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Abstract. A multiplicative identity in law for the area of a spectrally
positive Lévy α-stable process stopped at zero is established. Extending that
of Lefebvre for Brownian motion, it involves an inverse beta random vari-
able and the square of a positive stable random variable. This simple iden-
tity makes it possible to study precisely the behaviour of the density at zero,
which is Fréchet-like.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let {Bt, t  0} be a linear Brownian motion, starting from B0 = 1. Denote
its first hitting time of zero by T = inf{t > 0, Bt = 0}. The random variable

A =
T∫

0

Bs ds

has been investigated by Lefebvre, who obtained in Theorem 2 of [11] the identity
in law

(1.1) A d
=

2

9Γ1/3
,

where, here and throughout, Γa stands for the standard gamma random variable
with density

xa−1

Γ(a)
e−x 1{x>0}.

The identity (1.1) is obtained as a consequence of the closed expression for the
Laplace transform of the bivariate random variable (T,A) in terms of the Airy



28 J . Letemplier and T. Simon

function – see Theorem 1 in [11]. As observed in [10], p. 402, this latter expres-
sion can be easily derived thanks to the Feynman–Kac formula. Notice that Airy
functions appear in the expression of the Laplace transform of many other Brow-
nian areas (see [6]), whose laws are in general more complicated than (1.1). It is
also interesting to mention that the random variable on the right-hand side of (1.1)
can also be viewed as a Brownian perpetuity, according to Dufresne’s celebrated
identity [4].

In a recent paper [12], we have generalized (1.1) to random variables of the
type

T∫
0

(Ls)
q ds, q ∈ R,

where L is a Lévy strictly stable process starting from one, and T is its first pas-
sage time below zero. A general identity was obtained involving infinite indepen-
dent products of beta random variables, and several distributional properties related
to infinite divisibility were deduced – see [12] for details. However, this identity
remains complicated, and the corresponding expression of the Mellin transform,
given in [12] in terms of the double gamma function, can be difficult to invert in
order to get tail asymptotics of the density.

In this note, we derive a very simple identity for the particular random variable

Aα =
T∫

0

L(α)
s ds,

where {L(α)
t , t  0} is a strictly α-stable Lévy process without negative jumps,

starting from one, and T = inf{t > 0, L
(α)
t = 0} is its first hitting time of zero.

Without loss of generality we choose the normalization

E[e−tL
(α)
1 ] = et

α
, t  0,

where α ∈ [1, 2] is the self-similarity parameter. We refer, e.g., to Chapter 3 in
[15] for more information on stable Lévy processes and the above normalization.
The boundary cases α = 1, 2 correspond, respectively, to the unit drift and the
Brownian motion with variance

√
2, so that we have

(1.2) A1 =
1

2
and A2

d
=

1

9Γ1/3
·

The second identity in (1.2), which is actually the precise statement of Theorem 2
in [11], follows from (1.1) and the self-similarity of Brownian motion. In order to
state our result, we need some further notation. Introduce the beta random variable
Ba,b with density

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 1(0,1)(x),
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and the positive a-stable random variable Za with Laplace transform

E[e−λZa ] = e−λ
a
, λ  0.

THEOREM 1.1. For every α ∈ (1, 2), one has the independent factorization

(1.3) Aα
d
=

(
α+ 1

4

)
× Z 2

2
α+1

× B−11
2
, α−1
2(α+1)

.

Observe that (1.3) is in accordance with the two boundary cases: when α = 1,
the two random variables on the right-hand side boil down to one, whereas when
α = 2, the following identity obtained in Theorem 1 of [17],

Z 2
2/3

d
=

4

27
Γ−12/3 × B−11/3,1/6,

combined with the elementary factorization Γa
d
= Γa+b × Ba,b, allows us to re-

cover the second identity in (1.2). As in [12], the proof of (1.3) relies on an identi-
fication of the fractional moments ofAα in terms of the gamma function, see (2.1).
However, the method of [12] is based on a modern and rather heavy machinery
involving the Lamperti transform and exponential functional of Lévy processes,
whereas our argument here is easier and more classical, using the strong Markov
property and some exact results on the stable Kolmogorov process recently ob-
tained in [14].

