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Abstract. To investigate the features of the individual from the mixed-
type model, a novel model, named the mixed-type generalized linear model,
is proposed firstly in this work, which is verified to be realistic and useful.
We consider the robustness of M-estimation to estimate the unknown pa-
rameters of the mixed-type generalized linear model. By applying the law
of large numbers and the central limit theorem, the consistency and asymp-
totic normality of the M-estimation for the mixed-type generalized linear
model are proved with regularity assumptions. At last, in order to evaluate
the finite sample performance of the estimator for the new model, several
applied instances are presented, which show the good performance of the
estimator.
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1. INTRODUCTION

The usual methods of parameter estimation are the least squares method, the
maximum likelihood method, the quasi-likelihood method, etc. The nonrobustness
of the maximum likelihood estimator and quasi-likelihood estimator for parame-
ters are extensively reported in the literature, such as McCullagh and Nelder [11],
Heyde [3], and so on. As an alternative robust method, M-estimation has been re-
searched extensively. See Huber [5]–[9], Yohai and Maronna [16] and Bai et al.
[1], [2] for details.

The generalized linear model (GLM) is a class of widely used statistical mod-
els, which was proposed by Nelder and Wedderburn [13] as a way of unifying var-
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ious other statistical models. The GLM is a direct extension of the general linear
model. Its response variable follows any probability distribution in the exponential
family of distributions, such as logistic model, Poisson model, logarithmic model,
survival data model, and so on. The parameters in these models can be estimated
using a common calculation methodology. It is the common feature that motivates
us to study the GLM as a unified theory.

Much progress has been made in terms of the GLM and M-estimation. Preisser
and Qaqish [14] considered a class of robust estimators in the generalized frame-
work of generalized estimating equation. Sinha [15] studied robust analysis in
generalized linear mixed models. Mancini et al. [10] and Muler and Yohai [12]
proposed a robust M-estimator that assigns a much lower weight to outliers than
does the Gaussian maximum likelihood estimator. Huang and Song [4] discussed
M-estimator of a generalized linear model with measurement errors.

The mixture phenomenon appears more and more commonly, so we should
pay much attention to investigate the features of the individual from the mixed-
type model. As the generalized linear model is widely used in the actuarial area,
the insurance companies can consider to set up insurance premiums according to
the male drivers’ claim pattern (male drivers belong to one kind of distribution),
and also to the female drivers’ claim pattern (female drivers belong to another kind
of distribution). So the compensation scheme could be determined by considering
on both male and female drivers. These problems cannot be solved by the existing
models.

Motivated by this situation, a new model, named the mixed-type generalized
linear model, is proposed in this work, and the M-estimation of the mixed-type
generalized linear model is discussed. Furthermore, it is proved that the estima-
tor is consistent and asymptotically normal with the appropriate assumptions. The
simulation studies demonstrate the good performance of the proposed model.

This paper is organized as follows. In Section 2, the preliminaries and as-
sumptions including the basic structure of the mixed-type GLM and the concept
of M-estimation are given. The main results with full proofs are presented in Sec-
tion 3. Some applied instances to verify the performance of the estimator are given
in Section 4. At last, a conclusion is given in Section 5.

2. PRELIMINARIES AND ASSUMPTIONS

2.1. Mixed-type generalized linear model and M-estimation. The response
variable Y in the model

(2.1) E(Y |X(1),X(2)) = pF1(β
T
10X(1)) + qF2(β

T
20X(2))

is considered, where p + q = 1. It comes from the two-type generalized linear
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model

(2.2)

{
Y (1) = F1(β

T
10X(1)) + ε(1),

Y (2) = F2(β
T
20X(2)) + ε(2),

where F1(·) and F2(·) are given strictly monotonic and continuous functions. Also,
E(ε(1))=0, Var(ε(1))=V1(β

T
10X(1)), E(ε(2))=0 and Var(ε(2))=V2(β

T
20X(2)),

where V1(·) and V2(·) are nonnegative, continuous and bounded functions. It can
be observed that (2.1) is the mixture of the two-types Y (1) and Y (2). The propor-
tion of the first type Y (1) is p, while the proportion of the second type Y (2) is q.
Meanwhile, a whole data {X(1)

i , X(2)
i , Yi} (i = 1, 2, . . . , N) can be obtained from

this model. Then the mixed-type generalized linear model can be defined as

(2.3) Y = pF1(β
T
10X(1)) + qF2(β

T
20X(2)) + ε,

where p + q = 1 and E(ε) = 0, Var(ε) < ∞. Θ = Θ1 ⊗ Θ2 is the parameter
space which is a bounded closed set. The true parameter β10 is a d1-dimension in
Θ1, and the true parameter β20 is a d2-dimension in Θ2. {X(δ)

i } (i = 1, 2, . . . , N)
are i.i.d. random variables with δ = 1, 2, respectively.

