ(Dr) > λπ r2 − 1 from (3.11), applying this to (3.9) yields

P!
(
Φ(Dr) 6 ϵ (λπ r2 − 1)

)
6 ecϵ e−cϵ λπ r2.

Hence, for any ϵ ∈ (0, 1) and k ∈ N, we can take rk > 0 satisfying ϵ (λπ rk
2 − 1)

> k − 1, which implies (3.4).

P r o o f o f (ii). We derive here an upper bound on Po
(
R(o) > r

)
by exploit-

ing Foss & Zuyev’s seven petals [11], which are considered to obtain an upper
bound on the tail distribution of the circumscribed radius of the typical Poisson–
Voronoi cell. Consider a collection of seven disks with a common radius r centered
at points (r, 2πk/7), k = 0, 1, . . . , 6, in polar coordinates. The petal 0 is given as
the intersection of the two disks centered at (r, 0), (r, 2π/7) and the angular do-
main between the rays ϕ = 0 and ϕ = 2π/7. The petal k is the rotation copy of
petal 0 by angle 2πk/7 for k = 1, 2, . . . , 6 (see Figure 1). LetPr,k, k = 0, 1, . . . , 6,
denote the set formed by petal k on the complex plane C. Then, according to the
discussion in the proof of Lemma 1 of [11],

(3.12) Po
(
R(o) > r

)
6 P!

( 6∪
k=0

{Φ(Pr,k) = 0}
)
6 7P!

(
Φ(Pr,0) = 0

)
,

where the second inequality follows from the isotropy of Φ under the Palm distri-
bution. Now, we can apply inequality (3.9) with ϵ = 0, and we have

(3.13) P!
(
Φ(Pr,0) = 0

)
6 e−c0 E

!Φ(Pr,0).

Hence, (3.5) follows from E!Φ(Pr,0) > λµ(Pr,0)− 1 and µ(Pr,0) = 2 r2
(
π/7 +

sin(π/7) cos(3π/7)
)
. �

REMARK 3.2. The first part (i) of Lemma 3.2 (as well as the first part (3.1)
of Lemma 3.1) can be extended to a determinantal point process on Rd (see [7],
Lemma 5.6). We can take c0 in (3.13) equal to one since determinantal point pro-
cesses are weakly sub-Poisson (in particular, due to the ν-weakly sub-Poisson
property) (see [6] for details).

REMARK 3.3. When the kernel K of a determinantal point process is ex-
plicitly specified, it may be possible to obtain a tighter upper bound on the tail
probability of the circumscribed radius of the typical Voronoi cell. For example,
the case of an α-Ginibre point process is given by the following corollary.
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r

2π

7

Figure 1. Foss & Zuyev’s seven petals (see [11]).

COROLLARY 3.2. For an α-Ginibre point process, the circumscribed radius
for the typical Voronoi cell C(o) satisfies

(3.14) Po
(
R(o) > r

)
6 7 e−(uα(r)∨vα(r)) for r > 0,

where a ∨ b = max(a, b) and

uα(r) =
1

7

{
4r2 cos2

2π

7
− α

[
1− exp

(
− 4r2

α
cos2

2π

7

)]}
,

vα(r) =
2r2

π

(
π

7
+ sin

π

7
cos

3π

7

)
− α

7

[
1− exp

(
− 4r2

α
cos2

π

7

)]
.

P r o o f. By the kernel of the α-Ginibre point process in (3.3), the intensity
function of (3.10) under the (reduced) Palm distribution reduces to

(3.15) ρ!1(z) =
1

π

(
1− e−|z|

2/α
)
, z ∈ C.

We obtain two lower bounds of E!Φ(Pr,0) as follows. Let Sη denote the circular
sector centered at the origin with radius η and the angular domain between ϕ = 0
and ϕ = 2π/7. Taking η1 = 2r cos(2π/7) and η2 = 2r cos(π/7), we have Sη1 ⊂
Pr,0 ⊂ Sη2 . Therefore, applying (3.15), we have the first lower bound:

E!Φ(Pr,0) > E!Φ(Sη1) =
∫
Sη1

ρ!1(z) dz =
1

7
[η1

2 + α (e−η1
2/α − 1)] = uα(r).

