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STATIONARITY AGAINST INTEGRATION IN THE AUTOREGRESSIVE
PROCESS WITH POLYNOMIAL TREND
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Abstract. We tackle the stationarity issue of an autoregressive path
with a polynomial trend, and generalize some aspects of the LMC test, the
testing procedure of Leybourne and McCabe. First, we show that it is pos-
sible to get the asymptotic distribution of the test statistic under the null
hypothesis of trend-stationarity as well as under the alternative of nonsta-
tionarity for any polynomial trend of order r. Then, we explain the reason
why the LMC test, and by extension the KPSS test, does not reject the null
hypothesis of trend-stationarity, mistakenly, when the random walk is gen-
erated by a unit root located at−1. We also observe it on simulated data and
correct the procedure. Finally, we describe some useful stochastic processes
that appear in our limiting distributions.
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1. A CONSISTENT TEST FOR A UNIT ROOT

Notation. In all the paper, we define L as the lag operator with the convention
that L0 = I . In addition, kT = k/T is the renormalization of any k ∈ N, and I
means the indicator function. We will always consider that 0 < τ ¬ 1 and that
[Tτ ] denotes the integer part of Tτ . To simplify the notation, we will usually refer
to the corresponding vector by removing the implicit subscript on the variable. For
example, ε ′ = (ε1 . . . εT ), where ε ′ is the transpose of ε.

We consider the autoregressive process of order p on Z with a polynomial
trend of order r, driven by a random walk and an additive error. For an observed
path of size T , we investigate the model given, for all 1 ¬ t ¬ T , by

(1.1) Θ(L)Xt = (α0 + α1tT + . . .+ αrt
r
T ) I{κ ̸=0} + Sη

t + εt,

where, for all z ∈ C, Θ(z) = 1− θ1z− . . .− θp zp is an autoregressive polynomial



2 F. Proïa

having all its zeroes outside the unit circle, where, for any |ρ| = 1,

(1.2) Sη
t = ρSη

t−1 + ηt

is a random walk starting from Sη
0 = 0, and where (εt) and (ηt) are uncorrelated

white noises of variance σ2ε > 0 and σ2η  0, respectively. From now on, white
noises are to be interpreted in the strong sense, that is, as sequences of indepen-
dent and identically distributed random variables. For the sake of simplicity, we
consider that X−p+1 = . . . = X−1 = 0. We also normalize the known part of the
trend, by selecting tT = t/T , to simplify the treatment of the projections, as we
will see in the technical proofs. The order of the polynomial trend is r, but we will
also take account of the case where no trend is introduced in (1.1). We switch from
one situation to another by selecting κ ̸= 0 or κ = 0. Our objective is to establish
a testing procedure for

H0 : “σ
2
η = 0” against H1 : “σ

2
η > 0”.

One can observe that (1.1) is a trend-stationary process under the nullH0, since the
process (Sη

t ) is almost surely zero, and an integrated process of order one under the
alternative H1. Hence, evaluating H0 against H1 is equivalent to testing stationar-
ity against integration in the stochastic part of the process. In this context, our work
is a generalization of the procedure of Leybourne and McCabe [12], shortened the
LMC test in all the sequel. In their original paper, they propose to make use of
the maximum likelihood estimator of θ on a given path of size T and to estimate
the trend parameters using a least squares methodology on the residual process.
Then, they build a test statistic and establish its behavior under the null hypothesis
of stationarity for specific trends (none, constant or linear). Under H1, they show
that the test statistic diverges with rate T , and that it is possible to get its correctly
renormalized asymptotic distribution. In the simple case where p = 0, Nabeya and
Tanaka [16] had already investigated the founding principles of this strategy. This
restriction seems nevertheless far from the reality of time series since all correlation
phenomenon has disappeared. Earlier, the authors of [19], [18] and [11] had already
taken an interest in such test statistics for closely related models. The procedure of
Kwiatkowski et al. [9], shortened from now on the KPSS test, translates any cor-
relation in the residual process, to avoid any preliminary estimation of p and θ.
Their test statistic (described later in Remark 1.2) is shown to reach the same
asymptotic distribution but, as a long-run variance has to be estimated instead,
there is a truncation at a lag ℓ such that ℓ = ℓ(T )→∞ to ensure consistency, and
the divergence under H1 occurs with rate T/ℓ = o(T ). One can accordingly ex-
pect that the LMC procedure will be more powerful to discriminate H1, and such
observations are made in [12]. However, the true value of p is needed and all flex-
ibility is sacrificed, contrasting with the KPSS procedure. The stationarity of time
series being a contemporary issue, it is not surprising to find an abundant litera-
ture on empirical studies, anomalies detection or improvements brought to these
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strategies: let us mention the papers [24], [13], [17], or [15], [7], [4], [20] and all
associated references, without completeness. First we will show that in the context
of the LMC test, it is possible to get the asymptotic distribution of the test statistic
under H0 as well as under H1 for any polynomial trend of order r. Then, we will
explain, and observe it on some straightforward simulated data, the reason why
the LMC test – and by extension the KPSS test – does not reject the null hypothe-
sis of trend-stationarity, mistakenly, when the random walk is generated by a unit
root located at −1. We have widely been inspired by the calculation methods of
[21], [9] and [12], themselves relying on the Donsker’s invariance principle and
the Mann–Wald’s theorem, that we will also recall. Finally, we will describe some
useful stochastic processes that appear in our limiting distributions, and we will
prove our results.