The simple expression of the Mellin transform of Aα can be easily inverted
in order to give a convergent series representation for its density fAα . Throughout,
we will set fX for the density of an absolutely continuous random variable X.

COROLLARY 1.1. The density of Aα has a convergent series representation:

fAα(x) = Γ

(
α

α+ 1

)
×
∞∑
n=0

(−1)n(α+ 1)
n+1
α+1
−1x−

n+1
α+1
−1

n! Γ
(
1− n+1

α+1

)
Γ
(
1− n+2

α+1

) , x > 0.

Observe that when α = 2, the above summation is made over n = 3p only,
and that further simplifications lead to

(1.4) fA2(x) =
x−4/3

32/3Γ(1/3)

∞∑
p=0

(−1)p(9x)−p

p!
=

Γ(2/3)x−4/3 e−1/(9x)

2π 31/6
,

which is precisely the expression to be found in Theorem 2 of [11]. Corollary 1.1
also implies the first order asymptotic behaviour:

fAα(x) ∼
(α+ 1)

1
α+1
−1x−

1
α+1
−1

Γ
(
α−1
α+1

) , x→∞.
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This behaviour has, up to a multiplicative constant, the same speed as that of the
density of the factor Z 2

2/(α+1) at infinity – see formula (14.31) in [15].
On the other hand, it does not seem possible to find a suitable transform of the

above series representation in order to deduce the exact behaviour of fAα at zero.
Usually this is done via the Mellin–Barnes transform and the residue theorem, but
here this method fails because Aα has negative moments of every order. Using
(1.3), we can show the following precise estimate.

COROLLARY 1.2. The asymptotic behaviour of the density of Aα as x→ 0+
is given by

(1.5) fAα
(x) ∼ κα xα

2/(1−α2) exp
(
−cα x1/(1−α)

)
,

with

κα =
Γ
(

α
α+1

)√
α+1
α−1

2π (α+ 1)α/(α2−1) and cα = (α− 1)(α+ 1)α/(1−α).

This shows that the behaviour of fAα at zero is that of the generalized Fréchet
density

fcα−1
α Γ1−α

1/(α+1)
(x) = κ̃α xα

2/(1−α2) exp
(
−cα x1/(1−α)

)
,

up to the normalizing constant

κ̃α =
(α− 1)−α/(α+1)

Γ
(

1
α+1

)
(α+ 1)α/(α2−1)

which does not coincide with κα except for α = 2. Observe also that making α = 2
on the right-hand side of (1.5) yields the density in (1.4). Using our method, it
should be possible to obtain a full asymptotic expansion of fAα at zero, in the
spirit of (14.35) in [15] – see Remark 2.2 below. But we have not adressed this
question, which is believed to be rather technical, in the present note.

2. PROOFS

2.1. Proof of Theorem 1.1. To simplify the notation, we will set L = L(α).
Introduce the area process

At =
t∫

0

Ls ds, t  0.

Recall that the bivariate process X = {(At, Lt), t  0} is strongly Markovian and
denote by P(x,y) its law starting from (x, y). Consider the stopping time

S = inf{t > 0, At = 0}

and observe that under P(0,1) one has a.s. S > T,AT > 0, and LS < 0.
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Setting {Ft, t  0} for the natural completed filtration of X and applying the
strong Markov property at T shows that for every s ∈ R one has

E(0,1)[|LS |s−1] = E(0,1)

[
E[|LS |s−1|FT ]

]
= E(0,1)

[
E(Aα,0)[|LS |s−1]

]
= E [A(s−1)/(α+1)

α ]× E(1,0)[|LS |s−1],

possibly with infinite values on both sides, where the second equality follows from
the absence of negative jumps for L, and the third equality from the self-similarity
of L and A with respective indices 1/α and 1 + 1/α, which readily implies that
the law of LS under P(x,0) is that of x1/(α+1)LS under P(1,0) for every x > 0.

