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Abstract. In the paper we solve a system of Bellman equations for
finite horizon continuous time terminal utility maximization problem with
general càdlàg bid and ask prices. We assume that we have a restricted num-
ber of transactions at time moments we choose. The main result of the paper
says that we can find a regular version of solutions to the system of Bellman
equations, which enables us to find the form of nearly optimal strategies.
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1. INTRODUCTION

Assume we are given probability space
(
Ω, F, (Ft), P

)
satisfying usual condi-

tions. Assume furthermore that U is a continuous nondecreasing function defined
on R+ := [0,∞), and (st), (st) are (Ft)-adapted càdlàg positive processes such
that st < st for t ∈ [0, T ]. Let for (x, y) ∈ R2

+

(1.1) A(x, y, s, s) = {(l,m) ∈ R2
+ : x+ms− ls  0, y −m+ l  0},

and byAt(x, y, st, st) we denote Ft-adapted random variables (l,m) taking values
in A(x, y, st, st). Note that for 0 < s < s and (x, y) ∈ R2

+ the set A(x, y, s, s) is
compact. Define the following sequence of parametrized processes for (x, y) ∈ R2

+

and t ∈ [0, T ]:
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(1.2)

V0(x, y, s, s) := U(x+ ys),

V̄1(x, y, st, st, t) := ess sup
(l,m)∈At(x,y,st,st)

E[V0(x+mst−lst, y −m+ l, sT , sT )|Ft],

V1(x, y, t) := ess sup
t¬τ¬T

E[V̄1(x, y, sτ , sτ , τ)|Ft],

V̄2(x, y, st, st, t) := ess sup
(l,m)∈At(x,y,st,st)

V1(x+mst − lst, y −m+ l, t),

V2(x, y, t) := ess sup
t¬τ¬T

E[V̄2(x, y, sτ , sτ , τ)|Ft],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V̄r(x, y, st, st, t) := ess sup
(l,m)∈At(x,y,st,st)

Vr−1(x+mst − lst, y −m+ l, t),

Vr(x, y, t) := ess sup
t¬τ¬T

E[V̄r(x, y, sτ , sτ , τ)|Ft].

This system (1.2) of Bellman equations corresponds to the following portfolio op-
timization. We want to maximize terminal utility U of the wealth process at time
T , given adapted to (Ft) bid and ask prices (st), (st), st < st, for t ∈ [0, T ]. We
assume that our portfolio position at time t is characterized by the pair (xt, yt),
where xt is the amount located on the safe (bank) account while yt denotes a num-
ber of assets in our portfolio. We consider the case when we are not allowed to
have short selling (both xt and yt variables should be nonnegative). Furthermore,
we are allowed to have at most r transactions over the time interval [0, T ]. Conse-
quently, our trading strategy will be in the form of sequence

(
τi, (l

i,mi)
)
, where

0 ¬ τ1 ¬ τ2 ¬ . . . ¬ τr ¬ T, and (li,mi) are Fτi-measurable random variables,
and at time τi we buy li assets paying for them lisτi and sell mi assets increasing
bank account by misτi . Given the initial bank and asset position (x, y) ∈ R2

+ and
the trading strategy

(
τi, (l

i,mi)
)
, the pair (xt, yt) is piecewise constant and is of

the form: (x0, y0) = (x, y), (xτ1 , yτ1) = (x + m1sτ1 − l1sτ1 , y − m1 + l1), for
i = 1, 2, . . . , r − 1

(xτi+1 , yτi+1) = (xτi +mi+1sτi+1
− l1sτi+1 , yτi −mi+1 + li+1),

and finally (xT , yT ) = (xτr , yτr). Since we are not allowed to have short selling,
we shall assume that (li,mi) ∈ Aτi(x, y, sτi , sτi). Our reward functional is of the
form

(1.3) Jx,y

((
τi, (l

i,mi)
))

= E[U(xT + yT sT )],

where in Jx,y we point out that we start with initial bank account x and have ini-
tially y assets. Assuming that the Bellman system (1.2) has solutions with certain
properties, we expect to show that Vr(x, y, 0) corresponds to the optimal value of
the functional Jx,y. In the sequel we shall assume the following:
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ASSUMPTION (A1). For each (x, y) ∈ R2
+, n = 1, . . . , r and t ∈ [0, T ] we

have

(1.4) E[ sup
t∈[0,T ]∩Q

V̄n(x, y, st, st, t)] <∞,

where by Q we denote the set of rational numbers.

Notice that because of monotonicity of U and the fact that (x, y) ∈ R2
+ we see

that the left-hand side of (1.4) is minorized by U(x), which corresponds to absence
of transactions.

The main result of the paper can be formulated as follows:

THEOREM 1.1. Under (A1) there exists N ⊂ Ω such that P (N) = 0 and for
ω ∈ Ω \N there are versions of random functions V̄n(x, y, st, st, t) and Vn(x, y, t)
for n ∈ {1, . . . , r}, being continuous in (x, y) ∈ R2

+, uniformly in t ∈ [0, T ] for
(x, y) from compact sets, which means that whenever (xk, yk) → (x, y) as k →
∞ we have limk→∞ supt∈[0,T ] |V̄n(xk, yk, st, st, t) − V̄n(x, y, st, st, t)| = 0 and
limk→∞ supt∈[0,T ] |V (xk, yk, t)− V (x, y, t)| = 0. Furthermore, V̄n(x, y, st, st, t)

and Vn(x, y, t), for n ∈ {1, . . . , r}, for each (x, y) ∈ R2
+ are càdlàg in t ∈ [0, T ]

and are such that the system of equations (1.2) is satisfied P -a.e.