The case |ρ| < 1 corresponds to a trend-stationary process both underH0 and
under H1, it is consequently not of interest as part of this paper. By combining
(1.1) and (1.2), the model underH1 is

(1.3) Θ(L)Xt = (α0 + α1tT + . . .+ αr t
r
T ) I{κ ̸=0} +

t∑
k=1

ρt−kηk + εt,

where the source of the stochastic nonstationarity of (Xt) is

(1.4) Sη
t =

t∑
k=1

ρt−kηk,

which is the partial sum process of (ηt) when ρ = 1. First,

Θ(L)(I − ρL)Xt = (I − ρL)(α0 + α1tT + . . .+ αr t
r
T ) I{κ ̸=0}

+ (I − ρL)(Sη
t + εt)

= (α∗0 + α∗1tT + . . .+ α∗r t
r
T ) I{κ ̸=0} + ηt + (I − ρL)εt,

where α∗0, α
∗
1, . . . , α

∗
r are easily identifiable (e.g., α∗r = 0 when ρ = 1) and the

process
(
ηt + (I − ρL)εt

)
is second-order equivalent in moments to an MA(1)

residual, as it is explained in [9]. We obtain the integrated model given, for all
1 ¬ t ¬ T , by

(1.5) Θ(L)(I − ρL)Xt = (α∗0 + α∗1tT + . . .+ α∗r t
r
T ) I{κ ̸=0} + (I + βL) ξt,

where (ξt) is a white noise of variance σ2ξ depending on the so-called signal-to-
noise ratio σ2η/σ

2
ε . For the generating process (1.5), we build a consistent estimator

of θ (see Remark 1.1 below), and consider the residual process

(1.6) X̌t = Xt − θ̌1Xt−1 − . . .− θ̌pXt−p.

Note that underH1, |β| < 1, implying that the differentiated process is causal and
invertible. On the other hand, |β| = 1 underH0, and the process is not invertible.



4 F. Proïa

REMARK 1.1. The consistency of θ̌T is a crucial issue of the study. Let Λr,ρ(L)
be the operator defined as

Λr,ρ(L) = (I − ρL)(I − L)r.

It follows that

Λr,ρ(L)Θ(L)Xt = (I − L)r (α∗0 + α∗1tT + . . .+ α∗rt
r
T ) I{κ ̸=0}

+ (I − L)r (I + βL) ξt

= µ∗ +Φ(L) ξt,

where µ∗ is easily identifiable (µ∗ = 0 when ρ = 1 or κ = 0) and Φ is a moving
average polynomial of order r + 1. Now, let

Yt = Λr,ρ(L)Xt.

Clearly, Θ(L)Yt = µ∗ + Φ(L) ξt, implying that (Yt) is a causal ARMA(p, r + 1)
process having a potentially nonzero intercept. Under H1, Φ has r unit roots, and
its last zero is outside the unit circle (since |β| < 1). Under H0, Φ has r + 1
unit roots. In both situations, Theorem 2.1 of [23] ensures that a pseudo-MLE
is consistent for (θ, β) treating (ξt) as a Gaussian noise, whereas µ∗ is easily
estimated as an intercept of a stationary ARMA process. Nevertheless, only the AR
part of the process is of interest for us, and a faster method is worth considering.
The causality of Θ implies that there exists a causal representation

Yt = Θ−1(L)
(
µ∗ +Φ(L) ξt

)
= ν∗ +

∞∑
k=0

ψk ξt−k

such that, according to Chapter 7 of [2], the sample autocovariance function γ̂T
of (Yt − ν∗) is a consistent estimator of its autocovariance function γY . Using a
Yule–Walker approach, for all h ∈ {r + 2, . . . , p+ r + 1}, we obtain

γY (h) =
p∑

k=1

θkγY (h− k).

Hence, a consistent estimator of θ may be obtained via γ̂T . The selection of ρ will
be widely discussed in Section 3.

As a result of the previous remark, it makes sense to estimate α under H0

using a least squares methodology in the model given by

(1.7) X̌t = (α0 + α1tT + . . .+ αr t
r
T ) I{κ ̸=0} + ε̌t,

where (ε̌t) is the residual process coming from the estimation of θ. A second-order
residual set (ε̂t) is then built via

(1.8) ε̂t = X̌t − (α̂0 + α̂1tT + . . .+ α̂r t
r
T ) I{κ ̸=0},
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where α̂T is the least squares estimator of α in the model (1.7). Let the partial sum
processes of (ε̂t) and (ε̂ 2

t ) be defined as

(1.9) St =
t∑

k=1

ε̂k and Qt =
t∑

k=1

ε̂ 2
k .

Finally, consider the test statistic

(1.10) K̂T =
1

TQT

T∑
t=1

S 2
t .

REMARK 1.2. The test statistic of the KPSS procedure is very close to K̂T .
The main difference is that (εt) satisfies some weaker assumptions including cor-
relation (see [9]), leading to p = 0 and no parameter θ to estimate. In return, a
long-run variance defined as

σ2 = lim
T →∞

1

T
E[S2

T ]

has to be estimated using a truncation method. The test statistic is

K̂T =
1

T 2 σ̂2T

T∑
t=1

S 2
t

and corresponds to (1.10) when σ̂2T = QT /T, that is, when the long-run variance
is estimated as a white noise variance.

We now establish the asymptotic behavior of K̂T under H0. The stochastic
processes appearing in our limiting distributions are described in the next section.

THEOREM 1.1. Assume that σ2η = 0. Then, for κ ̸= 0, we have the weak con-
vergence

K̂T
D−→

1∫
0

B 2
r (s) ds,

where
(
Br(t), t ∈ [0, 1]

)
is the generalized Brownian bridge of order r. In addition,

for κ = 0, we have the weak convergence

K̂T
D−→

1∫
0

W 2(s) ds,

where
(
W (t), t ∈ [0, 1]

)
is the standard Wiener process.

