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Abstract. We consider sums of n i.i.d. random variables with tails
close to exp{−xβ} for some β > 1. Asymptotics developed by Rootzén
(1987) and Balkema, Klüppelberg, and Resnick (1993) are discussed from
the point of view of tails rather than of densities, using a somewhat different
angle, and supplemented with bounds, results on a random number N of
terms, and simulation algorithms.
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1. INTRODUCTION

Let X,X1, . . . , Xn be i.i.d. with common distribution F . A recurrent theme
in applied probability is then to determine the order of magnitude of the tail
P(Sn > x) of their sum Sn = X1 + . . .+Xn.

The results vary according to the heaviness of the tail F = 1− F of F . In the
heavy-tailed case, defined as the X for which EesX =∞ for all s > 0, there is a
subexponential class in which the results take a clean form (see, e.g., [12] or [3]).
In fact, by the very definition of subexponentiality, we have P(Sn > x) ∼ nF (x)
as x → ∞, where F (x) = P(X > x). The main examples are regularly varying
F (x), lognormal X , and Weibull tails F (x) = e−cx

β
, where 0 < β < 1.

In the light-tailed case, defined as theX for which EesX <∞ for some s > 0,
the most standard asymptotic regime is not x → ∞ but rather x = xn going to
infinity at rate n. For example, let xn = nz for some z, where typically z > EX
in order to make the problem a rare-event one. Under some regularity conditions,
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the sharp asymptotics are then given by the saddlepoint approximation P(Sn > x)
∼ c(z)e−nI(z)/n1/2 for suitable c(z) and I(z), cf. [14]. This is a large deviations
result, describing how likely it is for Sn to be far from the value nEX predicted by
the LLN. However, in many applications the focus is rather on a small or moderate
n, i.e. the study of P(Sn > x) as x→∞ with n fixed.

The basic light-tailed explicit examples in this setting are the exponential dis-
tribution, the gamma distribution, the inverse Gaussian distribution, and the normal
distribution. The tail of F is exponential or close-to-exponential for exponential,
gamma and inverse Gaussian distributions; this is the borderline between light and
heavy tails, and the analysis of tail behaviour is relatively simple in this case (we
give a short summary later in Section 8). The most standard class of distributions
with a lighter tail is formed by the Weibull distributions where F (x) = e−cx

β
for

some β > 1. For β = 2, this is close to the normal distribution, where (by its
well-known Mill’s ratio) F (x) ∼ e−x

2/2/(
√
2πx) when F = Φ is the standard

normal law. The earliest study of tail properties of Sn may be that of [16] which
was later followed up by the mathematically deeper and somewhat general study
of Balkema, Klüppelberg, and Resnick [7], henceforth referred to as BKR. The
setting of both papers concerns densities.

Despite filling an obvious place in the theory of tails of sums, it has been our
impression that this theory is less known than it should be. This was confirmed by a
Google Scholar search which gave only 27 citations of BKR, most of which were
even rather peripheral. One reason may be that the title Densities with Gaussian
tails of BKR is easily misinterpreted; another, the heavy analytic flavour of the
paper. Also note that the focus of [16] is somewhat different, and the set of results
we are interested in here appears as a by-product at the end of that paper.

The purpose of the present paper is twofold: to present a survey from a some-
what different angle than BKR, in the hope of somewhat remedying this situation;
and to supplement the theory with various new results. In the survey part, the aim
has been simplicity and intuition more than generality. In particular, we avoid con-
sidering convex conjugates and some non-standard central limit theory developed
in Section 6 of BKR. These tools are mathematically deep and elegant, but not
really indispensable for developing what we see as the main part of the theory. Be-
yond this expository aspect, our contributions are: to present the main results and
their conditions in terms of tails rather than densities; to develop simple upper and
lower bounds; to study the case of a random number of terms N , more precisely
properties of P(SN > x) when N is an independent Poisson r.v.; and to look into
simulation aspects.

The precise assumptions on the distribution F in the paper vary somewhat
depending on the context and progression of the paper. The range goes from the
vanilla Weibull tail F (x) = e−cx

β
via an added power in the asymptotics, F (x) ∼

dxαe−cx
β

, to the full generality of the BKR set-up. Here cxβ is replaced by a
smooth convex function ψ(x) satisfying ψ′(x)→∞, and the density has the form
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γ(x)e−ψ(x) for a function γ which is in some sense much less variable than ψ (the
precise regularity conditions are given in Section 4).

2. HEURISTICS

With heavy tails, the basic intuition on the tail behaviour of Sn is the principle
of a single big jump; this states that a large value of Sn is typically caused by one
summand being large while the rest take ordinary values. A rigorous formulation
of this can be proved in a few lines from the very definition of subexponentiality,
see, e.g., [3], p. 294. With light tails, the folklore is that if Sn is large, say Sn ≈ x,
then all Xi are of the same order x/n.

This suggest that the asymptotics of P(Sn > x) are essentially determined by
the form of F locally around x/n. A common type of such local behaviour is that
F
(
x+ e(x)y

)
∼ F (x)e−y for some positive function e(x) as x→∞ with y ∈ R

fixed; this is abbreviated as F ∈ GMDA(e). Equivalently,

(2.1) Λ
(
x+ e(x)y

)
∼ Λ(x) + y,

where Λ(x) = − logF (x). Here one can take e(x) = E[X − x | X > x], the so-
called mean excess function; if F admits a density f(x), an alternative asymptot-
ically equivalent choice is the inverse hazard rate e(x) = 1/λ(x), where λ(x) =
Λ′(x) = f(x)/F (x).

In fact, (2.1) is a necessary and sufficient condition for F to be in GMDA(e),
the maximum domain of attraction of the Gumbel distribution [12]. Even if this
condition may look special at first sight, it covers the vast majority of well-behaved
light-tailed distributions, with some exceptions such as certain discrete distribu-
tions like the geometric or Poisson.

From these remarks one may proceed for n = 2 from the convolution,

(2.2) P(X1 +X2 > x) = (f ∗ F )(x) =
∞∫
−∞

λ(z) exp{−Λ(z)− Λ(x− z)} dz

=
∞∫
−∞

e(x/2)

e
(
x/2 + e(x/2)y

) exp{−Λ(x
2
+ e

(
x

2

)
y

)
−Λ

(
x

2
− e

(
x

2

)
y

)}
dy,

where we have substituted z = x/2 + e(x/2)y. First, note that if λ(x) tends to
zero as x→∞ and is differentiable, we can expand Λ about y = 0 as

Λ

(
x

2
+ e

(
x

2

)
y

)
∼ Λ

(
x

2

)
+ y +

λ′(x/2)

2λ(x/2)2
y2.