A robust method provides a useful and stable alternative that is not sensitive
to outliers. Huber [5] introduced M-estimation of β, which is defined as any value
of β̂ that minimizes

N∑
i=1

ρ
(
Yi − pF1(β

T
1 X(1)

i )− qF2(β
T
2 X(2)

i )
)
,

with a suitable choice of the function ρ(·) which is the function of β. In general,
ρ(·) is a given nonnegative function. The least absolute deviation and ordinary least
squares are the special cases of M-estimation.

In fact, the exact form of ε in (2.3) can be

ε=F1(β
T
10X(1))(I{δ=1}−p)+F2(β

T
20X(2))(I{δ=2}−q)+ε(1)I{δ=1}+ε(2)I{δ=2},

the events of {δ = 1} and {δ = 2} are unobservable, but the Pr{δ = 1} = p and
Pr{δ = 2} = q are given. By further calculation, we obtain

E(ε) = 0,

Var(ε) = pq
(
F1(β

T
10X(1))− F2(β

T
20X(2))

)2
+ pV1(β

T
10X(1)) + qV2(β

T
20X(1)).

2.2. Assumptions. To achieve the asymptotic results of the estimator, the fol-
lowing assumptions are made.

(A1) The order of the integral and limit can be changed in the proofs.
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(A2) ρ(u) is the symmetric convex function and monotonously increases on
[0,∞), and ρ(0) = 0. There exists C1 > 0 such that 0 ¬ ρ′′(u) ¬ C1. Let L =

E
{(

ρ′(ε)
)2|X(1),X(2)

}
. For any a and b, E

[
ρ
(
ε̃+ a(I{δ=1} − p) + b(I{δ=2} − q)

+A
)]

reaches its unique minimum when A=0, where ε̃ = ε(1)I{δ=1} + ε(2)I{δ=2}.
(A3) pF1(β

T
10X(1))+ qF2(β

T
20X(2)) = pF1(β

T
1 X(1))+ qF2(β

T
2 X(2)) if and

only if (β1 = β10 and β2 = β20).
(A4) For any β1 ∈ Θ1 and β2 ∈ Θ2, there exists C2 > 0 such that

E
∣∣ρ′(Y − pF1(β

T
1 X(1))− qF2(β

T
2 X(2))

)∣∣ < C2.

(A5) Let X(1) and X(2) be bounded a.s., which means that there exists C3 > 0
such that max{∥X(1)∥, ∥X(2)∥} ¬ C3.

(A6) The two functions F1(·) and F2(·) have the second order derivatives.
(A7) F1(·) and F2(·) are not logarithmic functions (in other words, the first

order derivatives of F1(·) and F2(·) are not the inverse functions).
(A8) Let us put

SN (β1,β2) =
1

N

N∑
i=1

ρ
(
Yi − pF1(β

T
1 X(1)

i )− qF2(β
T
2 X(2)

i )
)

and
S(β1,β2) = E

{
ρ
(
Y − pF1(β

T
1 X(1))− qF2(β

T
2 X(2))

)}
.

Suppose S(β1,β2) is a continuous function, and SN (β1,β2) has the third order
derivative in the neighborhood of the true value parameters.

3. MAIN RESULTS

3.1. Consistency for the M-estimator of the mixed-type GLM. The consis-
tency for the M-estimator of the mixed-type GLM can be proved by using Theo-
rem 3.1.

THEOREM 3.1. Let (β̂1N , β̂2N ) be the minimizer of SN (β1,β2) in Θ. Then
we have

(i) lim
N→∞

β̂1N = β10 a.s.;

(ii) lim
N→∞

β̂2N = β20 a.s.

In order to prove Theorem 3.1, we need the following propositions.