The second lower bound is given by

E!Φ(Pr,0) =
∫
Pr,0

ρ!1(z) dz > 1

π

(
µ(Pr,0)−

∫
Sη2

e−|z|
2/α dz

)
= vα(r).

Hence, we have (3.14) from (3.12) and (3.13) with c0 = 1. �
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Indeed, when, e.g., α = 1, we can numerically compute r∗ ≈ 0.5276 . . . such
that u1(r) > v1(r) for r < r∗ and u1(r) < v1(r) for r > r∗. We are now ready
to give the tail asymptotics of the SIR distribution when the BSs are deployed
according to an α-Ginibre point process.

COROLLARY 3.3. Suppose that Φ = {Xi}i∈N is an α-Ginibre point process.
When the propagation effects Hi, i ∈ N, satisfy condition (A) of Theorem 2.1, we
have

(3.16) lim
θ→∞

θ1/β P(SIRo > θ)

=
αE(H1

1/β)

Γ(1 + 1/β)

∞∫
0

∞∏
i=1

[
1− α+

α

i!

∞∫
0

e−y yi LH
((

t

y

)β)
dy

]
dt.

For the proof of Corollary 3.3, we use the following proposition which is a
consequence of [13] and [20] (see also [26]).

PROPOSITION 3.1. (i) Let Xi, i ∈ N, denote the points of an α-Ginibre point
process. Then, the set {|Xi|2}i∈N has the same distribution as Y̌ = {Y̌i}i∈N, which
is extracted from Y = {Yi}i∈N such that Yi, i ∈ N, are mutually independent with
Yi ∼ Gam(i, α) for each i ∈ N, and each Yi is added in Y̌ with probability α and
discarded with 1− α independently of others.

(ii) Let Xi, i ∈ N, denote the points of an α-Ginibre point process under
the reduced Palm distribution. Then, the same statement as (i) holds except for
replacing Yi ∼ Gam(i, α) by Yi ∼ Gam(i+ 1, α).

P r o o f o f C o r o l l a r y 3.3. For an α-Ginibre point process, we can see
by Lemma 3.2 (or Corollary 3.2) that |Xk|, k ∈ N, and R(o) have any order of
moments under the Palm distribution Po; that is, condition (B) of Theorem 2.1 is
fulfilled. Thus, applying the identity x−1/β = Γ(1/β)−1

∫∞
0

e−x s s−1+1/β ds and
the Laplace transform LH to the right-hand side of (2.1), we have

Eo

[( ∞∑
i=1

Hi

|Xi|2β

)−1/β]
=

1

Γ(1/β)

∞∫
0

s−1+1/β Eo

[ ∞∏
i=1

LH
(

s

|Xi|2β

)]
ds

=
1

Γ(1 + 1/β)

∞∫
0

Eo

[ ∞∏
i=1

LH
((

t

|Xi|2

)β)]
dt,

where the second equality follows by substituting t = s1/β . Here, applying Y =
{Yi}i∈N in Proposition 3.1 (ii), we have (3.16). �

REMARK 3.4. When FH = Exp(1) (Rayleigh fading without shadowing),
(3.16) reduces to the result of Theorem 1 in [23]. When FH = Gam(m, 1/m)
(Nakagami-m fading without shadowing), we have LH(s) = (1 + s/m)−m and
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E(H1
1/β) = Γ(m+ 1/β)/

(
m1/β (m− 1)!

)
. Applying these to the right-hand side

of (3.16) yields

lim
θ→∞

θ1/β P(SIRo > θ)

=
αΓ(m+ 1/β)

Γ(1 + 1/β)m1/β (m− 1)!

∞∫
0

∞∏
i=1

[
1− α+

α

i!

∞∫
0

e−y yi(
1 +m−1 (t/y)β

)m dy

]
dt

=
αβ

B(m, 1/β)

∞∫
0

∞∏
i=1

[
1− α+

α

i!

∞∫
0

e−y yi(
1 + (u/y)β

)m dy

]
du,

where we substitute u = m−1/β t and apply the beta function B(x, y) =
Γ(x) Γ(y)/Γ(x+ y) in the second equality.

It is known that α-Ginibre point processes converge weakly to the homoge-
neous Poisson point process with the same intensity as α → 0 (see [13]). The
following is an extension of Proposition 5 in [23], where the case of FH = Exp(1)
is considered.