By defining σ2(u) = λ(u)2/2λ′(u) and repeating this argument, we get

Λ

(
x

2
± e

(
x

2

)
y

)
∼ Λ

(
x

2

)
± y + y2

4σ2(x/2)
.(2.3)
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Also, we will use that e(x) is self-neglecting, i.e. for all t, e
(
x+ e(x)t

)
∼ e(x) as

x→∞, as is well known and easy to prove from (2.1). Combining (2.3) and the
self-neglecting property with (2.2) gives us

P(X1 +X2 > x) ∼
∞∫
−∞

1 · exp
{
−2Λ

(
x

2

)
− y2

2σ2(x/2)

}
dy(2.4)

=
√

2πσ2(x/2) exp{−2Λ(x/2)}.

In summary, rewriting (2.4) gives

(2.5) F ∗2(x) = P(X1 +X2 > x) ∼ F (x/2)2

√
π
λ(x/2)2

λ′(x/2)
.

The key issue in making this precise is to keep better track of the second order term
in the Taylor expansion, as discussed later in the paper.

REMARK 2.1. The procedure to arrive at (2.5) is close to the Laplace method
for obtaining integral asymptotics. Classically, the integral in question has the form∫ b
a
e−θh(z) dz, and one proceeds by finding the z0 at which h(z) is minimum and

performing a second order Taylor expansion around z0. Here, we neglected the
λ(z) in front and took the relevant analogue of z0 as x/2, which is precisely the
minimizer of Λ(x− z) + Λ(z).

REMARK 2.2. If X1, X2 have different distributions F1, F2, the above calcu-
lations suggest that X1 +X2 > x will occur roughly when X1 ≈ z(x), X2 ≈ x−
z(x), where z = z(x) is the solution of λ1(z) = λ2(x− z). In fact, this is what is
needed to make the first order Taylor terms cancel. For example, if F 1(x) = e−x

β1 ,
F 2(x) = e−x

β2 with β2 < β1, we get z(x)∼cxη, where η=(β2−1)/(β1−1)<1,
c = (β2/β1)

1/(β1−1). This type of heuristic is an important guideline when design-
ing importance sampling algorithms, cf. [4], V.1, VI.2.

3. WEIBULL-LIKE SUMS

We now make the heuristics of the preceding section rigorous for the case of
different distributions F1, F2 of X1, X2 such that the densities f1, f2 satisfy

(3.1) fi(x) ∼ dixαi+β−1e−cix
β
, x→∞, i = 1, 2,

for some common β > 1, where the αi can take any value in (−∞,∞), and ci, di
are positive (i = 1, 2).

We start by some analytic preliminaries. Given (3.1), we define

(3.2) η = c
1/(β−1)
1 + c

1/(β−1)
2 , θ1 =

c
1/(β−1)
2

η
, θ2 =

c
1/(β−1)
1

η
, κ =

ηβ−1

βc1c2
.
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Note that

(3.3) F i(x) ∼
di
βci

xαie−cix
β

(hence ci = 1, di = β, αi = 0 corresponds to the traditional Weibull tail e−x
β

).
Define the excess function of Fi by ei(x) = F i(x)/fi(x). Thus ei(x) is the inverse
hazard rate and has asymptotics x1−β/(βci) with limit zero as x→∞.

LEMMA 3.1. Define c = c1θ
β
1 + c2θ

β
2 . Then c < min(c1, c2), θ1 + θ2 = 1,

and

(3.4) e1(θ1x) ∼ e2(θ2x) ∼
κ

xβ−1
=

1

βc1θ
β−1
1 xβ−1

=
1

βc2θ
β−1
2 xβ−1

.

P r o o f. All statements are obvious except c < min(c1, c2). But

c = c1θ
β−1
1 θ1 + c2θ

β−1
2 θ2 =

c1c2θ1
ηβ−1

+
c1c2θ2
ηβ−1

=
c1c2
ηβ−1

(3.5)

<
c1c2

[c
1/(β−1)
2 ]

β−1 = c1.

Similarly, c < c2. �

LEMMA 3.2. We have

(1 + h)β = 1 + hβ +
h2

2
β(β − 1)ω(h),

where ω(h)→ 1 as h→ 0 and ωε = inf−1+ε<h<ε−1 ω(h) > 0 for all ε > 0.

P r o o f. By standard Taylor expansion results, ω(h) = (1 + h∗)β−2, where
h∗ is between 0 and h. The statement on ωε follows from this by considering all
four combinations of the cases h ¬ 0 or h > 0, 1 < β ¬ 2 or β  2 separately. �

The key result is the following. It allows us, for example, to determine the
asymptotics of the tail or density of F ∗n in the Weibull-like class by a straightfor-
ward induction argument, see Corollary 3.1 below.

THEOREM 3.1. Under the assumption (3.1), P(X1 +X2 > x) ∼ kxγe−cx
β

as x→∞, where γ = α1 + α2 + β/2 and k = d1d2θ
α1
1 θα2

2 κη1−β(2πσ2)1/2/β,
with θ1, θ2, κ, η as in (3.2), the constant c as in Lemma 3.1, and σ2 determined by
the equality

1

σ2
=

1

σ21
+

1

σ22
, where

1

σ2i
= β(β − 1)ciθ

β−2
i κ2.

Further, the density of X1 +X2 has the asymptotic form βckxγ+β−1e−cx
β

.
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REMARK 3.1. If F1 = F2 and c1 = c2 = 1, then θ1 = θ2 = 1/2 and c =
1/2β−1 in accordance with Section 2.

P r o o f. By Lemma 3.1, we can choose 0<a−<a+<1 such that aβ+c2 > c,
(1− a−)c1>c. Then

P(X1 +X2 > x,X1 ̸∈ [a−x, a+x]) ¬ P(X1 > a+x) + P
(
X2 > (1− a−)x

)
is o(xγe−cx

β
), and so it suffices to show that

(3.6) P(X1 +X2 > x, a−x < X1 < a+x) =
a+x∫
a−x

f1(z)F 2(x− z) dz

has the claimed asymptotics. The last expression together with a− > 0, a+ < 1
also shows that the asymptotics is a tail property, so that without loss of generality
we may assume that ei(θix) = κ/xβ−1, implying that (3.4) holds with equality.