PROPOSITION 3.1. Under conditions (A1)–(A7), for any α1, β1 ∈ Θ1 and
α2, β2 ∈ Θ2, there exists N0 = N0(α1, α2) such that when N > N0, we have

(i) |SN (β1,β2)− SN (α1,α2)|
¬ C2C3M(∥β1−α1∥+ ∥β2−α2∥)+C1C

2
3M

2(∥β1−α1∥2+ ∥β2−α2∥2);
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(ii) |S(β1,β2)− S(α1,α2)|
¬ C2C3M(∥β1−α1∥+ ∥β2−α2∥)+C1C

2
3M

2(∥β1−α1∥2+ ∥β2−α2∥2).

P r o o f. (i) For i = 1, 2, . . . , N , there exists ξi between Yi − pF1(α
T
1 X(1)

i )−
qF2(α

T
2 X(2)

i ) and Yi − pF1(β
T
1 X(1)

i )− qF2(β
T
2 X(2)

i ). According to the conditions
(A5) and (A6), there exist real numbers L1 and L2 such that |F ′1(βTX(1))| ¬ L1

and |F ′2(βTX(2))| ¬ L2. Let M = max{pL1, qL2}; we have∣∣ρ(Yi − pF1(β
T
1 X(1)

i )− qF2(β
T
2 X(2)

i )
)
− ρ
(
Yi − pF1(α

T
1 X(1)

i )− qF2(α
T
2 X(2)

i )
)∣∣

¬ ρ′
(
Yi − pF1(α

T
1 X(1)

i )− qF2(α
T
2 X(2)

i )
)

× (L1 · p · ∥β1 −α1∥ · ∥X(1)∥+ L2 · q · ∥β2 −α2∥ · ∥X(2)∥)

+
ρ′′(ξi)

2
[pL1(β1 −α1)

TX(1)
i + qL2(β2 −α2)

TX(2)
i ]2

¬ ρ′
(
Yi − pF1(α

T
1 X(1)

i )− qF2(α
T
2 X(2)

i )
)

×M · (∥β1 −α1∥ · ∥X(1)∥+ ∥β2 −α2∥ · ∥X(2)∥)

+
C1

2
·M2 · 2 · (∥β1 −α1∥2 · ∥X(1)∥2 + ∥β2 −α2∥2 · ∥X(2)∥2)

¬ C3Mρ′
(
Yi − pF1(α

T
1 X(1)

i )− qF2(α
T
2 X(2)

i )
)
(∥β1 −α1∥+ ∥β2 −α2∥)

+ C1C
2
3M

2(∥β1 −α1∥2 + ∥β2 −α2∥2).

According to the Kolmogorov law of large numbers, we have

lim
N→∞

1

N

N∑
i=1

{
ρ′
(
Yi − pF1(α

T
1 X(1)

i )− qF2(α
T
2 X(2)

i )
)}

= E
{
ρ′
(
Yi − pF1(α

T
1 X(1)

i )− qF2(α
T
2 X(2)

i )
)}

a.s.

Then there exists N0 = N0(α1, α2) such that when N > N0, by the condition
(A4), we have

1

N

N∑
i=1

{
ρ′
(
Yi − pF1(α

T
1 X(1)

i )− qF2(α
T
2 X(2)

i )
)}
¬ C2.

So, we obtain

|SN (β1,β2)− SN (α1,α2)|

¬ 1

N

N∑
i=1

{
ρ
(
Yi − pF1(β

T
1 X(1)

i )− qF2(β
T
2 X(2)

i )
)

− ρ
(
Yi − pF1(α

T
1 X(1)

i )− qF2(α
T
2 X(2)

i )
)}
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¬ C3

N
·M ·

N∑
i=1

ρ′
(
Yi − pF1(α

T
1 X(1)

i )−qF2(α
T
2 X(2)

i )
)
(∥β1 −α1∥+∥β2 −α2∥)

+ C1 ·M2 · C2
3 (∥β1−α1∥2 + ∥β2−α2∥2)

¬ C2C3M (∥β1 −α1∥+ ∥β2 −α2∥)+C1C
2
3M

2(∥β1−α1∥2+∥β2−α2∥2).

(ii) Similarly, we have

|S(β1,β2)− S(α1,α2)|
=
∣∣E{ρ(Y − pF1(β

T
1 X(1))− qF2(β

T
2 X(2))

)
− ρ
(
Y − pF1(α

T
1 X(1))− qF2(α

T
2 X(2))

)}∣∣
¬ C3M · E

{
ρ′
(
Y − pF1(α

T
1 X(1))− qF2(α

T
2 X(2))

)}
(∥β1−α1∥+ ∥β2−α2∥)

+ C1C
2
3M

2(∥β1 −α1∥2 + ∥β2 −α2∥2)
¬ C2C3M(∥β1 −α1∥+ ∥β2 −α2∥) + C1C

2
3M

2(∥β1 −α1∥2+∥β2−α2∥2).