PROPOSITION 3.2. Let C(α-GPP)(β, FH) denote the asymptotic constant on
the right-hand side of (3.16). Then, for any propagation effect distribution FH

satisfying condition (A) of Theorem 2.1,

(3.17) lim
α↓0

C(α-GPP)(β, FH) =
β

π
sin

π

β
.

Note that the right-hand side of (3.17) is just the asymptotic constant in Corol-
lary 3.1 for the homogeneous Poisson-based model.

P r o o f. The proof essentially follows a similar line to that of Proposition 5
in [23]. Since the asymptotic constant (2.1) in Theorem 2.1 does not depend on
the intensity of the point process, we here choose λ = α/π. Then, we can replace
Yi ∼ Gam(i+ 1, α) in Proposition 3.1 (ii) with Yi ∼ Gam(i+ 1, 1). Clearly, the
right-hand side of (3.16) is equal to

(3.18) C(α-GPP)(β, FH) =
αE(H1

1/β)

Γ(1 + 1/β)

∞∫
0

∞∏
i=1

{
1−αE

[
1−LH

((
t

Yi

)β)]}
dt.

We use here the fact that, for any δ > 0, there exists an xδ ∈ (0, 1) such that
e−(1+δ)x 6 1− x 6 e−x for x ∈ [0, xδ]. Thus, for α ∈ (0, xδ], the integrand above
has upper and lower bounds such as

(3.19) exp

{
− (1 + δ)α

∞∑
i=1

E

[
1− LH

((
t

Yi

)β)]}
6
∞∏
i=1

{
1−αE

[
1−LH

((
t

Yi

)β)]}
6exp

{
−α

∞∑
i=1

E

[
1−LH

((
t

Yi

)β)]}
.
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Here, applying the density function of Yi ∼ Gam(i+ 1, 1), i ∈ N, we have

∞∑
i=1

E

[
1− LH

((
t

Yi

)β)]
=
∞∫
0

(1− e−y)

[
1− LH

((
t

y

)β)]
dy(3.20)

= t
∞∫
0

(1− e−tu) [1− LH(u−β)] du,

where the last equality follows by substituting u = y/t. From the last expression
above, we have, for any t > 0,

(3.21)

t
∞∫
0

[1−LH(u−β)] du− 1 6
∞∑
i=1

E

[
1−LH

((
t

Yi

)β)]
6 t
∞∫
0

[1−LH(u−β)] du,

and the common integral on both the sides reduces to

∞∫
0

[1− LH(u−β)] du = E
[∞∫

0

(1− e−H1u−β
) du

]
(3.22)

=
E(H1

1/β)

β

∞∫
0

(1− e−v) v−1−1/β dv

= E(H1
1/β) Γ

(
1− 1

β

)
,

where the second equality follows by substituting v = H1 u
−β , and the last equal-

ity follows from the integration by parts. Hence, applying (3.19)–(3.22) to (3.18)
and using Γ(x) Γ(1− x) = π csc(π x) for x ∈ (0, 1), we obtain

1

1 + δ

β

π
sin

π

β
6 C(α-GPP)(β, FH) 6 eα

β

π
sin

π

β
.

The assertion follows as α ↓ 0 since δ is arbitrary. �

3.3. A counterexample. Finally in this section, we give a simple counterex-
ample that violates condition (B) of Theorem 2.1. Let T denote a random vari-
able with density function fT (t) = (a − 1) t−a, t > 1, for a ∈ (1, 2). Note that
ET =∞. Given a sample of T , we consider the mixed and randomly shifted lattice
Φ = (Z× T Z) + UT , where UT denotes a uniformly distributed random variable
on [0, 1]× [0, T ]. The intensity λ of Φ is then λ = E(1/T ) = (a− 1)/a <∞. For
any nonnegative and measurable function g, the definition of the Palm probability
gives

Eog(T ) =
1

λ
E
(
g(T )Φ(I)

)
=

1

λ
E
(
g(T )E

(
Φ(I) | T

))
=

1

λ
E

(
g(T )

T

)
,
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where I = [0, 1]2. Hence, applying R(o)2 = (1 + T 2)/4 to the above, we have

Eo
(
R(o)2

)
=

1

4λ
E

(
1

T
+ T

)
=

1

4λ

(
λ+ E(T )

)
=∞.