Now

(3.7) P(X1 +X2 > x, a− < X1 < a+x) =
a+x∫
a−x

f1(z)F 2(x− z) dz

=
a+x∫
a−x

d1d2
βc2

zα1+β−1(x− z)α2 exp{−c1zβ − c2(x− z)β}dz.

Using the substitution z = θ1x+ yκ/xβ−1, we have x− z = θ2x− yκ/xβ−1,

c1z
β + c2(x− z)β = c1θ

β
1x

β
(
1 + h1(x, y)

)β
+c2θ

β
2x

β
(
1− h2(x, y)

)β
,(3.8)

where hi(x, y) = yκ/(θix
β). By Taylor expanding

(
1±hi(x, y)

)β as in Lemma 3.2
and using (3.4), the first order term of (3.8) is

c1θ
β
1x

β + c2θ
β
2x

β + βc1θ
β−1
1 κ− βc2θβ−12 κ = cxβ.

Defining ω1(x, y) = ω
(
h1(x, y)

)
, ω2(x, y) = ω

(
−h2(x, y)

)
, we obtain the second

line of (3.7) in the form

d1d2
βc2

y+(x)∫
y−(x)

(
θ1x+ e1(θ1x)y

)α1+β−1(θ2x− e2(θ2x)y)α2

× exp

{
− cxβ − y2

2σ21x
β
ω1(x, y)−

y2

2σ22x
β
ω2(x, y)

}
κ

xβ−1
dy,

where y−(x) = (a− − θ1)xβ/κ, y+(x) = (a+ − θ1)x/e(θ1x). Notice here that
a−x < z < a+x ensures the bound

h1(x, y) =
1

θ1x
(z − θ1x) 

a−
θ1
− 1 > −1.



Tail asymptotics of light-tailed Weibull-like sums 241

Similarly, −h2(x, y)  −a+/θ2 − 1 > 1. Using Lemmas 3.1 and 3.2 shows that
the ωi(x, y) are uniformly bounded below, and that

(
θix+ ei(θix)y

)
/x is bounded

in y−(x) < y < y+(x) and goes to θi as x→∞. A dominated convergence argu-
ment proves therefore that the asymptotics of (3.6) is the same as that of

d1d2κ

βc2
θα1+β−1
1 θα2

2 xα1+α2e−cx
β
∞∫
−∞

exp

{
− y2

2σ2xβ

}
dy

=
d1d2κη

1−β

β
θα1
1 θα2

2 xα1+α2e−cx
β
(2πσ2xβ)1/2 = kxγe−cx

β
.

This proves the assertion on the tail ofX1 +X2, and the proof of the density claim
differs only by constants. �

COROLLARY 3.1. Assume the density f ofF satisfies f(x) ∼ dxα+β−1e−cx
β

as x→∞. Then the tail and the density of an i.i.d. sum satisfy

F ∗n(x) = P(Sn > x) ∼ k(n)xα(n)e−c(n)x
β
,(3.9)

f∗n(x) ∼ βc(n)k(n)xα(n)+β−1e−c(n)x
β
,(3.10)

where c(n) = c/nβ−1, α(n) = nα+ (n− 1)β/2, and

k(n) =
dn

βc

[
2π

β(β − 1)c

](n−1)/2
n

1
2
(β−n(2α+β)−1).(3.11)

P r o o f. We use induction. The statement is trivial for n = 1, so assume it is
proved for n − 1. Taking F1 = F , F2 = F ∗(n−1) and applying Theorem 3.1 im-
plies the result, and provides recurrences for c(n), α(n), and k(n). To be specific,
say that the Fi distributions have densities fi like

fi(x) ∼ di(n)xαi(n)+β−1e−ci(n)x
β
, i = 1, 2.

As F1 = F is fixed, we simply have c1(n) = c, d1(n) = d, α1(n) = α, and for
F2 = F ∗(n−1) the induction hypothesis gives us

c2(n) =
c

(n− 1)β−1
, d2(n) = βc2(n− 1)k(n− 1), α2(n) = α(n− 1).

We extend the notation of Theorem 3.1 in an obvious way, for example we
define η(n) = c1(n)

1/(β−1) + c2(n)
1/(β−1). These simplify to

η(n) =
nc1/(β−1)

n− 1
, θ1(n) =

1

n
, θ2(n) =

n− 1

n
, κ(n) =

nβ−1

βc
.

So c(n) = c1(n)θ1(n)
β + c2(n)θ2(n)

β = c/nβ + c(n − 1)/nβ = c/nβ−1. Also,
we have α(n) = α1(n) + α2(n) + β/2 = nα+ (n− 1)β/2.
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The last recursion is less simple. We need the σ constants:

σ21(n) =
βcn−β

β − 1
, σ22(n) =

βc(n− 1)n−β

β − 1
, σ2(n) =

βc(n− 1)n−β−1

β − 1
.

Setting k(1) = d/(βc), we get for n  2

k(n) = d1(n)d2(n)θ1(n)
α1(n)θ2(n)

α2(n)κ(n)η(n)1−β
(
2πσ(n)2

)1/2
/β

=

[
2π

β(β − 1)c

]1/2
d(n− 1)α(n−1)+

1
2
(β(n−2)+1)n−αn−

1
2
β(n−1)− 1

2k(n− 1)

=
dn

βc

[
2π

β(β − 1)c

](n−1)/2 n∏
ℓ=2

(ℓ− 1)α(ℓ−1)+
1
2
(β(ℓ−2)+1)ℓ−αℓ−

1
2
β(ℓ−1)− 1

2

=
dn

βc

[
2π

β(β − 1)c

](n−1)/2
n

1
2
(β−n(2α+β)−1). �

Note that (3.10) is already given in Rootzén [16] (see his equations (6.1)–
(6.2)). We point out later that the assumptions on the density can be relaxed to
F (x) ∼ kxαe−cxβ , where k = d/cβ.