This completes the proof of Proposition 3.1. �

PROPOSITION 3.2. Under conditions (A1)–(A7), we have

lim
N→∞

sup
β1∈Θ1

β2∈Θ2

|SN (β1,β2)− S(β1,β2)| = 0 a.s.

P r o o f. Θ is a bounded closed set; for any ω > 0, there exists an η(ω)-net,
where

η(ω) =
ω

6(C2C3M + C1C2
3M

2)
.

We take {β(1)
1 ,β

(2)
1 , . . . ,β

(s)
1 } and {β(1)

2 , β
(2)
2 , . . . ,β

(t)
2 } from the η(ω)-net. Then,

for any β1 ∈ Θ1 and β2 ∈ Θ2, there exist j and k such that

max{∥β1 − β
(j)
1 ∥, ∥β2 − β

(k)
2 ∥} ¬ min {η(ω), 1}.

By the Kolmogorov law of large numbers, we have

lim
N→∞

(
SN (β

(j)
1 ,β

(k)
2 )− S(β

(j)
1 ,β

(k)
2 )
)
= 0,

i.e. for the above-mentioned ω > 0, there exists Ñj,k > 0 such that, when N >

Ñj,k, we have

(3.1) |SN (β
(j)
1 ,β

(k)
2 )− S(β

(j)
1 ,β

(k)
2 )| < ω

3
.
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By Proposition 3.1(i), there exist finite numbers N1, N2, . . . , Nt×s, and we take
N∗ = max{N1, N2, . . . , Nt×s}. When N > N∗, we have

(3.2) |SN (β1,β2)− SN (β
(j)
1 ,β

(k)
2 )|

¬ C2C3M(∥β1 − β
(j)
1 ∥+ ∥β2 − β

(k)
2 ∥)

+ C1C
2
3M

2(∥β1 − β
(j)
1 ∥

2 + ∥β2 − β
(k)
2 ∥

2)

¬ (C2C3M + C1C
2
3M

2)(∥β1 − β
(j)
1 ∥+ ∥β2 − β

(k)
2 ∥) <

ω

3
.

By Proposition 3.1(ii), we obtain

(3.3) |S(β(j)
1 ,β

(k)
2 )− S(β1,β2)|

¬ C2C3M(∥β(j)
1 − β1∥+ ∥β

(k)
2 − β2∥)

+ C1C
2
3M

2(∥β(j)
1 − β1∥2 + ∥β

(k)
2 − β2∥2)

¬ (C2C3M + C1C
2
3M

2)(∥β1 − β
(j)
1 ∥+ ∥β2 − β

(k)
2 ∥) <

ω

3
.

Then, combining (3.1), (3.2) and (3.3), let

Ñ = max
1¬j¬s,1¬k¬t

{N∗, Ñj,k},

when N > Ñ , and we have

|SN (β1,β2)− S(β1,β2)|

¬ |SN (β1,β2)− SN (β
(j)
1 ,β

(k)
2 )|+ |SN (β

(j)
1 ,β

(k)
2 )− S(β

(j)
1 ,β

(k)
2 )|

+ |S(β(j)
1 ,β

(k)
2 )− S(β1,β2)|

<
ω

3
+

ω

3
+

ω

3
= ω.

So, we conclude that

lim
N→∞

sup
β1∈Θ1

β2∈Θ2

|SN (β1,β2)− S(β1,β2)| = 0.

This completes the proof of Proposition 3.2. �
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P r o o f o f T h e o r e m 3.1. It can be shown that

S(β1,β2)

= E
{
ρ
(
Y − pF1(β

T
1 X(1))− qF2(β

T
2 X(2))

)}
= E

{
ρ
(
pF1(β

T
10X(1)) + qF2(β

T
20X(2))− pF1(β

T
1 X(1))− qF2(β

T
2 X(2)) + ε

)}
= E

{
E
{
ρ
(
pF1(β

T
10X(1)) + qF2(β

T
20X(2))− pF1(β

T
1 X(1))

− qF2(β
T
2 X(2)) + ε

)∣∣X(1),X(2)
}}

= E
{
E
{
ρ
(
pF1(β

T
10X(1)) + qF2(β

T
20X(2))− pF1(β

T
1 X(1))− qF2(β

T
2 X(2))