In the following theorem, we show that K̂T diverges underH1 for ρ = 1 with
rate T and we study the asymptotic behavior of the test statistic correctly renor-
malized. We also show that it decreases to zero underH1 for ρ = −1.
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THEOREM 1.2. Assume that σ2η > 0. Then, for κ ̸= 0 and ρ = 1, we have the
weak convergence

K̂T

T

D−→

1∫
0

C 2
r, 1(s) ds

1∫
0

W 2
r, 0(s) ds

,

where
(
Cr, 1(t), t ∈ [0, 1]

)
is the integrated Brownian bridge of order r × 1, and(

Wr, 0(t), t ∈ [0, 1]
)

is the detrended Wiener process of order r × 0. In addition,
for κ = 0, we have the weak convergence

K̂T

T

D−→

1∫
0

(W (1))2(s) ds

1∫
0

W 2(s) ds

,

where
(
W (1)(t), t ∈ [0, 1]

)
is the integrated Wiener process of order 1, and

(
W (t),

t ∈ [0, 1]
)

is the standard Wiener process. Finally, for ρ = −1,

K̂T
P−→ 0.

The situation where ρ = −1 is the cause of a number of complications as
we will see in the associated proofs, that is the reason why we limit ourselves
to stipulate the convergence of K̂T to zero in the general case. However, in the
particular case where κ = 0, we reach the following result.

PROPOSITION 1.1. Assume that σ2η > 0. Then, for κ = 0 and ρ = −1, we
have the weak convergence

T K̂T
D−→

2σ2ε

1∫
0

W 2
ε (s) ds+ σ2η

1∫
0

W 2
η (s) ds

2σ2η

1∫
0

W 2
η (s) ds

,

where
(
Wε(t), t ∈ [0, 1]

)
and

(
Wη(t), t ∈ [0, 1]

)
are independent standard Wiener

processes.

One can notice that this is the only situation in which (εt) and (ηt) simulta-
neously play a role in the asymptotic behavior; this explains why we had to make
such a decomposition into Wε(t) and Wη(t). As a matter of fact, under H0, (εt)
is the only perturbating process whereas under H1 with ρ = 1, (εt) is dominated
by (ηt). We are pretty convinced, on the basis of a simulation study, that it is possi-
ble to find an identifiable limiting distribution for TK̂T when κ ̸= 0 and ρ = −1.
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However, we have not reached the explicit expression in this work because of com-
plications due to the phenomenon of compensation in the invariance principles, and
calculations very hard to conduct. This could form an objective for a future study.

The proofs of Theorems 1.1 and 1.2 and Proposition 1.1 are given in Section 4.

REMARK 1.3. It is also possible to extend the whole results to the multi-
integrated processes under the alternative, such as ARI processes having more
than one unit root. In the model (1.1), the random walk (Sη

t ) is now itself gen-
erated by a random walk, and so on up to d  0 positive unit roots. Then, weak
convergences in Theorem 1.2 become

K̂T

T

D−→

1∫
0

C 2
r, d(s) ds

1∫
0

W 2
r, d−1(s) ds

and
K̂T

T

D−→

1∫
0

(W (d))2(s) ds

1∫
0

(W (d−1))2(s) ds

,

respectively for κ ̸= 0 and κ = 0. For d  1 negative unit roots, we still reach the
convergence

K̂T
P−→ 0.

Such results may be useful to produce a statistical testing procedure concerning
the integration order d of the generating process of an observed path and/or to
check the true value of r.

In Figure 1, we have represented the asymptotic distribution of K̂T under H0

for κ = 0, then for κ ≠ 0 and r ∈ {0, . . . , 4}, using Monte Carlo experiments.

2. SOME USEFUL STOCHASTIC PROCESSES

Throughout the study, we deal with some stochastic processes, built from the
standard Wiener process

(
W (t), t ∈ [0, 1]

)
that we are now going to introduce. In

all definitions, we consider that d, r ∈ N.

DEFINITION 2.1 (Integrated Wiener Process). The process given, for t∈ [0, 1],
by the formula

W (d)(t) =
t∫
0

s1∫
0

. . .
sd−1∫
0

W (sd) dsd . . . ds1

is called an integrated Wiener process of order d in the whole paper. By convention,
W (0)(t) ≡W (t).

For example,

W (1)(t) =
t∫
0

W (s) ds and W (2)(t) =
t∫
0

s∫
0

W (u) duds.
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Figure 1. Asymptotic distribution of K̂T underH0 for κ = 0, then
for κ ̸= 0 and r ∈ {0, . . . , 4}, using Monte Carlo experiments.

DEFINITION 2.2 (Generalized Brownian Bridge). The process given, for t ∈
[0, 1], by

Br(t) = hr(W )(t),

where hr is an application from C([0, 1]) into C([0, 1]) given by formula (8) in
[14], is called a generalized Brownian bridge of order r in the whole paper.

DEFINITION 2.3 (Integrated Brownian Bridge). The process given, for t ∈
[0, 1], by

Cr, d(t) = hr(W
(d))(t)

is called an integrated Brownian bridge of order r × d in the whole paper. By
convention, Cr, 0(t) ≡ Br(t).

DEFINITION 2.4 (Detrended Wiener Process). The process given, for t ∈
[0, 1], by

Wr, d(t) =
dCr, d+1(t)

dt

is called a detrended Wiener process of order r× d in the whole paper. It is explic-
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itly defined as
Wr, d(t) =W (d)(t)− P ′d (1)M−1Λ(t),

where the nonsingular matrix M satisfies Mij = 1/(i + j − 1) for all 1 ¬ i, j ¬
r + 1, Λ(t) =

(
1 t . . . tr

)′, and where

(2.1) P ′d (t) =
(
W (d)(t)

t∫
0

sW (d−1)(s) ds . . .
t∫
0

srW (d−1)(s) ds
)
.