4. LIGHT-TAILED SUMS

We now proceed to the set-up of BKR and first introduce some terminology
related to the densities of the form f(x) ∼ γ(x)e−ψ(x). The main assumption is
that the function ψ is non-negative, convex, C2, and its first order derivative is
denoted by λ. Further, it is supposed that

(4.1) lim
x→∞

λ(x) =∞,

λ′ is ultimately positive, and 1/
√
λ′ is self-neglecting, i.e., as x→∞,

(4.2) λ′
(
x+ y/

√
λ′(x)

)
∼ λ′(x).

A function γ is called flat for ψ if locally uniformly on bounded y-intervals

(4.3) lim
x→∞

γ
(
x+ y/

√
λ′(x)

)
γ(x)

= 1.

Similar conventions apply to functions denoted by ψ1, ψ2, etc. For the Weibull
case,

ψ(x) = axβ, λ(x) = aβxβ−1, γ(x) = λ(x),

and so (4.2) and (4.3) are satisfied. Examples beyond Weibull-like distributions are
ψ(x) = x log x and ψ(x) = eax, a > 0.
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Define the classH(γ, ψ) as the class of all distributions F having a density of
the form γ(x)e−ψ(x), where ψ is as above, and γ is a measurable function which
is flat for ψ, and let H(γ, ψ) be the class of distributions F satisfying F (x) ∼
γ(x)e−ψ(x)/λ(x).

THEOREM 4.1. (i)H(γ, ψ) ⊆ H(γ, ψ).
(ii) AssumeF1 ∈ H(γ1, ψ1), F2 ∈ H(γ2, ψ2). ThenF1 ∗F2 ∈ H(γ, ψ),where

γ, ψ are determined by first solving

(4.4) q1 + q2 = x, λ1(q1) = λ2(q2)

for q1 = q1(x), q2 = q2(x), and next letting ψ(x) = ψ1(q1) + ψ2(q2),

γ(x) =

√
2πλ′(x)

λ′1(q1)λ
′
2(q2)

γ1(q1)γ2(q2),

where λ(x) = ψ′(x) = λ1(q1) = λ2(q2).
(iii) Let F1 ∈ H(γ1, ψ1), F2 ∈ H(γ2, ψ2). Then there exists Hi ∈ H(γi, ψi),

Hi ∈ GMDA(1/λi), and

H i(x) ∼ F i(x), H1 ∗H2(x) ∼ F1 ∗ F2(x).

Moreover, F1 ∗ F2 ∈ H(γ, ψ) with γ, ψ as in (ii), and F1 ∗ F2 ∈ GMDA(1/λ).

The proof of Theorem 4.1 is given in the Appendix in Section 10. Part (ii)
is in BKR, here slightly reformulated, and a number of examples in BKR can be
obtained as corollaries of this theorem.

REMARK 4.1. Letting τ(y) = λ←1 (y) + λ←2 (y), we can write the solution of
(4.4) in the form

(4.5) q1(x) = λ←1
(
τ←(x)

)
, q2(x) = λ←2

(
τ←(x)

)
(here ·← means the functional inverse).

5. BOUNDS

There are easy upper- and lower-tail bounds for Weibull sums in terms of the
incomplete gamma function Γ(α, x) =

∫∞
x
tα−1e−t dt when β > 1, that in their

simplest form just come from thinking about p-norms ∥y∥p=(|y1|p+. . .+|yn|p)1/p

and the fact that if Y is standard exponential, then Y 1/β is Weibull with tail e−x
β

.

PROPOSITION 5.1. Let X have density βkγ/βxγ−1e−kx
β
/Γ(γ/β), x > 0,

where k > 0, β  1, and γ > 0. Then

Γ(nγ/β, kxβ)

Γ(nγ/β)
¬ P(X1 + . . .+Xn > x) ¬ Γ(nγ/β, kxβ/nβ−1)

Γ(nγ/β)
.
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P r o o f. An X with the given density has the same distribution as (Y/k)1/β ,
where Y is Gamma(α, 1) with density yα−1e−y/Γ(α), and α = γ/β. Therefore,

Xβ
1 + . . .+Xβ

n = ∥X∥ββ
d
= ∥Y/k∥1 = Y1/k + . . .+ Yn/k,

where Y1, . . . , Yn are i.i.d. Gamma(α, 1). From the Jensen and Hölder inequalities
it follows for p  1 and x ∈ Rn that

∥x∥p ¬ ∥x∥1 ¬ ∥x∥pn1−1/p.

Hence, since ∥Y∥1 = Y1 + . . .+ Yn is Gamma(nα, 1) with tail Γ(nα, y)/Γ(nα),
we have for any x > 0

P(X1 + . . .+Xn > x) = P(∥X∥1 > x)

¬ P(∥X∥ββ > xβ/nβ−1) = P(∥Y∥1 > kxβ/nβ−1),

and similarly for the lower bound. �

The (upper) incomplete gamma function Γ(α, x) appearing here is available
in most standard software, but note that an even simpler lower bound comes from
Γ(α, x)  xα−1e−x for x > 0 when α = γ/β  1, respectively, Γ(α, x) 
xα−1e−x

(
x/(x + 1 − α)

)
when α ∈ (0, 1). Moreover, observe that X with the

density given in Proposition 5.1 has tail probability

FX(x) = P(X > x) =
Γ(γ/β, kxβ)

Γ(γ/β)
.

Hence, appealing to the fact that Γ(α, x) ∼ xα−1e−x as x→∞, we see that the
upper bound in Proposition 5.1 is asymptotically

Γ(γ/β)n

Γ(nγ/β)
nnγ/β−1 kn−1

(
x

n

)β(n−1)
FX(x/n)

n.

When γ = β (the ordinary Weibull case), the ratio of this upper bound to the
true asymptotic form for P(X1 + . . .+Xn > x) is

n(n−1/2)

(n− 1)!

[
(β − 1)

2πβ

](n−1)/2
k(n−1)/2

(
x

n

)β(n−1)/2
,

so the upper bound is out only by a polynomial factor in x, which indicates it
is close to the true probability on a logarithmic scale. More precisely, writing
U(x) for the upper bound and P (x) for the true probability, it follows trivially
that x−1 log

(
U(x)

)
∼ x−1 log

(
P (x)

)
as x→∞.