+ F1(β
T
10X(1))(I{δ=1} − p) + F2(β

T
20X(2))(I{δ=2} − q)

+ ε(1)I{δ=1} + ε(2)I{δ=2}
)∣∣X(1),X(2)

}}
, E

{
E
{
ρ
(
A+ a(I{δ=1} − p) + b(I{δ=2} − q) + ε̃

)∣∣X(1),X(2)
}}

,

where A = pF1(β
T
10X(1)) + qF2(β

T
20X(2)) − pF1(β

T
1 X(1)) − qF2(β

T
2 X(2)), a =

F1(β
T
10X(1)), b = F2(β

T
20X(2)) and ε̃ = ε(1)I{δ=1} + ε(2)I{δ=2}.

By the condition (A2), for any a and b, it follows that E
(
ρ
(
ε̃+ a(I{δ=1} − p)

+ b(I{δ=2} − q) +A
))

achieves its minimum when A = 0, where ε̃ = ε(1)I{δ=1}
+ ε(1)I{δ=2}. That is to say, when pF1(β

T
10X(1)) + qF2(β

T
20X(2))− pF1(β

T
1 X(1))

− qF2(β
T
2 X(2)) = 0 a.s., S(β1,β2) achieves its minimum.

By the condition (A3), we know that when β1=β10 and β2=β20, S(β1,β2)
achieves its minimum, and it is the unique minimizer of S(β1,β2). So we have

SN (β̂1N , β̂2N )− S(β̂1N , β̂2N ) ¬ SN (β̂1N , β̂2N )− S(β10,β20)

¬ SN (β10,β20)− S(β10,β20).

Obviously, we have

lim
N→∞

(
SN (β̂1N , β̂2N )− S(β1N ,β2N )

)
= 0 a.s.,

and
lim

N→∞

(
SN (β̂10, β̂20)− S(β10,β20)

)
= 0 a.s.

By the squeeze theorem, we obtain

(3.4) lim
N→∞

(
SN (β̂1N , β̂2N )− S(β10,β20)

)
= 0 a.s.

As Θ is a bounded closed set, there exist convergent subseries {β̂1N̂} and
{β̂2N̂} of the series {β̂1N} and {β̂2N}, respectively. Then we have

lim
N̂→∞

β̂1N̂ = β0
1, β0

1 ∈ Θ1 ⊂ Θ a.s.,
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and
lim

N̂→∞
β̂2N̂ = β0

2, β0
2 ∈ Θ2 ⊂ Θ a.s.

Because S(β1,β2) is continuous, we get

lim
N̂→∞

S(β̂1N̂ , β̂2N̂ ) = S(β0
1,β

0
2).

According to (3.4), we have

lim
N→∞

SN (β̂1N , β̂2N ) = S(β10,β20).

As {β̂1N̂} and {β̂2N̂} are the convergent subseries of {β̂1N} and {β̂2N}, we have

S(β0
1,β

0
2) = S(β10,β20).

And from the uniqueness of the minimizer, we obtain

β0
1 = β10 and β0

2 = β20.

So we have
lim

N→∞
β̂1N = β10 and lim

N→∞
β̂2N = β20.

This completes the proof of Theorem 3.1. �

3.2. Asymptotic normality for the M-estimator of the mixed-type GLM. The
asymptotic normality for the M-estimator of the mixed-type GLM can be proved
by using Theorem 3.2.

THEOREM 3.2. Under conditions (A1)–(A7), we have

√
N(β̂N − β0)

D−→ N(0,K−1ΣK−1),

where

β0 =

(
β10

β20

)
, β̂N =

(
β̂1N

β̂2N

)
, K =

(
K(1) K(1,2)

K(1,2)T K(2)

)
,

K(1,2),E
{[
pqF ′1(β

T
10X(1)

1 )F ′2(β
T
20X(2)

1 )ρ′′(ε1)
]
X(1)
1 X(2)T

1

}
,

K(1),E
{[
p2ρ′′(ε1)

(
F ′1(β

T
10X(1)

1 )
)2 − pρ′(ε1)

(
F
′′
1 (β

T
10X(1)

1 )
)]

X(1)
1 X(1)T

1

}
,

K(2),E
{[
q2ρ′′(ε1)

(
F ′2(β

T
20X(2)

1 )
)2 − qρ′(ε1)

(
F
′′
2 (β

T
20X(2)

1 )
)]

X(2)
1 X(2)T

1

}
.