4. TAIL ASYMPTOTICS FOR BOUNDED PATH-LOSS MODELS

In this section, we consider bounded and regularly varying path-loss functions.
We assume that the distribution of propagation effects is light-tailed, and restrict
ourselves to two cases of the point process Φ; one is a homogeneous Poisson point
process on Rd and the other is an α-Ginibre point process on C ≃ R2. In both the
cases, we derive the same logarithmically asymptotic upper bound on the SIR tail
distributions. Furthermore, when Φ is a homogeneous Poisson point process and
the propagation effects are exponentially distributed, a logarithmically asymptotic
lower bound with the same order as the upper bound is obtained. We first impose
an assumption on the path-loss function ℓ.

ASSUMPTION 4.1. ℓ is nonincreasing, bounded on [0,∞) and regularly vary-
ing at infinity with index −dβ, β > 1, in the sense that (see, e.g., [4], [28])

lim
x→∞

ℓ(t x)

ℓ(x)
= t−d β for all t > 0.

In what follows, we suppose for simplicity that ℓ is bounded by one; that
is, ℓ(r) 6 1 for r ∈ [0,∞). Let g(s) = 1/ℓ(s1/d), s > 0. By Assumption 4.1
above, we see that the function g is nondecreasing and regularly varying at in-
finity with index β. Thus, we can define an asymptotic inverse function h of g
satisfying g

(
h(z)

)
∼ h

(
g(z)

)
∼ z as z → ∞ (see, e.g., [4], Section 1.5; [28],

Chapter 1). The function h is asymptotically unique and also regularly varying
at infinity with index 1/β. For example, when ℓ(r) = (1 + rdβ)−1, then g(s) =
1/ℓ(s1/d) = 1 + sβ , and we can take h(z) = z1/β . More generally, if ℓ(r) =(
1 + rdβ [log(1 + r)]a

)−1 with a > −d β, then g(s) = 1 + sβ [log(1 + s1/d)]a,
and we can take h(z) = z1/β (dβ/ log z)a/β . The following theorem states that the
SIR tail probability P(SIRo > θ) is asymptotically bounded above by e−Θ(h(θ)) as
θ →∞.

THEOREM 4.1. For the cellular network model described in Section 1 with the
path-loss function satisfying Assumption 4.1, we suppose that the distribution FH

of the propagation effects Hi, i ∈ N, satisfies the following:
(a) It is light-tailed; that is, there exists a (possibly infinite) ζ0 > 0 such that

the moment generating functionMH(ζ) = EeζH1 is finite for ζ < ζ0.
(b) The Laplace transform LH satisfies logLH(s) = o

(
L1/β(s)

)
as s→∞

for any regularly varying function L1/β with index 1/β.
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If Φ = {Xi}i∈N is a homogeneous Poisson point process on Rd with positive
and finite intensity λ, then using the function h defined above, we have

(4.1) lim sup
θ→∞

1

h(θ)
logP(SIRo > θ) 6 −πdλΓ

(
1− 1

β

)
ζ0

1/β E(H1
1/β),

where ζ0 is the critical value for the existence of the moment generating func-
tion MH of Hi, i ∈ N. Moreover, if d = 2 and Φ = {Xi}i∈N is an α-Ginibre
point process on C ≃ R2, we have (4.1) as well.

Note that if ζ0 =∞, the SIR tail probability P(SIRo > θ) decays faster than
e−Θ(h(θ)) as θ →∞.

P r o o f. Since FH is light-tailed, by Markov’s inequality we obtain FH(x) =
P(eζHi > eζx) 6MH(ζ) e−ζx for ζ ∈ (0, ζ0). Thus, by ℓ(r) 6 1, (2.2) with re-
placing |Xi|−dβ with ℓ(|Xi|) is bounded above as

P(SIRo > θ) 6MH(ζ)E

[ ∞∏
i=2

LH
(
ζ θ

ℓ(|Xi|)
ℓ(|X1|)

)]
(4.2)

6 MH(ζ)

LH(ζ θ)
E
[ ∞∏
i=1

LH
(
ζ θ ℓ(|Xi|)

)]
.