It is straightforward to extend Proposition 5.1 to the following slightly more
general form.
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PROPOSITION 5.2. Let {Xi}ni=1 be independent random variables with den-
sity βkγi/βxγi−1e−kx

β
/Γ(γi/β), x > 0, where k > 0, β  1, and γi > 0 for

i = 1, . . . , n. Then with γ0 =
∑n

i=1 γi we have

Γ(γ0/β, kx
β)

Γ(γ0/β)
¬ P(X1 + . . .+Xn > x) ¬ Γ(γ0/β, kx

β/nβ−1)

Γ(γ0/β)
.

6. MOMENT-GENERATING FUNCTIONS AND THE EXPONENTIAL FAMILY

In this section, we assume thatX ∼ F has the tail asymptotics γ(x)e−x
β
/λ(x)

for some β > 1, where λ(x) = βxβ−1. Define

F̂ [θ] = E[eθX ] =
∞∫
−∞

eθz F (dz), Fθ(dz) =
eθz

F̂ [θ]
F (dz),

where expectations with respect to Fθ will be denoted by Eθ[·]. Determining the
asymptotics of F̂ [θ] and characteristics of the exponential family like their mo-
ments is easier when taking θ = λ(x). For a general θ, one then just has to substi-
tute x = λ←(θ) in the following result.

PROPOSITION 6.1. As x→∞, we have

F̂ [λ(x)] ∼

√
2π

λ′(x)
γ(x)e(β−1)x

β
,(6.1)

Eλ(x)X ∼ x.(6.2)

Further, we have the following convergence in Pλ(x)-distribution as x→∞:

√
λ′(x)(X − x) =

√
β(β − 1)xβ−2(X − x) D−→ N(0, 1).(6.3)

P r o o f. Suppose for simplicity thatX is non-negative. Using Proposition 3.2
in BKR, we can assume without loss of generality that γ ∈ C∞. By Theorem 4.1
we obtain F (x) ∼ H(x), where H has the density γ(z)e−z

β
for z  0. It follows

easily from our proof below that E[Xkeλ(x)X ] ∼ E[Xk
∗ e
λ(x)X∗ ] for k  0 with

X∗ ∼ H , so we assume without loss of generality that F has the density f(z) =
γ(z)e−z

β
for z  0. Lastly, we have γ(x) = o(ecx) for any c > 0, as

(6.4) lim
x→∞

γ′(x)√
λ′(x)γ(x)

= 0.
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For g(z) = zkeλ(x)z , with k  0, it follows by integration by parts that

E[Xkeλ(x)X ] = g(0) +
∞∫
0

g′(z)F (z)dz(6.5)

= I{k = 0}+
c1x∫
0

g′(z)F (z)dz +
∞∫
c1x

g′(z)F (z)dz

= O(ec̃1x
β
) +

∞∫
c1x

[kzk−1 + λ(x)zk]eλ(x)z
γ(z)

λ(z)
e−z

β
dz

for any 0 < c1 < c̃1 < 1 sufficiently small.
Consider integrals of the form

∫∞
c1x

zkeλ(x)zγ(z)e−z
β
dz and note that the

global maximum of the exponent λ(x)z − zβ is at z = x. We use the substitution
z = x+ y/λ(x) (similar to those in Sections 2 and 3) and note that

λ(x)z − zβ ∼ (β − 1)xβ − y2λ′(x)

2λ(x)2
.

Therefore, for any D > 0 we have, as x→∞,

∞∫
c1x

zk
γ(z)

λ(z)
eλ(x)z−z

β
dz ∼

x+D/λ(x)∫
x−D/λ(x)

zk
γ(z)

λ(z)
eλ(x)z−z

β
dz

∼
D∫
−D

(
x+

y

λ(x)

)k γ(x+ y/λ(x)
)

λ
(
x+ y/λ(x)

) exp{(β − 1)xβ − y2λ′(x)

2λ(x)2

}
1

λ(x)
dy

∼ xk γ(x)
λ(x)2

e(β−1)x
β
D∫
−D

exp

{
−y

2λ′(x)

2λ(x)2

}
dy ∼

√
2π

λ′(x)
xk
γ(x)

λ(x)
e(β−1)x

β
,

where the replacement of the limits ±D by ±∞ follows from λ′(x)/λ(x)2 → 0.
Combining this integral asymptotic with (6.5), we get

E[Xkeλ(x)X ] = O(ec̃1x
β
) + k

∞∫
c1x

zk−1
γ(z)

λ(z)
eλ(x)z−z

β
dz(6.6)

+ λ(x)
∞∫
c1x

zk
γ(z)

λ(z)
eλ(x)z−z

β
dz,

that is

E[Xkeλ(x)X ] = O(ec̃1x
β
) +

√
2π

λ′(x)
γ(x)e(β−1)x

β

(
xk +

k

λ(x)
xk−1

)
,(6.7)
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or to take only the largest term,

E[Xkeλ(x)X ] ∼

√
2π

λ′(x)
γ(x)xke(β−1)x

β
as x→∞.

Consequently, we obtain easily (6.1) and (6.2).
Next, we show the asymptotic normality. By the above arguments, we assume

for simplicity that F has density f(z) = γ(z)e−z
β

for all z > 0. Similarly, writing
instead z = x+ y/

√
λ′(x), we have

λ(x)z − zβ ∼ (β − 1)xβ − y2

2
.

For some D < min(0, v) we obtain

x+v/
√
λ′(x)∫

x+D/
√
λ′(x)

γ(z) exp{λ(x)z − zβ}dz

∼ 1√
λ′(x)

v∫
D

γ
(
x+ y/

√
λ′(x)

)
exp

{
(β − 1)xβ − y2

2

}
dy

∼ 1√
λ′(x)

γ(x)e(β−1)x
β
v∫
D

exp

{
−y

2

2

}
dy.

Hence, letting D → −∞ yields

E
[
eλ(x)X ;

√
λ′(x)(X − x) ¬ v

]
∼

√
2π

λ′(x)
γ(x)e(β−1)x

β
Φ(v).

Dividing by (6.1) gives Pλ(x)
(√

λ′(x)(X − x) ¬ v
)
→ Φ(v), which is (6.3). �

REMARK 6.1. Asymptotic normality for the general case F (x) = e−ψ(x) sim-
ilar to the result of Proposition 6.1 is derived in [8].