Let us illustrate these definitions on the standard cases r = {0, 1} and d = 0.
According to Definition 2.2 and formula (8) in [14], for t ∈ [0, 1],

B0(t) = h0(W )(t) =W (t)− tW (1),

which is the usual “Brownian bridge”. It follows from Definitions 2.3 and 2.4 that

C0, 1(t) = h0(W
(1))(t) =

t∫
0

W (s) ds− t
1∫
0

W (s) ds

and that

W0, 0(t) =
dC0, 1(t)

dt
=W (t)−

1∫
0

W (s) ds,

which is the usual “demeaned Wiener process”. Similarly, for r = 1,

B1(t) = h1(W )(t) =W (t) + t(2− 3t)W (1)− 6t(1− t)
1∫
0

W (s) ds

is the “second-level Brownian bridge”, leading to

C1, 1(t) =
t∫
0

W (s) ds+ t(3t− 4)
1∫
0

W (s) ds+ 6t(1− t)
1∫
0

sW (s) ds.

Finally,

W1, 0(t) =
dC1, 1(t)

dt
=W (t) + (6t− 4)

1∫
0

W (s) ds+ (6− 12t)
1∫
0

sW (s) ds

is the standard “detrended Wiener process”.

3. A CORRECTED TEST ADAPTED TO THE NEGATIVE UNIT ROOT

The empirical power of the KPSS and LMC procedures has been widely stud-
ied in the literature (see Section 1 for references). For ρ = 1, the improvements
that we described in this paper (for any r and d) are mainly theoretical. On the
other hand, we thought useful to conduct an empirical study for ρ = −1, because
in this case it is not only a matter of generalization but also a matter of correction
of the existing procedures. To motivate the study, we have represented in Figures
2–5 below some examples of simulations according to (1.3) underH0 : “σ

2
η = 0”,
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Figure 2. Example of simulations underH0 (upper), underH+
1 (middle) and

underH−1 (lower) for T = 300, p = 0, κ = 0 and standard Gaussian white noises.
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Figure 3. Example of simulations underH0 (upper), underH+
1 (middle) and underH−1

(lower) for T = 300, p = 0, κ ̸= 0, r = 0 (with a0 = 2) and standard Gaussian white noises.
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Figure 4. Example of simulations underH0 (upper), underH+
1 (middle)

and underH−1 (lower) for T = 300, p = 0, κ ̸= 0, r = 1 (with a0 = 2 and a1 = −10)
and standard Gaussian white noises.
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Figure 5. Example of simulations underH0 (upper), underH+
1 (middle)

and underH−1 (lower) for T = 300, p = 0, κ ̸= 0, r = 2 (with a0 = 2, a1 = −10 and a2 = 30)
and standard Gaussian white noises.
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underH+
1 : “σ2η > 0 and ρ = 1” and underH−1 : “σ2η > 0 and ρ = −1”, using the

configurations indicated in the captions. Clearly, a visual investigation is required
to decide whether ρ = 1 or ρ = −1 is the most likely alternative, which is a crucial
point to stationarize the process. In the whole experiments, the quantiles of the
limit distribution of the test statistic under the null hypothesis, depending on κ and
r, have been taken from Table 2 of [14].

The first observation is that, due to the alternation generated by ρ = −1, it
seems quite intuitive to choose between H+

1 and H−1 to conduct the test. Besides,
it is perceptible on the simulations that heteroscedasticity is manifest. Such high-
frequency signals (under H−1 ) are quite unusual in the econometric field, and yet
it remains a nonstationary eventuality that a consistent test needs to handle. In the
particular case where p = 0, κ = 0 and where (εt) and (ηt) are standard Gaussian
white noises, we have conducted N = 10,000 simulations, each time testing for
stationarity using the KPSS and the LMC procedures. We have obtained the fol-
lowing results (Table 1). On the one hand, we observe that the size of each test
is appropriate, since the procedures have been conducted with a significance level
α = 0.05. One also observes that each test is consistent under H+

1 but, as one can
notice in Table 1, they are misled under H−1 and do not detect this kind of nonsta-
tionarity.

Table 1. Frequency of rejection of the null hypothesis of stationarity on the
basis of N = 10,000 simulations, using the KPSS and LMC procedures.

KPSS LMC
UnderH0 0.051 0.051
UnderH+

1 0.989 0.998
UnderH−1 0.043 0.010

This phenomenon is a direct consequence of Theorem 1.2, in which we have
proved that K̂T converges to zero when the unit root of the integrated process is
located at −1. To correct this misuse, we suggest to modify the rejecting rules of
the usual procedures depending on whether the alternative is H+

1 or H−1 . Let kr, α
be the α-quantile of the limiting distribution of Theorem 1.1 for a given r, with
the convention that kr, α = kα if κ = 0. Then the corrected test takes the following
form:

CT = I{K̂T ∈Rα} with

{
Rα = ] kr, 1−α, +∞ [ forH0 vs.H+

1 ,

Rα = [ 0, kr, α [ forH0 vs.H−1 .

Defined as above, the corrected test is exactly the LMC test for r ¬ 1 andH+
1 , the

generalization lies in r  2 and the correction lies in the whole situations under
H−1 . In the particular case where p = 0, it is even possible to build a two-sided test
for stationarity,

CT = I{K̂T ∈Rα} withRα = [ 0, kr, α/2 [ ∪ ] kr, 1−α/2, +∞ [,

which is adapted to test forH0 againstH1 = H−1 ∪H
+
1 . Figure 6 gives an overview
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of the corresponding rejection areas. However, it is crucial to note that for p ̸= 0, it
may be problematic to get a consistent estimation of θ since we cannot stationarize
the process without any information on ρ. The two-sided procedure is therefore
useful only for p = 0, i.e., in the KPSS framework.