Suppose that Φ = {Xi}i∈N is a homogeneous Poisson point process. For sim-
plicity, we choose λ = πd

−1. Then, applying the probability generating functional
(see, e.g., [10], Section 9.4) to the expectation above, we have

E
[ ∞∏
i=1

LH
(
ζ θ ℓ(|Xi|)

)]
= exp

{
− 1

πd

∫
Rd

[
1− LH

(
ζ θ ℓ(|x|)

)]
dx

}
(4.3)

= exp
{
− d

∞∫
0

[
1− LH

(
ζ θ ℓ(r)

)]
rd−1 dr

}
= exp

{
−
∞∫
0

[
1− LH

(
ζ θ ℓ(s1/d)

)]
ds

}
,

where the last equality follows by the substitution of s = rd. Here, we set θ =
g(z) = 1/ℓ(z1/d), z > 0. Note that θ →∞ as z →∞. Then, since h

(
g(z)

)
∼ z

as z →∞, we have

lim
θ→∞

1

h(θ)

∞∫
0

[
1−LH

(
ζ θ ℓ(s1/d)

)]
ds = lim

z→∞

1

z

∞∫
0

[
1−LH

(
ζ
g(z)

g(s)

)]
ds(4.4)

= lim
z→∞

∞∫
0

[
1− LH

(
ζ

g(z)

g(z t)

)]
dt,

where t = s/z is substituted in the second equality. We will confirm later whether
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the dominated convergence theorem is applicable in the last expression above and
we now admit it. The regular variation of g with index β then yields

lim
z→∞

∞∫
0

[
1− LH

(
ζ

g(z)

g(z t)

)]
dt =

∞∫
0

[
1− LH(ζ t−β)

]
dt(4.5)

= ζ1/β E(H1
1/β) Γ

(
1− 1

β

)
,

where the second equality follows by a similar procedure to that for (3.22). Hence,
applying (4.3)–(4.5) to (4.2) and taking ζ → ζ0, we obtain inequality (4.1) since
logLH(ζ θ)/h(θ)→ 0 as θ →∞ by condition (b) of the theorem.

Let us show that the dominated convergence theorem is applicable in (4.5).
Since g is regularly varying with index β, we have g(z) = zβ L0(z) with a slowly
varying function L0, for which we can take a constant B > 0 such that

L0(z) = exp

(
η(z) +

z∫
B

ϵ(u)

u
du

)
, z > B,

where η(z) is bounded and converges to a constant as z →∞, and ϵ(u) is bounded
and converges to zero as u → ∞ (see, e.g., [4], Section 1.3, or [28], Chapter 1).
We define constants η∗ and ϵ∗ as

η∗ = sup
z>B
|η(z)|, ϵ∗ = sup

z>B
|ϵ(z)|.

Note here that we can take B large enough such that ϵ∗ < β − 1. Then, for z > B
and t > 1, we have

(4.6)
g(z)

g(z t)
6 t−β e2η

∗
exp

(
ϵ∗

zt∫
z

du

u

)
= e2η

∗
t−(β−ϵ

∗),

so that the integrand on the left-hand side of (4.5) satisfies

1− LH
(
ζ

g(z)

g(z t)

)
6 1(0,1](t) +

[
1− LH

(
ζ e2η

∗
t−(β−ϵ

∗)
)]

1(1,∞)(t).

As was the case with (3.22) (and (4.5)), the integral of the second term on the
right-hand side above amounts to
∞∫
1

[
1−LH

(
ζ e2η

∗
t−(β−ϵ

∗)
)]

dt 6 E
[∞∫

0

(
1− e−ζe

2η∗H1 t−(β−ϵ∗))
dt
]

= (ζ e2η
∗
)1/(β−ϵ

∗) E(H1
1/(β−ϵ∗)) Γ

(
1− 1

β − ϵ∗

)
<∞,

and the dominated convergence theorem is applicable.
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Next, we show (4.1) when d = 2 and Φ = {Xi}i∈N is an α-Ginibre point
process. Recall Proposition 3.1 (i), which states that {|Xi|2}i∈N has the same dis-
tribution as {Y̌i}i∈N, and each Y̌i is extracted from {Yi}i∈N with probability α in-
dependently, where Yi ∼ Gam(i, α), i ∈ N, are mutually independent. Applying
this to (4.2), we have

P(SIRo > θ) 6 MH(ζ)

LH(ζ θ)

∞∏
i=1

E
[
1− α+ αLH

(
ζ θ ℓ(Yi

1/2)
)]
,

so that, using log x 6 x− 1,

logP(SIRo > θ) 6 log
MH(ζ)

LH(ζ θ)
− α

∞∑
i=1

E
[
1− LH

(
ζ θ ℓ(Yi

1/2)
)]
.