REMARK 6.2. The BKR method of proof is modelled after the standard proof
of the saddlepoint approximation: exponential change of measure using estimates
of the above type. One has

(6.8) P(Sn > x) = F̂ [θ]nEθ[e−θSn ; Sn > x],

and it should take θ such that EθSn = x, i.e. θ = λ(x/n). The approximate nor-
mality of (X1, . . . , Xn) implies that Sn is approximately normal

(
x, n/λ′(x/n)

)
.

So, one can compute

Eλ(x/n) exp
{
−a

√
λ′(x/n)/nSn

}
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for any fixed a but θ = λ(x/n) is of a different order than
√
λ′(x/n)/n. Therefore

(as for the saddlepoint approximation), a sharper CLT is needed, and this is maybe
the most demanding part of the BKR approach.

7. COMPOUND POISSON SUMS

We consider here SN = X1 + . . . +XN , where N is Poisson(µ) and inde-
pendent of X1, X2, . . ., with Xi ∼ Weibull(β). The asymptotics of P(SN > x)
are important in many applications, for example, actuarial sciences [3], and can be
investigated by using classical saddlepoint techniques. The relevant asymptotic is
the classical Esscher approximation:

P(SN > x) ∼
(
F̂SN

[θ]− e−µ
)
exp{−θx}

θσc(θ)
B0(ℓ),(7.1)

where θ is the solution to µF̂ ′[θ] = x, and F̂SN
[θ] = exp{µ(F̂ [θ]− 1)}, B0(l) =

lel
2/2

(
1 − Φ(l)

)
→ (2π)−1/2, σ2c (θ) = µF ′′[θ], and ℓ = θσc(θ). See (7.1.10) in

[14], where also further refinements and variants are given. The issue with imple-
menting (7.1) is that we do not usually have access to F̂ [θ]; note, Mathematica can
derive F̂ [θ] when β = 1.5, 2, or 3.

For standard Weibull(β) variables, (6.1) simplifies to

F̂ [t] ∼

√
2πβ1/(1−β)

β − 1
tβ/(2(β−1)) exp{(β − 1)(t/β)β/(β−1)} =: F̃ [t].

Unfortunately, F̂SN
[t] ̸∼exp{µ(F̃ [t]−1)}, though F̂SN

[t]≈log exp{µ(F̃ [t] − 1)},
where the notation h1(x) ≈log h2(x) means that log h1(x)/ log h2(x)→ 1.

One can select the θ which solves µF̃ ′[θ] = x; however, it seems this must be
done numerically. An alternative can be the asymptotic forms for F̂ (k) from (6.7).
Take

F̂ (k)[θ] = E[XkeθX ] ∼ ykF̂ [θ] for k ∈ N,(7.2)

where we have written θ = λ(y) as in Section 6. Thus, if we set θ as the solution
to µyF̃ [λ(y)] = x, then we get

(7.3) y = 2−1/β
[

β + 2

(β − 1)β
W

(
(β − 1)β

β + 2

(
21/β+1/2x

c1

)2β/(β+2))]1/β
,

whereW is the Lambert W -function and c1 = µ
√
2πβ/

√
(β − 1)β.
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With this choice of θ, we can say that F̂ (k)[θ] ∼ xyk−1, so σ2c (θ) ∼ µxy and
ℓ ∼ λ(y)√µxy, and substituting this into (7.1) gives us

(7.4) P(SN > x) ≈log
e−µ(exp{µx/y} − 1) exp{−θx}

λ(y)
√
µxy

B0(ℓ).

Preliminary numerical work indicates that (7.4) is not particularly accurate
in the whole range of relevant parameters. The problem derives from the fact we
only have log-asymptotics for F̂SN

[θ]; finding more accurate asymptotics is left for
future work.

A further interesting extension could be the asymptotic form of P
(
Z(t) > x

)
,

Z being a Lévy process where the Lévy measure has tail γ(x)e−ψ(x).

8. THE EXPONENTIAL CLASS OF DISTRIBUTIONS

For F ∈ GMDA(e) in the previous sections we have discussed the case where
e(x) = 1/λ(x) with

lim
x→∞

e(x) = 0.

If limx→∞ e(x) =∞, then F is long-tailed in the sense that F (x− y) ∼ F (x) for
any fixed y. Convolutions of distributions that are long-tailed are well understood.
The intermediate case is

lim
x→∞

e(x) = 1/γ, γ > 0.

For such F we have

F (x+ s) ∼ e−γsF (x), x→∞,

for any s ∈ R, which is also denoted as F ∈ L(γ). Note in passing that any distri-
bution F ∈ GMDA(e) with upper endpoint infinity satisfies (see, e.g., [15], Propo-
sition 1.4)

(8.1) F (x) ∼ H(x) = C exp

{
−

x∫
0

1

u(t)
dt

}
, x→∞,

for some C > 0, where u is absolutely continuous with respect to Lebesgue mea-
sure, with density u′ satisfying limx→∞ u

′(x) = 0. Such H is commonly referred
to as a von Mises distribution.

It is well known (see [10], [17]) that the class of distributions L(γ) is closed
under convolution. In the particular case that the Xi have tails

(8.2) F i(x) = ℓi(x)x
γi−1e−kx

β
, 1 ¬ i ¬ n,
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ℓi’s being positive slowly varying functions and β = 1, γi > 0, i ¬ n, k > 0, we
have in view of Theorem 2.1 in [13] (see also Theorem 6.4 (ii) in [1])

(8.3) P (Sn > x) ∼ kn−1

Γ(γ0)
xγ0−1

n∏
i=1

ℓi(x)e
−kxβ ,

where γ0 =
∑n

i=1 γi. If (8.3) holds with β > 1, then for non-negative Xi’s, using
the β-norm argument, we have, as in Section 5,

(8.4) P (Sn > x) ¬ P(Xβ
1 + . . .+Xβ

n > xβ/nβ−1)

for any x > 0. Since P(Xβ
1 > x) ∼ ℓi(x

1/β)x(γi−1)/βe−kx, by (8.3) and Theo-
rem 4.1 we have

lnP (Sn > x) ∼ lnP(Xβ
1 + . . .+Xβ

n > xβ/nβ−1) ∼ kn(x/n)β,

and thus the upper bound in (8.4) is logarithmic asymptotically exact.

9. APPLICATIONS TO MONTE CARLO SIMULATION

In this section, we write h1(x) ≈log h2(x) if log h1(x)/ log h2(x) → 1, and
¬log if the lim sup of the ratio of logarithms is at most one, and we take the sum-
mands to have a density like γ(x)e−x

β
as x→∞.