0

H0

H1 ( = 1)r

0 kr,a

H0

H1 ( = 1)r -

kr,1-a

0

H0

H1 ( = 1)r

H1 ( = 1)r -

kr,1-a/2kr,a/2

Figure 6. Schematic representation of the rejection areas ofH0 to decide
H+

1 (top left),H−1 (top right) andH−1 ∪ H
+
1 (bottom) for a given significance level α.

The application of the two-sided corrected test to the dataset used to fill Table 1
leads to 97.6 % of rejection of H0. With no doubt, this is a confirmation that H−1
is now correctly treated. The main corollary of the study is that our results should
be rigorously driven to the KPSS procedure. Indeed, on the one hand, it is known
that the LMC test suffers from size distortion for a stationary but strongly serially
correlated process, as pointed out in [3] or [10] among others, not forgetting that
p is always difficult to properly evaluate in an ARMA(p, q) process. On the other
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hand, the corrected two-sided test could be conducted without choosing beforehand
between H+

1 and H−1 as the alternative. Such a test would be fully consistent for
testing stationarity of ARMA processes, this is a trail for a future study.

4. PROOF OF THE MAIN RESULTS

We are now going to prove our main results. In all the sequel, we will consider
the design matrix A of order (r + 1)× T defined as

(4.1) A =


1 1 . . . 1 . . . 1
1T 2T . . . kT . . . 1
...

...
...

...
1rT 2rT . . . krT . . . 1

 with kT = k/T.

The Donsker’s invariance principle and the Mann–Wald’s continuity theorem be-
ing the cornerstone of all our reasonings, we found useful to remind them in this
section. In order to lighten the proofs, we deliberately use the same notation for
weak convergence and convergence of sequences of random elements in the space
of right continuous functions on [0, 1] having left-hand limits, equipped with the
Skorokhod topology (see [1]).

THEOREM 4.1 (Donsker). Assume that (ZT ) is a sequence of independent
and identically distributed random variables having mean zero and finite variance
σ2 > 0. Let S0 = 0 and ST = Z1 + . . .+ ZT . For a given 0 < τ ¬ 1, let also

S
(τ)
T =

1

σ
√
T

(
S[Tτ ] + (Tτ − [Tτ ])Z[Tτ ]+1

)
.

Then, as T goes to infinity, we have the weak convergence

S
(τ)
T

D−→W (τ),

where W (t) is the standard Wiener process.

THEOREM 4.2 (Mann–Wald). Assume that (ZT , Z) is a sequence of random
elements defined on a metric space S . Assume that the application h : S → S ′,
where S ′ is also a metric space, has a set of discontinuity points Dh such that
P(Z ∈ Dh) = 0. Then, as T goes to infinity,

ZT → Z =⇒ h(ZT )→ h(Z).

The implication holds for the convergence in distribution, the convergence in prob-
ability and the almost sure convergence.

P r o o f. The Donsker’s invariance principle is described and proved in Sec-
tion 8 of [1]. The Mann–Wald’s continuity theorem, usually called a continuous
mapping theorem, is for example introduced in Theorem 2.7 of [1] and proved
thereafter. �
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In addition, we need to introduce an invariance principle for the residuals of
the regression of a random sequence on a polynomial trend in the case where the
disturbance has an integrated component. This is an extension of Theorem 1(d)
of [25]. For κ = 0 but with a more general kind of perturbation, one can also find
the foundations of this strategy in [8].

LEMMA 4.1. Consider, for all 1 ¬ t ¬ T, the model

Xt = α0 + α1tT + . . .+ αr t
r
T + S

(d)
t + εt

with d  1 and κ ̸= 0. Let α̂T be the least squares estimator of α, and (ε̂t) the
estimated residual set. Then, we have the weak convergence

ε̂[Tτ ]

σηT d−1/2
D−→Wr, d−1(τ),

where
(
Wr, d−1(t), t ∈ [0, 1]

)
is the detrended Wiener process of order r× (d− 1).

P r o o f. Recall that (S(d)
t ) is a random walk of order d generated by a white

noise sequence (ηt) of variance σ2η > 0, that can be defined as

(4.2)


S
(d)
t = S

(d)
t−1 + S

(d−1)
t ,

. . . . . . . . . . . . . . . . . . . . .

S
(2)
t = S

(2)
t−1 + S

(1)
t ,

S
(1)
t = S

(1)
t−1 + ηt,

where we assume, to simplify the calculations, that S(1)
0 = . . . = S

(d)
0 = 0. The

least squares estimator of α is given by

(4.3) α̂T =
( T∑
t=1

AtA
′
t

)−1 T∑
t=1

AtXt = R−1T

T∑
t=1

AtXt,

where At is the t-th column of A given by (4.1). It follows that

(4.4) α̂T − α = R−1T PT with PT =
T∑
t=1

Atwt

in which we define the residual wt = S
(d)
t + εt. We start by establishing an invari-

ance principle for (wt). First, Theorem 4.1 is sufficient to get

(4.5)
S
(1)
[Tτ ]

ση
√
T

=
1

ση
√
T

[Tτ ]∑
t=1

ηt
D−→W (τ).
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By extension,
(4.6)

S
(2)
[Tτ ]

σηT 3/2
=

1

σηT 3/2

[Tτ ]∑
t=1

S
(1)
t =

[Tτ ]∑
t=1

(t+1)/T∫
t/T

S
(1)
[Ts]

σηT 1/2
ds

D−→
τ∫
0

W (s) ds ≡W (1)(τ)

from Theorem 4.2. Iterating the process, we obtain, for d  2,

(4.7)
S
(d)
[Tτ ]

σηT d−1/2
D−→

τ∫
0

s1∫
0

. . .
sd−2∫
0

W (sd−1) dsd−1 . . . ds1 ≡W (d−1)(τ).