The form of Σ is the same as that in the following Proposition 3.3.

In order to get the asymptotic normality, we need the following important
proposition.
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PROPOSITION 3.3. Under conditions (A1)–(A7), we have

1√
N

N∑
i=1

ρ′(εi)

(
pF ′1(β

T
10X(1)

i )X(1)
i

qF ′2(β
T
20X(2)

i )X(2)
i

)
D−→ N(0,Σ),

where

Σ =

(
Σ(1) Σ(1,2)

Σ(1,2)T Σ(2)

)
,

Σ(1,2),E
[(
pqF ′1(β

T
10X(1)

1 )F ′2(β
T
20X(2)

1 )
)
X(1)
1 X(2)T

1 L
]
,

Σ(1),E
[(
pF ′1(β

T
10X(1)

1 )
)2X(1)

1 X(1)T

1 L
]
,

Σ(2),E
[(
qF ′2(β

T
20X(2)

1 )
)2X(2)

1 X(2)T

1 L
]
.

P r o o f. Θ is a bounded closed set, and the true values of parameters are the
inner point of Θ.

By the condition (A2), for any a and b, it follows that E
(
ρ
(
ε̃+ a(I{δ=1} − p)

+ b(I{δ=2} − q) +A
))

achieves its minimum when A = 0, where ε̃ = ε(1)I{δ=1}
+ ε(2)I{δ=2}. Namely, E

(
ρ′
(
ε̃+ a(I{δ=1} − p) + b(I{δ=2}−q)

))
=0 when A=0,

where ε̃ = ε(1)I{δ=1} + ε(2)I{δ=2}.
Let us put

τ i =
1√
N

ρ′(εi)

(
pF ′1(β

T
10X(1)

i )X(1)
i

qF ′2(β
T
20X(2)

i )X(2)
i

)
.

Then we have E(τ i) = 0. Furthermore, we obtain E
(∑N

i=1 τ i

)
= 0.

Next, because {Xδ
i } and {εi} (i = 1, 2, . . . , N ; δ = 1, 2) are i.i.d., we con-

sider

Var(τ i) = E(τ iτ
T
i ) =

1

N
E

{(
ρ′(εi)

)2(pF ′1(βT
10X(1)

i )X(1)
i

qF ′2(β
T
20X(2)

i )X(2)
i

)

×
(
pF ′1(β

T
10X(1)

i )X(1)T

i qF ′2(β
T
20X(2)

i )X(2)T

i

)}

=
1

N

(
A11 A12

A21 A22

)
,

where

A11 = p2E
((

F ′1(β
T
10X(1)

1 )
)2X(1)

1 X(1)T

1

)
L,

A12 = pqE
(
F ′1(β

T
10X(1)

1 )F ′2(β
T
20X(2)

1 )X(1)
1 X(2)T

1

)
L,

A21 = qpE
(
F ′2(β

T
20X(2)

1 )F ′1(β
T
10X(1)

1 )X(2)
1 X(1)T

1

)
L,

A22 = q2E
((

F ′2(β
T
20X(2)

1 )
)2X(2)

1 X(2)T

1

)
L.
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So, we have

Var
( N∑
i=1

τ i

)
=

(
A11 A12

A21 A22

)
.

By the Lévy central limit theorem and the law of large numbers, we have

1√
N

N∑
i=1

ρ′(εi)

(
pF ′1(β

T
10X(1)

i )X(1)
i

qF ′2(β
T
20X(2)

i )X(2)
i

)
=

N∑
i=1

τ i
D−→ N(0,Σ),

where Σ is defined as in Proposition 3.3. This completes the proof of Proposi-
tion 3.3. �

P r o o f o f T h e o r e m 3.2. By Taylor’s expansion, we have

∂SN (β)

∂β
=

∂SN (β)

∂β

∣∣∣∣
β=β0

+
∂2SN (β)

∂β∂βT

∣∣∣∣
β=β0

· (β − β0) + o(∥β − β0∥),

i.e. ∂SN (β1,β2)

∂β1

∂SN (β1,β2)

∂β2

 =

∂SN (β1,β2)

∂β1

∂SN (β1,β2)

∂β2


∣∣∣∣∣∣∣β1=β10
β2=β20

+

∂2SN (β1,β2)

∂β1∂β
T
1

∂2SN (β1,β2)

∂β1∂β
T
2

∂2SN (β1,β2)

∂β2∂β
T
1

∂2SN (β1,β2)

∂β2∂β
T
2


∣∣∣∣∣∣∣β1=β10
β2=β20

· (β − β0) + o(∥β − β0∥).