Hence, applying the density function of Yi ∼ Gam(i, α), i ∈ N, we obtain

α
∞∑
i=1

E
[
1− LH

(
ζ θ ℓ(Yi

1/2)
)]

=
∞∑
i=1

∞∫
0

(y/α)i−1 e−y/α

(i− 1)!

[
1− LH

(
ζ θ ℓ(y1/2)

)]
dy

=
∞∫
0

[
1− LH

(
ζ θ ℓ(y1/2)

)]
dy,

which is the same expression as the exponent in equality (4.3) and leads to the
same result. �

REMARK 4.1. We can see that many practical distributions satisfy condi-
tion (b) of Theorem 4.1. Since LH(s) > E

(
e−sH1 1{H161/s}

)
> e−1 FH(1/s), we

have | logLH(s)| 6 1 − logFH(1/s). Thus, for example, if FH(x) > c xa for
x ∈ [0, ϵ] with c > 0, a > 0 and ϵ > 0, then | logLH(s)| = O(log s) as s→∞.
On the other hand, a counterexample is such that there exists a constant ϵ > 0 with
FH(ϵ) = 0. Then, LH(s) 6 e−ϵs, and we have | logLH(s)| > ϵ s.

REMARK 4.2. When FH = Exp(1), we have MH(s) = (1 − s)−1, s < 1.
In this case, ζ0 = 1 and E(H1

1/β) = Γ(1 + 1/β) in Theorem 4.1, so that, by
Γ(1 + 1/β) Γ(1− 1/β) = (π/β) csc(π/β), Theorem 4.1 reduces to

(4.7) lim sup
θ→∞

1

h(θ)
logP(SIRo > θ) 6 −π

β
csc

π

β
.

When FH = Exp(1) and Φ is a homogeneous Poisson point process with
positive and finite intensity, we can show that the tail distribution of the SIR has
a logarithmically asymptotic lower bound which has the same order as the upper
bound (4.7).
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PROPOSITION 4.1. For the cellular network model with the path-loss func-
tion satisfying Assumption 4.1, when FH = Exp(1) and Φ = {Xi}i∈N is a homo-
geneous Poisson point process on Rd with positive and finite intensity λ, we have

(4.8) lim inf
θ→∞

1

h(θ)
logP(SIRo > θ) > −πdλE[ℓ(|X1|)−1/β]

π

β
csc

π

β
.

P r o o f. Applying FH(x) = e−x, x > 0, and LH(s) = (1 + s)−1, s > 0, we
rewrite (2.2) as

P(SIRo > θ) = E

[ ∞∏
i=2

(
1 + θ

ℓ(|Xi|)
ℓ(|X1|)

)−1]
.

Let the intensity of the Poisson point process be λ = πd
−1. By concavity of loga-

rithmic functions, Jensen’s inequality yields

logP(SIRo > θ) > E

[
log E

[ ∞∏
i=2

(
1 + θ

ℓ(|Xi|)
ℓ(|X1|)

)−1 ∣∣∣ |X1|
]]

= − 1

πd
E

[ ∫
|x|>|X1|

{
1−

(
1 + θ

ℓ(|x|)
ℓ(|X1|)

)−1}
dx

]

= −E
[ ∞∫
|X1|d

{
1−

(
1 + θ

ℓ(s1/d)

ℓ(|X1|)

)−1}
ds

]
,

where we apply the probability generating functional to the conditional expectation
given |X1| in the first equality and use a similar procedure to that for (4.3) in the
last equality. Here, as in the proof of Theorem 4.1, we set θ = g(z). Then, since
h
(
g(z)

)
∼ z as z →∞, we have

(4.9) lim inf
θ→∞

1

h(θ)
logP(SIRo > θ)