Since ε[Tτ ] = o(T d−1/2) a.s. from the strong law of large numbers, it follows that
(wt) also satisfies, for all d  1, the invariance principle given by (4.7). For d = 1,
one can identify the limiting distribution in (4.7) and ση with W and

√
ω in As-

sumption 1(a) of [25]. In addition, the k-th line of PT given in (4.4) is

(4.8) Pk, T =
T∑
t=1

tk−1T wt =
1

T k−1

T∑
t=1

tk−1wt.

We are now going to study the rate of convergence of Pk, T . For all 1 ¬ i ¬ d, let
us write δk(i) = i+ k − 1/2. We can use (4.7) to get
(4.9)

1

σηT δk(d)

[Tτ ]∑
t=1

tk−1wt =
[Tτ ]∑
t=1

(t+1)/T∫
t/T

[Ts]k−1w[Ts]

σηT k−1T δ0(d)
ds

D−→
τ∫
0

sk−1W (d−1)(s) ds.

By combining (4.8) and (4.9), we find that, for all d  1,

(4.10)
P[Tτ ]

σηT d+1/2

D−→ Pd(τ),

where the limiting distribution is given in (2.1). Moreover, by a direct calculation,

(4.11) lim
T →∞

RT

T
=M and lim

T →∞
TR−1T =M−1,

where RT is given in formula (4.3) and the nonsingular matrix M satisfies Mij =
1/(i+ j − 1) for all 1 ¬ i, j ¬ r + 1. It follows from (4.4), (4.10) and (4.11) that

(4.12)
α̂T − α
σηT d−1/2

D−→M−1Pd(1).

It only remains to notice that

(4.13)
ε̂[Tτ ]

T d−1/2 =
w[Tτ ]

T d−1/2 −
(α̂T − α)′A[Tτ ]

T d−1/2
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and to combine (4.7) and (4.12) to conclude that, for d  1,

ε̂[Tτ ]

σηT d−1/2
D−→W (d−1)(τ)− P ′d (1)M−1Λ(τ) ≡Wr, d−1(τ)

from Theorem 4.2, where Λ(τ) =
(
1 τ . . . τ r

)′ is the limiting value of A[Tτ ].
For d = 1, the latter convergence is given in Theorem 1(d) of [25]. This completes
the proof of Lemma 4.1. �

P r o o f o f T h e o r e m 1.1. Denote by P = A′(AA′)−1A the projection
matrix and by IT the identity matrix of order T . We start by expressing (ε̂t) in
terms of (εt) to establish an invariance principle such as Theorem 4.1 on (St)
given by (1.9). We first consider the general case where κ ̸= 0. By (1.6) and (1.8),
since α̂T is the least squares estimator of α, a direct calculation shows that, for all
1 ¬ t ¬ T ,

(4.14) ε̂t = X̌t − α̂0 − α̂1tT − . . .− α̂r t
r
T =

p∑
i=1

(θi − θ̌i)ui, t + ut,

where ut is the t-th component of (IT − P )ε, and, for 1 ¬ i ¬ p, ui, t is the t-th
component of (IT − P )X−i with X ′−i =

(
X1−i . . . XT−i

)
. From Theorem 1

of [14], we have the weak convergence

(4.15)
1

σε
√
T

[Tτ ]∑
t=1

ut
D−→ Br(τ).

In addition, for any 1 ¬ i ¬ p and since Θ is causal, equation (1.1) leads to

(4.16) Xt−i = Θ−1(L)
(
α0 + α1(t− i)T + . . .+ αr(t− i)rT

)
+ µt−i,

where (t − i)T = (t − i)/T and Θ(L)µt−i = εt−i. The coefficients of the deter-
ministic trend are identifiable via a tedious but straightforward calculation. It fol-
lows from (4.16) that (µt) is a stable stationary AR(p) process which also satisfies
an invariance principle, as it is stipulated, for example, in Theorem 1 of [5]. If we
define the so-called long-run variance as

σ2µ = E [µ20] + 2
∞∑
k=1

E [µ0µk],

which is finite for a stable AR process (see Chapter 3 of [2]), then, for all 1 ¬ i ¬ p,

(4.17)
1

σµ
√
T

[Tτ ]∑
t=1

ui, t
D−→ Br(τ),
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by using again Theorem 1 of [5]. Convergence (4.17) and the consistency of θ̌T
imply that

(4.18)
1

σµ
√
T

p∑
i=1

(θi − θ̌i)
[Tτ ]∑
t=1

ui, t
P−→ 0.

Noticing that (St) in (1.9) is the partial sum process of (ε̂t), we obtain

(4.19)
S[Tτ ]

σε
√
T

D−→ Br(τ).

In addition, it is not hard to see that

lim
T →∞

1

T

T∑
t=1

u2t = σ2ε a.s.

since (ut) can be seen as the residual of the regression of (εt) on a polynomial
time trend with zero coefficients. The same kind of convergence can be reached for
(ui, t) following a similar methodology to that in [22], since (ui, t) can be seen as
the residual of the regression of a weakly stationary process (µt) on a polynomial
time trend also with zero coefficients. Hence, by the Cauchy–Schwarz inequality,

(4.20) lim
T →∞

QT

T
= σ2ε a.s.,

where the process (Qt) is given by (1.9). Finally,

1

σ2ε T
2

[Tτ ]∑
t=1

S 2
t =

1

T

[Tτ ]∑
t=1

(
St

σε
√
T

)2

=
[Tτ ]∑
t=1

(t+1)/T∫
t/T

(
S[Ts]

σε
√
T

)2

ds
D−→

τ∫
0

B 2
r (s) ds

by application of Theorem 4.2. This achieves the proof of Theorem 1.1, by using
(4.19), (4.20), Slutsky’s lemma and taking τ = 1, in the case where there is a poly-
nomial trend. On the other hand, for κ = 0, P is the zero matrix and we merely
have ut = εt and ui, t = X−i in (4.14) for all 1 ¬ t ¬ T and 1 ¬ i ¬ p. Then, con-
vergence (4.20) follows from the strong law of large numbers and, by Theorem 4.1,
the invariance principle (4.19) becomes

(4.21)
S[Tτ ]

σε
√
T

D−→W (τ).