Because β̂N is the minimizer of SN (β) in Θ, we have

(3.5) 0 =

∂SN (β1,β2)

∂β1

∂SN (β1,β2)

∂β2


∣∣∣∣∣∣∣β1=β10
β2=β20

+

∂2SN (β1,β2)

∂β1∂β
T
1

∂2SN (β1,β2)

∂β1∂β
T
2

∂2SN (β1,β2)

∂β2∂β
T
1

∂2SN (β1,β2)

∂β2∂β
T
2


∣∣∣∣∣∣∣β1=β10
β2=β20

· (β̂N − β0) + o(∥β̂N − β0∥).

Indeed, this can easily be obtained as follows:

∂SN (β1,β2)

∂β1

∣∣∣∣β1=β10
β2=β20

= − p

N

N∑
i=1

ρ′(εi)F
′
1(β

T
10X(1)

i )X(1)
i ,

∂SN (β1,β2)

∂β2

∣∣∣∣β1=β10
β2=β20

= − q

N

N∑
i=1

ρ′(εi)F
′
2(β

T
20X(2)

i )X(2)
i ,
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∂2SN (β1,β2)

∂β1∂β
T
1

∣∣∣∣β1=β10
β2=β20

=
1

N

N∑
i=1

{[
p2ρ′′(εi)

(
F ′1(β

T
10X(1)

i )
)2− pρ′(εi)F

′′
1 (β

T
10X(1)

i )
]

X(1)
i X(1)T

i

}
, K

(1)
N ,

∂2SN (β1,β2)

∂β1∂β
T
2

∣∣∣∣β1=β10
β2=β20

=
1

N

N∑
i=1

{
pq
[
ρ′′(εi)F

′
1(β

T
10X(1)

i )F ′2(β
T
20X(2)

i )
]
X(1)
i X(2)T

i

}
, K

(1,2)
N ,

∂2SN (β1,β2)

∂β2∂β
T
1

∣∣∣∣β1=β10
β2=β20

=
1

N

N∑
i=1

{
pq
[
ρ′′(εi)F

′
2(β

T
20X(2)

i )F ′1(β
T
10X(1)

i )
]
X(2)
i X(1)T

i

}
, K

(1,2)
N

T
,

∂2SN (β1,β2)

∂β2∂β
T
2

∣∣∣∣β1=β10
β2=β20

=
1

N

N∑
i=1

{[
q2ρ′′(εi)

(
F ′2(β

T
20X(2)

i )
)2− qρ′(εi)F2

′′(βT
20X(2)

i )
]
X(2)
i X(2)T

i

}
, K

(2)
N .

Then the formula (3.5) can be rewritten as

1√
N

N∑
i=1

ρ′(εi)

(
pF ′1(β

T
10X(1)

i )X(1)
i

qF ′2(β
T
20X(2)

i )X(2)
i

)

=
√
N

(
K

(1)
N K

(1,2)
N

K
(1,2)T

N K
(2)
N

)
(β̂N − β0) + o(β̂N − β0)

√
N.

Let us define

KN ,
(

K
(1)
N K

(1,2)
N

K
(1,2)T

N K
(2)
N

)
.

Because {Xδ
i } and {εi} (i = 1, 2, . . . , N ) are i.i.d., using the law of large numbers,

we have

lim
N→∞

KN = K ,
(

K(1) K(1,2)

K(1,2)T K(2)

)
,

where β0, β̂N ,K(1,2),K(1) and K(2) are defined as in Theorem 3.2. So by Propo-
sition 3.3 and Slutsky’s theorem, we obtain

√
N(β̂N − β0)

D−→ N(0,K−1ΣK−1),
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the form of Σ being the same as in Proposition 3.3. This completes the proof of
Theorem 3.2. �

4. A SIMULATION STUDY

In this section, to indicate the reasonableness of the M-estimation for the
mixed-type generalized linear model, some examples are presented. The response
variable Y comes from the formula (2.1), i.e.,

E(Y |X(1),X(2)) = pF1(β
T
10X(1)) + qF2(β

T
20X(2)).