Applying now Theorem B of [14] in the particular case ρ = 1/α (beware that
we consider here the dual process, with no positive jumps), we get

E(0,1)[|LS |s−1] =
sin

(
πs
α+1

)
sin

(
παs
α+1

)
and

E(1,0)[|LS |s−1] =
(α+ 1)(1−s)/(α+1)Γ

(
α+2
α+1

)
Γ
(
1−s
α+1

)
sin

(
π

α+1

)
Γ
(

s
α+1

)
Γ(1− s) sin

(
παs
α+1

)
for all |s| < 1 + 1/α. Dividing and simplifying with the help of the complement
formula for the gamma function, we deduce

(2.1) E [As
α] = (α+ 1)s ×

Γ
(

α
α+1

)
Γ
(
1− (α+ 1)s

)
Γ
(

α
α+1 − s

)
Γ(1− s)

for all s < 1/(α + 1). Applying Gauss’s multiplication formula for the gamma
function (see, e.g., Theorem 1.5.1 in [1]) implies

E [As
α] =

(
α+ 1

4

)s

×
Γ
(
1− (α+ 1)s

)
Γ(1− 2s)

×
Γ
(

α
α+1

)
Γ
(
1
2 − s

)
Γ
(
1
2

)
Γ
(

α
α+1 − s

) ,
and we can conclude by a fractional moment identification, recalling (see, e.g.,
formula (25.5) in [15] for the second expression) that

E [Bs
a,b] =

Γ(a+ s)Γ(a+ b)

Γ(a)Γ(a+ b+ s)
and E [Zs

a] =
Γ
(
1− s

a

)
Γ(1− s)

· �

REMARK 2.1. (a) With the notation of our proof above, it is possible to derive
the law of AT under P(x,y) for any x ∈ R and y > 0, by the self-similarity of L(α).
One finds

Aα
d
= x +

(
(α+ 1) yα+1

4

)
× Z 2

2
α+1

× B−11
2
, α−1
2(α+1)

.
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(b) It is well known and easy to verify (see, e.g., Theorem 46.3 in [15]) that
under P(0,1), the random variable T is distributed as Z1/α. The theorem above pro-
vides a connection between Aα = AT and the random variable Z2/(α+1). How-
ever, it seems difficult with our method to obtain some valuable information on the
Mellin transform of the bivariate random variable (T,AT ).

(c) Using again Gauss’s multiplication formula, it is possible to derive from
(2.1) the other independent factorization,

Aα
d
= (α+ 1)−1 × Z 2

α+1
× Z

( 1
α+1

)
2

α+1

,

where X(t) is the size bias of order t of a positive random variable X , that is,

E[f(X(t))] =
E[Xtf(X)]

E[Xt]

for every f bounded continuous. This factorization makes the connection between
Aα and Z2/(α+1) even tighter, but it is less tractable to obtain Corollary 1.2.

(d) Combining the Kanter factorization (see Corollary 4.1 in [7]) and (1.3)
shows the identity

Aα
d
=

(
α+ 1

4

)
× Γ1−α

1 ×
(
B 1

2
, α−1
2(α+1)

× Kα+1
2

α+1

)−1
,

where Ka is the so-called Kanter random variable of index a ∈ (0, 1) – see Sec-
tion 3 in [17] for details. Moreover, the observations made in Remark 3.1 of [9]
show that

T∫
0

(L
(α)
t )
−1

dt
d
=

1

(α− 1)Γα−1
1

·

We can then deduce the curious factorization

T∫
0

L
(α)
t dt

d
=

(
α2 − 1

4

)
×

(
B 1

2
, α−1
2(α+1)

× Kα+1
2

α+1

)−1
×

( T∫
0

(L
(α)
t )
−1

dt
)
.

2.2. Proof of Corollary 1.1. We will reason along the same lines as in Proposi-
tion 2 in [16], and omit some details. Applying the Mellin inversion formula yields
first

fAα(x) =
1

2πx

∫
R
Mα(s)x

−is ds,

with the notation

Mα(s) = E [Ais
α ] = (α+ 1)is ×

Γ
(

α
α+1

)
Γ
(
1− (α+ 1)is

)
Γ
(

α
α+1 − is

)
Γ(1− is)
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for every s ∈ R. Observe that the integral in the above-given formula converges for
all x ∈ C with arg(x) < π(α − 1)/2, which can be seen from Stirling’s asymp-
totics for the gamma function (see, e.g., Corollary 1.4.4 in [1]). In particular, the
density function fAα is real analytic on (0,∞).