Algorithms for tails P(Sn > x) with large x are one of the traditional objects
of study of the rare-event simulation literature. An estimator is an r.v. Z(x) with
EZ(x) = P(Sn > x) and its efficiency is judged by ratios of the form rp(x) =
EZ(x)2/P(Sn > x)p. The estimator will improve upon crude Monte Carlo simu-
lation if r1(x) → 0 as x → ∞. It is said to have bounded relative error if r2(x)
stays bounded as x→∞, and to exhibit logarithmic efficiency if r2−ε(x)→ 0 for
all ε > 0, which in turn will hold if EZ(x)2 ≈log P(Sn > x)2. These two concepts
are usually considered in some sense optimal. For a survey, see Chapters V and VI
in [4].

The conventional light-tailed rare-event folklore says that a particular kind of
importance sampling, exponential tilting, is often close to optimal. Here instead of
I{Sn > x} one returns

Zθ(x) = I{Sn > x} × Lθ, where Lθ = F̂ [θ]n exp{−θSn},

andX1, . . . , Xn are i.i.d. with density fθ(y) = eθyf(y)/F̂ (θ) rather than the given
density f(x), and θ is chosen such that EθX = x/n, that is, θ = λ(x/n). The
standard efficiency results do, however, require both n→∞ and x→∞ such that
nx ∼ z for some z > EX , and therefore do not deal with a fixed n, the object of
this paper. It is believed that the scheme is still often close to optimal in this setting,
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but very few rigorous results in this direction have been formulated. We give one
such in Proposition 9.1 below.

One problem that arises is how to simulate from fθ. Proposition 6.1 tells us
that fθ is asymptotically normal with mean x/n and variance 1/λ′(x/n) when
θ = λ(x/n). So we simulate using acceptance–rejection with a moment-matched
gamma distribution as a proposal, and our acceptance ratio will increase to one
as x→∞. To be specific, we take a Gamma(a, b) proposal, which has a density
fa,b(y) ∝ ya−1e−by, where a = x2λ′(x/n)/n2, and b = xλ′(x/n)/n. The reason
we do not directly use the limiting normal distribution as a proposal is that the tail
of the normal distribution is too light when β ∈ (1, 2).

REMARK 9.1. The acceptance ratio can be improved for small x by searching
locally for the optimal proposal, that is, the distribution with parameters

(µ∗, σ∗) = arg min
µ,σ>0

max
y0

fλ(x/n)(y)

fProp(y;µ, σ2)
.

The asymptotic (µ, σ) =
(
x/n, 1/

√
λ′(x/n)

)
can be used as the initial search

point. In experiments, it seems that the asymptotic variance is close to optimal,
whereas some efficiency can be gained by adjusting the mean parameter.

PROPOSITION 9.1. The estimator Zθ(x) exhibits logarithmic efficiency.

P r o o f. We first note that

Eθ[Zθ(x)2] = Eθ[L2
θ; Sn > x] = E[Lθ; Sn > x] ¬ e−θxF̂ [θ]nP(Sn > x).

By Corollary 3.1 and (6.1),

F
∗n
(x) ≈log exp{n(x/n)β}, F̂ [λ(x/n)]n ≈log exp{n(β − 1)(x/n)β}.

From θ = λ(x/n) = β(x/n)β−1 we then get

Varθ
(
Zθ(x)

)
P(Sn > x)

¬ Eθ[Zθ(x)2]
P(Sn > x)

¬log exp{−θx+ n(β − 1)(x/n)β + n(x/n)β}
= exp{−β(x/n)β−1x+ nβ(x/n)β} = 1,

completing the proof. �

Some estimators based on conditional Monte Carlo ideas are discussed in [2],
and efficiency properties derived in some special cases. The algorithms do improve
upon crude Monte Carlo, though logarithmic efficiency is not obtained. The advan-
tage is, however, that they are much easier implemented than the above exponential
tilting scheme. The next two propositions extend results of [2] to more general tails.
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PROPOSITION 9.2. Consider the conditional Monte Carlo estimator ZCd(x)
= F (x− Sn−1) of P(Sn > x). Then lim sup rp(x) <∞ whenever p < pn, where
pn = nβ−1cn with cn given by (9.1) below. Here pn > 1.

P r o o f. We have EZCd(x)
2 =

∫
F (x− y)2f∗(n−1)(y) dy,where the asymp-

totics of the integral is covered by Theorem 3.1. In the setting there, c1 = 2,
c2 = 1/(n − 1)β−1, which gives θ1 = 1/(1 + µ), θ2 = µ/(1 + µ), where µ =

21/(β−1)(n− 1). The result implies EZCd(x)
2 ≈log e−cnx

β
, where

(9.1) cn = c1θ
β
1 + c2θ

β
2 =

2 + 2β/(β−1)(n− 1)(
1 + 21/(β−1)(n− 1)

)β .
Since P(Sn > x) ≈log e−x

β/nβ−1
, this implies the first assertion of the proposition.

To see that pn > 1, note that for a > 1

nβ−1
aβ−1 + aβ(n− 1)(
1 + a(n− 1)

)β =

[
na

1 + a(n− 1)

]β−1
>

[
na

na

]β−1
= 1

and take a = 21/(β−1). �

We finally consider the so-called Asmussen–Kroese estimator

(9.2) ZAK(x) = nF
(
Mn−1 ∨ (x− Sn−1)

)
,

where Mn−1 = max(X1, . . . , Xn−1). It was initially developed in [5] with heavy
tails in mind, but it was found empirically in [2] that it also provides some variance
reduction for light tails, in fact more than ZCd(x). We have

PROPOSITION 9.3. Consider the estimatorZAK(x) of P(Sn > x) with n = 2.
Then lim sup rp(x) <∞ whenever p < 3/2.

P r o o f. When n = 2, we have Mn−1 = Sn−1 = X1, and so the analysis
splits into an X1 > x/2 and an X1 ¬ 2 part. The first is

E[ZAK(x)
2; X1 > x/2] = 4

∞∫
x/2

F (y)2f(y) dy

≈log

∞∫
x/2

e−2y
β
e−y

β
dy ≈log e−3x

β/2β .