Let Pr{δ = 1} = p = 0.3 and 0.8, respectively. Let F1(·) be the general linear
model

F1(β
T
1 X) = βT

1 X,

and F2(·) be the Poisson model

F2(β
T
2 X) = exp(βT

2 X).

Assume that X(1)
i (i = 1, 2, . . . , N) is a d1-dimensional random vector, with

mean zero and covariance a unit matrix, each component of X(1)
i (i = 1, 2, . . . , N)

being independent. Moreover, assume that X(2)
i (i = 1, 2, . . . , N) is a d2-dimen-

sional random vector, with mean zero and covariance a unit matrix, each compo-
nent of X(2)

i (i = 1, 2, . . . , N) being independent. β1 is a d1-dimensional vector
and its true value is β10 = (−1,−2)T with d1 = 2, and β2 is a d2-dimensional
vector and its true value is β20 = (0.5, 0.5)T with d2 = 2. So we can get a whole
data {Yi, X(1)

i , X(2)
i ; i = 1, 2, . . . , N} by our previously proposed model. For the

general linear model, the error term is assumed to be normal distribution, but in the
case of Poisson distribution, the simulated value of the response is generated from
Poisson distribution. In the simulation we take N = 100.

EXAMPLE 4.1 (Least absolute deviations). In this example, the function of
M-estimation is taken as the least absolute, and denote its results as least absolute
deviations (LAD).

Let us put β̂ = (β̂
(1)
1 , β̂

(1)
2 , β̂

(2)
1 , β̂

(2)
2 )T . To measure the performance of the

estimator, we take the mean square errors (MSE) of β̂ as

MSE(β̂) = E(∥β̂ − β0∥2),

and the bias of estimation (BE) of β̂ as

BE(β̂) = ∥E(β̂)− β0∥.

Summary statistics are computed based on 100, 300 and 600 repetitions, re-
spectively. Simulation results are exhibited in Table 1.
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Table 1. Least absolute deviations, β0 = (−1,−2, 0.5, 0.5)T .

(N, p) Repetitions Estimates (β̂) MSE(β̂) BE(β̂)

β̂
(1)
1 β̂

(1)
2 β̂

(2)
1 β̂

(2)
2

100 −0.9949 −2.0028 0.5322 0.5294 0.0051 0.0439
(100, 0.3) 300 −0.9975 −2.0023 0.5310 0.5314 0.0055 0.0442

600 −0.9969 −2.0039 0.5299 0.5286 0.0053 0.0416
100 −0.9809 −2.0155 0.5386 0.5329 0.0111 0.0563

(100, 0.8) 300 −0.9836 −2.0185 0.5366 0.5356 0.0117 0.0568
600 −0.9814 −2.0212 0.5371 0.5321 0.0117 0.0566

EXAMPLE 4.2 (Ordinary least squares). In this example, the function of M-
estimation is taken as the least square, and denote its results as ordinary least
squares (OLS). The other assumptions and conditions that we considered are the
same as in Example 4.1. Results of simulation are given in Table 2.

Table 2. Ordinary least squares, β0 = (−1,−2, 0.5, 0.5)T .

(N, p) Repetitions Estimates (β̂) MSE(β̂) BE(β̂)

β̂
(1)
1 β̂

(1)
2 β̂

(2)
1 β̂

(2)
2

100 −0.9652 −2.0120 0.4908 0.4687 0.6896 0.0493
(100, 0.3) 300 −1.0034 −2.0091 0.4893 0.4851 0.5393 0.0208

600 −0.9730 −1.9942 0.4900 0.4853 0.5067 0.0329
100 −0.9876 −2.0035 0.4430 0.4054 0.3343 0.1112

(100, 0.8) 300 −1.0009 −2.0033 0.4456 0.4255 0.3074 0.0923
600 −0.9906 −1.9980 0.4385 0.4275 0.2783 0.0956

Tables 1 and 2 show that the method based on our proposed model performs
quite well. It is also observed that the MSE of LAD performs better than OLS in the
simulations. This relative large size occurs because the variance of Poisson model
is large. The results indicate that the M-estimation of the mixed-type generalized
linear model is a favorable method.

5. CONCLUSION

To investigate the features of the individual from the mixed-type model, a
novel model, named the mixed-type generalized linear model, was proposed in this
paper. The M-estimation of the unknown parameter of this model was analyzed.
Furthermore, the consistency and asymptotic normality of the M-estimation for the
mixed-type generalized linear model were obtained with some assumptions. The
simulation study clearly showed that the proposed model has good performance.
The mixed-type GLM could be applied in many different kinds of areas, such as
biomedical statistics and social economical data statistics analysis. So the proposed
model is very extensive and meaningful in real application area.
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