Suppose now x > 1. We evaluate the integral above with the help of the
residue theorem applied to the contour joining −R to R along the real axis, and R
to −R along the half-circle plotted in the lower half-plane. It is easy to see that the
integral along this half-circle vanishes as R→ +∞, so that it remains to consider
the singularities inside the contour, which are located at tn=−i(n+1)/(α+1),
n  0. Computing

Restn
(
Mα(s)x

−is) = −i Γ
(

α

α+ 1

)
× (−1)n(α+ 1)

n+1
α+1
−1x−

n+1
α+1

n! Γ
(
1− n+1

α+1

)
Γ
(
1− n+2

α+1

) ,
we obtain

fAα(x) = Γ

(
α

α+ 1

)
×
∞∑
n=0

(−1)n(α+ 1)
n+1
α+1
−1x−

n+1
α+1
−1

n! Γ
(
1− n+1

α+1

)
Γ
(
1− n+2

α+1

)
for every x > 1, and hence for every x > 0 by analytic continuation (Stirling’s
formula shows indeed that the series on the right-hand side converges absolutely
for every x > 0, too). �

REMARK 2.2. The results of [12] show the following representation ofAα as
a perpetuity. One has

(2.2) Aα
d
=

∞∫
0

e−(α+1)Z
(α)
t dt,

where Z(α) is a spectrally negative Lévy process with Laplace exponent

logE[esZ
(α)
1 ] =

Γ(α+ s)

Γ(s)
·

This Lévy process is of the hypergeometric type, with the terminology of [8]. How-
ever, the very general results of Section 4 in [8] do not cover our case. Observe also
that our argument is straightforward and does not depend on the rational character
of α, as is the case for some results of [8].

2.3. Proof of Corollary 1.2. In order to simplify the notation, we will work on
the random variable Xα = A1/(1−α)

α . Changing the variable, we get the required
estimate in the form

(2.3) fXα
(x) ∼

Γ
(

α
α+1

)√
α2 − 1

2π (α+ 1)α/(α2−1) x−α/(α+1) e−cαx, x→ 0+.
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Evaluating with (2.1) the positive entire moments

E[X n
α ] = (α+ 1)n/(1−α) ×

Γ
(

α
α+1

)
Γ
(

α
α+1 + n

α−1
) × Γ

(
1 + (α+1)n

α−1
)

Γ
(
1 + n

α−1
)

for every n  0, and applying Stirling’s formula, we obtain

(E[X n
α ])

1/n

n
→ (α+ 1)α/(α−1)

e(α− 1)
as n→∞.

By a theorem of Davies–Kasahara (see Corollary 4.12.5 in [2], or Lemma 3.2 in
[3] for a more appropriate formulation), we deduce that

x−1 logP[Xα > x] → −cα as x→ +∞.

This yields the required asymptotic behaviour, at the logarithmic scale, for the sur-
vival function of Xα. Moreover, writing down, via Fubini’s theorem, the moment
generating function

E[exXα ] =
∞∑
n=0

an x
n, x > 0,

with

an = (α+ 1)n/(1−α) ×
Γ
(

α
α+1

)
Γ
(
1 + (α+1)n

α−1
)

n! Γ
(

α
α+1 + n

α−1
)
Γ
(
1 + n

α−1
)

∼
Γ
(

α
α+1

)√
α2 − 1

2π (α− 1)1/(α+1)
c−nα n−α/(α+1) as n→∞,

and applying Karamata’s theorem for power series (see Corollary 1.7.3 in [2]), we
obtain

(2.4) E[ecαxXα ] ∼
Γ
(

1
α+1

)
Γ
(

α
α+1

)√
α2 − 1

2π (α− 1)1/(α+1)(1− x)1/(α+1)
as x→ 1−.