The end of the proof follows the same reasoning as above. �

P r o o f o f T h e o r e m 1.2. We now suppose that σ2η > 0, implying that
the process has a stochastic nonstationarity generated by the random walk (Sη

t )
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given by (1.4). We first consider the general case κ ̸= 0. In the same way as for
(4.14), we obtain

(4.22) ε̂t = X̌t − α̂0 − α̂1tT − . . .− α̂r t
r
T =

p∑
i=1

(θi − θ̌i)ui, t + uη, t,

where uη, t is the t-th component of (IT −P )(Sη + ε). In addition, for all 1¬ i¬p,
ui, t is the t-th component of (IT−P )X−i, and X−i is given, for all 1 ¬ t ¬ T , by

(4.23) Xt−i = Θ−1(L)
(
α0 + α1(t− i)T + . . .+ αr(t− i)rT

)
+ T η

t−i,

and Θ(L)T η
t−i = Sη

t−i + εt−i, with the notation of (4.16). Hence,
(
(I − ρL)T η

t−i
)

is second-order equivalent in moments to a stationary ARMA(p, 1) process. By
Theorem 1 of [5], it satisfies an invariance principle in which its long-run variance
is involved, and the rate is

√
T . Then, by Theorem 4.2 and standard calculations,

one can see that (ui, t) behaves like (uη, t) since all invariance principles on (uη, t)
can also be established on (ui, t). However, as θ̌T is consistent, it appears that
all asymptotic results will only be driven by (uη, t), (u2η, t) and their partial sum
processes. First, by Theorem 4.1, in the case where ρ = 1, we have already seen in
(4.5) that we have the invariance principle

(4.24)
Sη
[Tτ ]

ση
√
T

D−→W (τ).

For ρ = −1, one cannot directly apply Theorem 4.1 since (Sη
t ) is not built from

identically distributed random variables. However, convergence (4.24) still holds
by using, for example, Theorem 1 of [5]. Depending on the value of ρ, the end of
the proof is totally different. On the one hand, for ρ = 1, from Lemma 4.1 with
d = 1, we have the weak convergence

(4.25)
uη, [Tτ ]

ση
√
T

D−→Wr, 0(τ).

It follows that

(4.26)
1

σηT 3/2

[Tτ ]∑
t=1

uη, t =
[Tτ ]∑
t=1

(t+1)/T∫
t/T

uη, [Ts]

ση
√
T

ds
D−→

τ∫
0

Wr, 0(s) ds ≡ Cr, 1(τ)

by application of Theorem 4.2. Since the leading term of ε̂t is uη, t as it is explained
above and using convergence (4.25), we get an invariance principle for the partial
sum process (St) in (1.9), given by

(4.27)
S[Tτ ]

σηT 3/2

D−→ Cr, 1(τ).
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We can also reach the same convergence by using Theorem 1 of [14] combined
with convergence (4.6), that is,

(4.28)
1

σηT 3/2

[Tτ ]∑
t=1

Sη
t =

[Tτ ]∑
t=1

(t+1)/T∫
t/T

Sη
[Ts]

ση
√
T
ds

D−→
τ∫
0

W (s) ds ≡W (1)(τ).

Of course, (4.20) cannot hold under H1, and the asymptotic behavior of QT will
now stem from (4.25). Indeed,

1

σ2η T
2

[Tτ ]∑
t=1

u2η, t =
[Tτ ]∑
t=1

(t+1)/T∫
t/T

(
uη, [Ts]

ση
√
T

)2

ds
D−→

τ∫
0

W 2
r, 0(s) ds,

implying that

(4.29)
Q[Tτ ]

σ2η T
2

D−→
τ∫
0

W 2
r, 0(s) ds.

In addition, from (4.27),

1

σ2η T
4

[Tτ ]∑
t=1

S 2
t =

1

T

[Tτ ]∑
t=1

(
St

σηT 3/2

)2

=
[Tτ ]∑
t=1

(t+1)/T∫
t/T

(
S[Ts]

σηT 3/2

)2

ds
D−→

τ∫
0

C 2
r, 1(s) ds.

The latter convergence together with (4.29) and Theorem 4.2 achieve the first part
of the proof, by selecting τ = 1. On the other hand, for ρ = −1, the summation
(4.28) is different due to the phenomenon of compensation. As a matter of fact, it
is not hard to see that, for any even and odd integer t  1, respectively, we have

t∑
k=1

Sη
k =

t/2∑
k=1

η2k and
t∑

k=1

Sη
k =

(t+1)/2∑
k=1

η2k−1.

Let (ζt) be the sequence defined, for an even T and all 1 ¬ t ¬ T/2, by

ζt = ε2t−1 + ε2t + η2t

and, for an odd T and all 1 ¬ t ¬ (T + 1)/2, by

ζt = ε2t−1 + ε2(t−1) + η2t−1.

Hence, E[ζt] = 0, E[ζ2t ] = 2σ2ε + σ2η and all covariances are zero, since (εt) and
(ηt) are not correlated. It follows that (ζt) is a white noise and that it satisfies, by
virtue of Theorem 1 of [5], the invariance principle

(4.30)
1√
T

[Tτ ]∑
t=1

ζt
D−→

√
2σ2ε + σ2η W (τ).