> − lim sup
z→∞

1

z
E

[ ∞∫
|X1|d

{
1−

(
1 +

1

ℓ(|X1|)
g(z)

g(s)

)−1}
ds

]

= − lim sup
z→∞

E

[ ∞∫
|X1|d/z

{
1−

(
1 +

1

ℓ(|X1|)
g(z)

g(z t)

)−1}
dt

]
,

where t = s/z is substituted in the last equality. We will confirm later that the
dominated convergence theorem is applicable to the above, and we have

(4.10)

lim
z→∞

E

[ ∞∫
|X1|d/z

{
1−

(
1 +

1

ℓ(|X1|)
g(z)

g(z t)

)−1}
dt

]
= E

[∞∫
0

dt

1 + ℓ(|X1|) tβ

]
.
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Furthermore, substituting u = ℓ(|X1|) tβ , we obtain

(4.11)
∞∫
0

dt

1 + ℓ(|X1|) tβ
=

1

β ℓ(|X1|)1/β
∞∫
0

u1/β−1

1 + u
du =

1

ℓ(|X1|)1/β
π

β
csc

π

β
,

which, together with (4.9) and (4.10), leads to (4.8).
It remains to show whether the dominated convergence theorem is applicable

in (4.10). Applying inequality (4.6), we have{
1−

(
1 +

1

ℓ(|X1|)
g(z)

g(z t)

)−1}
1{|X1|6(zt)1/d}

6 1(0,1](t) +
(
1 + e−2η

∗
ℓ(|X1|) tβ−ϵ

∗)−1
1(1,∞)(t).

As was the case with (4.11), the integral of the second term on the right-hand side
above amounts to

∞∫
1

dt

1 + e−2η∗ ℓ(|X1|) tβ−ϵ∗
6 e2η

∗/(β−ϵ∗)

(β − ϵ∗) ℓ(|X1|)1/(β−ϵ∗)
∞∫
0

u−1+1/(β−ϵ∗)

1 + u
du

=
e2η

∗/(β−ϵ∗)

ℓ(|X1|)1/(β−ϵ∗)
π

β − ϵ∗
csc

π

β − ϵ∗
.

It then suffices to show that E[ℓ(|X1|)−1/(β−ϵ
∗)] < ∞. The regular variation of

ℓ with index −dβ implies that ℓ(r) = r−dβ L̃0(r) with another slowly varying
function L̃0, for which we can take a constant B̃ > 1 such that

L̃0(r) = exp

(
η̃(r) +

r∫̃
B

ϵ̃(t)

t
dt

)
, r > B̃,

where η̃(r) is bounded and converges to a constant as r →∞, and ϵ̃(t) is bounded
and converges to zero as t→∞. Define constants η̃β and ϵ̃β as

η̃β = sup
x>B̃

|η̃(x)|
β − ϵ∗

, ϵ̃β = sup
x>B̃

|ϵ̃(x)|
β − ϵ∗

.

Since ℓ is nonincreasing, we have

(4.12) ℓ(|X1|)−1/(β−ϵ
∗)

6 ℓ(B̃)−1/(β−ϵ
∗) 1

[0,B̃]
(|X1|) + |X1|d L̃0(|X1|)−1/(β−ϵ

∗) 1
(B̃,∞)

(|X1|)

6 ℓ(B̃)−1/(β−ϵ
∗) + eη̃β |X1|d+ϵ̃β ,

which completes the proof since |X1| has any order of moments. �
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REMARK 4.3. During the preparation of the first draft, the authors have
found that the result in [15], Section IV-B, corresponds to our (4.7) and (4.8)
for the homogeneous Poisson-based model with d = 2, FH = Exp(1) and ℓ(r) =
(1 + r2β)−1. Here we deal with a much wider class of path-loss functions than that
of power-law decaying functions.

REMARK 4.4. The results in this section hold when we relax the nonincreas-
ing property of ℓ in Assumption 4.1 such that, for any finite B̃ > 0, there exists
an ε

B̃
> 0 such that ℓ(r) > ε

B̃
for r ∈ [0, B̃], as we remain to assume the bound-

edness and regular variation. In this case, the proofs remain the same except for
replacing ℓ(B̃) in (4.12) with ε

B̃
.
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