At this stage, it is worth mentioning that (2.4) can be obtained from (2.3) by inte-
gration. However, it does not seem that we can infer the reverse inclusion without
any further assumption, such as the existence of a meromorphic extension in the
neighbourhood of cα for the moment generating function (see Theorem 4 in [5]),
or a monotonicity condition on fXα at infinity (see Theorem 4.12.11 in [2]), which
we both could not prove a priori.
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In order to show (2.3) rigorously and complete the proof, we will use the
following power transformation of (1.3):

Xα
d
=

(
4

α+ 1

) 1
α−1

× B
1

α−1
1
2
, α−1
2(α+1)

× Z
2

1−α
2

α+1

.

The multiplicative convolution formula and a change of variable imply

(2.5) fXα
(x) =

∞∫
0

(
1

1 + y

)
fUα

(
1

1 + y

)
fVα(x+ xy) dy,

where we have set

Uα = B
1

α−1
1
2
, α−1
2(α+1)

and Vα =

(
4

α+ 1

) 1
α−1

× Z
2

1−α
2

α+1

.

On the one hand, we have

(
1

1 + y

)
fUα

(
1

1 + y

)
=

(α− 1)
α−1

2(α+1) Γ
(

α
α+1

)
√
π Γ

(
α−1

2(α+1)

) y
α−1

2(α+1)
−1(

1 +O(y)
)

as y → 0+. On the other hand, formula (14.35) in [15] implies after, a change of
variable and several simplifications,

fVα(z) =

√
α− 1 (α+ 1)

α2

2(α2−1)
− 1

α−1

2
√
π

z−1/2 e−cαz
(
1 +O(z−1/2)

)
as z → +∞. Plugging these two first-order expansions in the integral (2.5), and
making further simplifications, we finally get the required asymptotic behaviour
(2.3). �

3. FINAL REMARKS

3.1. On the infinite divisibility of Aα. From (2.2) or (1.3), it is possible to
derive several properties of Aα related to infinite divisibility – see [12] for details,
in particular Corollary 8 therein. It is interesting to mention that the sole infinite
divisibility ofAα can also be obtained by a very simple pathwise argument neither
relying on (2.2) nor on (1.3). Setting Tx = inf{t > 0, Lt = x} for all x > 0 and
using the fact that L has no negative jumps, it is easy to see from the Markov
property that under P(0,1), for every n  2, there is an independent decomposition

Aα = X
(n)
1 + . . .+X(n)

n ,
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where
X

(n)
i

d
= ATn−i

n

under P(0,n+1−i
n

)

for every i = 1, . . . , n. Moreover, one has T1−1/n → 0 a.s. under P(0,1) as n →
+∞ (by the well-known fact – see, e.g., Theorem 47.1 in [15] – that L visits
immediately the negative half-line when starting from zero), so that X(n)

1 → 0 a.s.
under P(0,1) when n→ +∞ as well. Last, it is straightforward that

P[|X(n)
i | > ε] ¬ P[|X(n)

1 | > ε]

for every ε > 0 and i = 1, . . . , n. Putting everything together and applying Khin-
chin’s theorem on triangular arrays (see, e.g., Theorem 9.3 in [15]) shows that Aα

is infinitely divisible.
Observe that the argument above does not make use of the self-similarity of

L, and hence applies to any spectrally positive Lévy process which is not a subor-
dinator.

3.2. Relation with other tail asymptotics. It is noticeable that the convolution
formula (2.5) makes it possible to study the precise tail behaviour of other random
variables defined as independent products. If we consider, for example,

X = Bp
a,b × Γc

with a, b, c, p > 0, this formula shows very quickly that

fX(x) ∼ Γ(a+ b)

Γ(a)Γ(b)
p−bxc/p−b−1e−x

as x → +∞. At the less precise level of survival functions, this behaviour was
recently obtained in [13], with a more complicated method. In this example it is
also possible to derive without pain, contrary to that of fXα(x), the full asymptotic
expansion of fX(x) at infinity, which is finite for certain values of the parameters
a, b, c, p.

Acknowledgments. We are grateful to the referee for having corrected a mis-
take in the original proof of Corollary 1.1.
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