Stationarity vs. integration in the AR process 23

Thus, we obtain the invariance principles

1√
T

[Tτ ]∑
t=1

(Sη
t + εt) =

1√
T

[Tτ/2]∑
t=1

ζt
D−→

√
2σ2ε + σ2η W

(
τ

2

)
D
=

√
2σ2ε + σ2η

2
W (τ)

and, by application of Theorem 1 of [14],

(4.31)
1√
T

[Tτ ]∑
t=1

uη, t
D−→

√
2σ2ε + σ2η

2
Br(τ).

Exploiting the latter convergence and the domination of uη, t in ε̂t (the estimator of
θ remaining consistent), we obtain

(4.32)
1

T 2

[Tτ ]∑
t=1

S 2
t =

[Tτ ]∑
t=1

(t+1)/T∫
t/T

(
S[Ts]√
T

)2

ds
D−→

2σ2ε + σ2η
2

τ∫
0

B 2
r (s) ds.

Restart now the reasoning developed in Lemma 4.1, but for d = 1 and ρ = −1. We
recall that, using the notation associated with (4.8), for all 1 ¬ k ¬ r + 1,

Pk, T =
T∑
t=1

tk−1T wt =
1

T k−1

T∑
t=1

tk−1(Sη
t + εt).

First, it is not hard to see that

Mk
T =

T∑
t=1

tk−1εt

is a martingale adapted to the natural filtration of (εt), whose increasing process is
such that ⟨Mk⟩T = O(T 2k−1) a.s. with obviously

lim
T →∞

⟨Mk⟩T = +∞ a.s.

The law of large numbers for scalar martingales (see, e.g., [6]) implies that Mk
T =

o(T k) a.s. Hence,

(4.33)
Pk, T

T
=

1

T k

T∑
t=1

tk−1Sη
t + o(1) a.s.

In addition, denote by (Ση
t ) the partial sum process associated with (ηt) for ρ = 1.

Let also (Λη
t ) and (Πη

t ) be the partial sum processes associated with (ηt), for the
even and odd subscripts, respectively. Explicitly,

Λη
pt = η2 + η4 + . . .+ η2pt =

pt∑
ℓ=1

η2ℓ



24 F. Proïa

and

Πη
it
= η1 + η3 + . . .+ η2it−1 =

it∑
ℓ=1

η2ℓ−1

with it = [(t+ 1)/2] and pt = t− [(t+ 1)/2]. A direct calculation shows that, for
ρ = −1 and all 1 ¬ k ¬ r + 1,
(4.34)

T∑
t=1

tk−1Sη
t =

T∑
t=1

tk−1Ση
t − 2

pT∑
t=1

(2t+ 1)k−1Λη
t − 2

iT∑
t=1

(2t)k−1Πη
t + 2 rT ,

where we have rT = (T +1)k−1Πη
(T+1)/2 for all odd T and rT = (T +1)k−1ΛT/2

for all even T . It is possible, via Theorem 4.1, to establish an invariance principle
on the processes (Λη

t ) and (Πη
t ). As a matter of fact,

(4.35)
Λη
[pT τ ]

ση
√
pT

D−→W (τ) and
Πη

[iT τ ]

ση
√
iT

D−→W (τ).

It follows from Theorem 4.2 that

1

ση p
k+1/2
T

[pT τ ]∑
t=1

(2t+1)k−1Λη
t =

[pT τ ]∑
t=1

(t+1)/pT∫
t/pT

(2[pT s]+1)k−1 Λη
[pT s]

ση p
k−1
T

√
pT

ds(4.36)

D−→
τ∫
0

(2s)k−1W (s) ds

and that

1

ση i
k+1/2
T

[iT τ ]∑
t=1

(2t)k−1Πη
t =

[iT τ ]∑
t=1

(t+1)/iT∫
t/iT

(2[iT s])
k−1Πη

[iT s]

ση i
k−1
T

√
iT

ds(4.37)

D−→
τ∫
0

(2s)k−1W (s) ds

since it is not hard to see that pT and iT behave like T/2. Moreover, the conver-
gences (4.35) and the definition of rT directly lead to

(4.38)
rT

T k+1/2

P−→ 0.

In addition, the invariance principle (4.9) for ρ = 1 and d = 1, here corresponding
to the one associated with (Ση

t ), gives, together with (4.34) and (4.36)–(4.38),

1

T k+1/2

T∑
t=1

tk−1Sη
t = OP(1)
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and thus, with the notation above, for all 1 ¬ k ¬ r + 1, we obtain

Pk, T

T 3/2
= OP(1) and

uη, T√
T

=
Sη
T + εT√
T

+OP(1),

successively using (4.4) and (4.13). By virtue of Theorems 4.1, 4.2 and the strong
law of large numbers, we deduce, following the same calculations, that the process
(Qt) grows with rate T 2, which achieves the proof for ρ = −1 since (4.32) shows
that the numerator of K̂T also grows with the same rate. Finally, for κ = 0, the
invariance principle (4.25) merely becomes

(4.39)
uη, [Tτ ]

ση
√
T

D−→W (τ)

from Theorem 4.1, and the end of the reasoning easily follows as above. �

P r o o f o f P r o p o s i t i o n 1.1. This proof will be very succinct since all
results have been established in the previous reasonings. Indeed, for κ = 0 and
ρ = −1, convergence (4.32) becomes

1

T 2

[Tτ ]∑
t=1

S2
t
D−→ σ2ε

τ∫
0

W 2
ε (s) ds +

σ2η
2

τ∫
0

W 2
η (s) ds,

if we split the limiting distribution into two independent components, so as to easily
deal with in the sequel. Without any trend fitted, we also have uη, t = Sη

t + εt for
all 1 ¬ t ¬ T . It follows that, similarly,

Q[Tτ ]

T 2

D−→ σ2η

τ∫
0

W 2
η (s) ds.

We complete the proof by choosing τ = 1 and applying Theorem 4.2. �
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