The second part is

E[ZAK(x)
2; X1 ¬ x/2] = 4

x/2∫
−∞

F (x− y)2f(y) dy

= 4
∞∫
x/2

F (y)2f(x− y) dy = 4I1 + 4I2,
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where I1 is the integral over [x/2, ax), and I2 is the one over [ax,∞). Here we
take a = (3/2)1/β/2; since β > 1, we have a < 3/4 < 1. Let further b = a− 1/2.
Then

I2 =
∞∫
ax

F (y)2O(1)dy ≈log

∞∫
ax

e−2x
β
O(1)dy ≈log e−2a

βxβ = e−3x
β/2β,

I1 ≈log

ax∫
x/2

exp{−2yβ − (x− y)β} =
bx∫
0

exp{−2(x/2 + z)β − (x/2− z)β}dz.

By convexity of v 7→ vβ , we have

(u+ v)β = uβ(1 + v/u)β  uβ(1 + βv/u) = uβ + βvuβ−1

for u > 0 and −u < v <∞. Taking u = x/2 gives

I2 ¬log

bx∫
0

exp{−3xβ/2β − βz(x/2)β−1} dz = e−3x
β/2βo(1),

completing the proof. �

10. APPENDIX

For the proof of Theorem 4.1, we first note that, as shown in BKR, the follow-
ing holds as x→∞:

λ′(x)

λ(x)2
→ 0,(10.1)

γ′(x)√
λ′(x)γ(x)

→ 0.(10.2)

In view of Proposition 3.2 in BKR, (10.2) need not hold for γ itself but does for
a tail equivalent version, with which γ can be replaced without loss of generality.
This implies

λ is flat for ψ.(10.3)

Indeed, given y, for some x∗ between 0 and x+ y/
√
λ′(x) we have

λ
(
x+ y/

√
λ′(x)

)
= λ(x)+

λ′(x∗)√
λ′(x)

y = λ(x)+O
(√

λ′(x)
)
= λ(x)

(
1+ o(1)

)
,

where the O(·) estimate follows from a uniformity property of self-neglecting
functions, and the o(·) estimate by (10.1). Using further (10.1) we see that e = 1/λ
is self-neglecting.
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P r o o f o f T h e o r e m 4.1 (i). Write H(x) = γ(x)e−ψ(x)/λ(x). Then

H
′
(x) =

[
γ(x) +

γ′(x)

ψ′(x)
− γ(x)ψ′′(x)

ψ′(x)2

]
e−ψ(x)

= γ(x)

[
1 +

γ′(x)

γ(x)ψ′(x)
− ψ′′(x)

ψ′(x)2

]
e−ψ(x).

Here the last term in [·] goes to zero according to (10.1). This together with (10.2)
also gives

γ′(x)

γ(x)ψ′(x)
=

γ′(x)ψ′′−1/2

γ(x)
· ψ
′′1/2

ψ′(x)
= o(1) · o(1) = o(1).

Thus H ′(x) ∼ f(x), which implies H(x) ∼ F (x). �

We also have the following alternative proof for part (i).

P r o o f o f T h e o r e m 4.1 (i). Using integration by parts yields

∞∫
x

f(y) dy =
∞∫
0

γ(x+ y)

ψ′(x+ y)
· ψ′(x+ y)e−ψ(x+y) dy

=
γ(x)

ψ′(x)
e−ψ(x) −

∞∫
0

d

dy

[
γ(x+ y)

ψ′(x+ y)

]
· e−ψ(x+y) dy.

But by the same estimates as in the first version of the proof above, the first part of
the integrand is o

(
γ(x)

)
, so that the whole integral is o

(
F (x)

)
. �

The following lemma is just a reformulation of part (ii) of the theorem, proved
in BKR.

LEMMA 10.1. For any two pairs (γ1, ψ1), (γ2, ψ2) satisfying the assumptions
of Section 1, the integral

(10.4)
∞∫
−∞

γ1(z)e
−ψ1(z) · γ2(x− z)e−ψ2(x−z) dz

has the asymptotics given by Theorem 4.1 (ii).

P r o o f o f T h e o r e m 4.1 (ii). This is a reformulation of Theorem 1.1 in
BKR. Since, by (4.4), q′1 + q′2 = 1, we have the claimed relation between λ and
λ1, λ2, namely

(10.5) λ(x) = λ1
(
q1(x)

)
q′1(x) + λ2

(
q2(x)

)
q′2(x) = λ1(q1) = λ2(q2),

establishing the proof. �
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P r o o f o f T h e o r e m 4.1 (iii). We know that e−ψi(x), i = 1, 2, is a von
Mises function (see (8.1)), and thus e−ψi(x) ∈ GMDA(ei), i = 1, 2, with ei =
1/λi. Since further ei’s are self-neglecting and, by (10.1), ri(x) =

√
λi(x)/λi(x)

→ 0 as x→∞, we have

lim
x→∞

γi
(
x+ ei(x)y

)
γi(x)

= lim
x→∞

γi
(
x+ yri(x)/

√
λi(x)

)
γi(x)

= 1

uniformly on bounded y-intervals. Hence Fi ∈ GMDA(ei). Using Proposition 3.2
in BKR, we can find smooth γ∗i ’s such thatH i(x) = γ∗i (x)e

−ψi(x)/λi(x) is asymp-
totically equivalent to F i(x) as x → ∞. Since also Hi ∈ GMDA(ei) and
limx→∞ λi(x) =∞, for any c > 0 we have

lim
x→∞

Hi(x+ c)

H i(x)
= 0, i = 1, 2.

Consequently, Corollary 1 in [11] yields H1 ∗H2(x) ∼ F1 ∗ F2(x), and thus the
claim follows from (ii).

By the above, we can find the asymptotics of F1 ∗ F2(x) assuming that Fi’s
have a density, so alternatively we get

(10.6) F1 ∗ F2(x) =
∞∫
−∞

γ1(z)e
−ψ1(x) · γ2(x− z)

λ2(x− z)
e−ψ2(x−z) dz.

But, by (10.3), γ2/λ2 is flat for ψ2, so using Lemma 4.4 with γ2 replaced by γ2/λ2,
we can see that this integral asymptotically equals γ(x)e−ψ(x)/γ2

(
q2(x)

)
. But in

view of (10.5) this is the same as γ(x)e−ψ(x)/λ(x). This completes the proof. �
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