The proof shall consist of several steps. We need a number of auxiliary results.
Those which concern random functions are formulated in Section 2 and at the
beginning of Section 3. The auxiliary results which concern deterministic functions
are shown in Section 5. The proof of the main theorem is in Section 3. Applications
of this analytical result are formulated in Section 4.

2. AUXILIARY RESULTS

We start with a lemma in which we shall approximate processes depending on
parameters (x, y) by processes with deterministically separated parameters from
the random time variables. We have

LEMMA 2.1. Assume that for a given ω ∈ Ω the mapping R2
+ ∋ (x, y) 7→

V̄ (x, y, t)(ω) is continuous uniformly in t ∈ [0, T ] for (x, y) from compact subsets
of R2

+. Then for any compact set K ⊂ R2
+ there is a sequence of pairs (xi, yi) ∈

R2
+, i = 1, 2, . . . , and for each m = 1, 2, . . . there is a finite sequence of con-

tinuous functions R2
+ ∋ (x, y) 7→ ϕi,m(x, y) for i = 1, 2, . . . , n(m) with compact

supports taking values in [0, 1] such that
∑n(m)

i=1 ϕi,m(x, y) = 1 for (x, y) ∈ K,

and for the random function V̄ m(x, y, t)(ω) =
∑n(m)

i=1 V̄ (xi, yi, t)(ω)ϕi,m(x, y)
we have

(2.1) sup
(x,y)∈K

sup
t∈[0,T ]

|V̄ m(x, y, t)(ω)− V̄ (x, y, t)(ω)| → 0

as m→∞.
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P r o o f. Denote by B(x, y, ρ) the closed ball in R2 with center in (x, y) and
radius ρ > 0, and let dist(x, y,B) be a distance from (x, y) to B ⊂ R2. For a
given compact set K ⊂ R2

+ consider a ρ cover of K, i.e. a sequence of rational
pairs (xi, yi) with i = 1, 2, . . . , n(1) such that K ⊂

∪n(1)
i=1 B(xi, yi, ρ), and then

extend this sequence to pairs (xi, yi) with i = 1, 2, . . . , n(2) such that

K ⊂
n(2)∪
i=1

B(xi, yi, 2
−1ρ).

We continue the procedure inductively, i.e. having chosen a sequence (xi, yi) for
i=1, 2, . . . , n(m) such that K⊂

∪n(m)
i=1 B(xi, yi, 2

−m+1ρ) we extend the sequence
to (xi, yi) for i = 1, 2, . . . , n(m+ 1) such that K ⊂

∪n(m+1)
i=1 B(xi, yi, 2

−mρ).
Define, for i ¬ n(m), gi,m(x, y) =

(
1− ρ−1dist

(
x, y,B(xi, yi, 2

−m+1ρ)
))+

and let

ϕi,m(x, y) =
gi,m(x, y)

n(m)∑
j=1

gj,m(x, y)

.

Clearly,
∑n(m)

i=1 ϕi,m(x, y) = 1 for (x, y) ∈ K, and ϕi,m(x, y) = 0 whenever (x, y)
/∈ B(xi, yi, 2

−m+2ρ).
Let V̄ m(x, y, t) =

∑n(m)
i=1 V̄ (xi, yi, t)ϕi,m(x, y). Then

sup
(x,y)∈K

sup
t∈[0,T ]

∣∣ n(m)∑
i=1

V̄ (xi, yi, t)ϕi,m(x, y)− V̄ (x, y, t)
∣∣

¬ sup
(x,y)∈K

sup
t∈[0,T ]

n(m)∑
i=1

|V̄ (xi, yi, t)− V̄ (x, y, t)|ϕi,m(x, y)→ 0

P -a.e. by uniform continuity in t of V̄ with respect to (x, y) ∈ K. �

Using Lemma 2.1 we are going now to show that nice properties of the state
process are preserved by the Snell envelope taken over a finite time horizon.

PROPOSITION 2.1. Assume that there is N ⊂ Ω, P (N) = 0 such that, for
ω ∈ Ω \ N and (x, y) ∈ R2

+, V̄ (x, y, t)(ω) is a càdlàg process adapted to (Ft)
such that (x, y) 7→ V̄ (x, y, t) is continuous uniformly in t for (x, y) from compact
subsets of R2

+, and E[supt∈[0,T ] |V̄ (x, y, t)|]<∞. Then, for ω∈Ω\N̄ , P (N̄)=0,

there is a càdlàg process
(
V (x, y, t)

)
(ω), adapted to (Ft), such that (x, y) 7→

V (x, y, t) is continuous uniformly in t for (x, y) from compact subsets of R2
+, and

(2.2) V (x, y, t) = ess sup
t¬τ¬T

E[V̄ (x, y, τ)|Ft] P -a.e.

P r o o f. Let V̄ m(x, y, t) be a sequence of the form

V̄ m(x, y, t)(ω) =
n(m)∑
i=1

V̄ (xi, yi, t)(ω)ϕi,m(x, y)
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for which (2.1) holds. Let

V m(x, y, t) := ess sup
t¬τ¬T

n(m)∑
i=1

E[V̄ (xi, yi, τ)|Ft]ϕi,m(x, y).

By Theorems 2 and 3 of [7] as well as Theorem 2.46 of [8] there is N1, P (N1) = 0
such that for ω ∈ Ω \N1 and (x, y) ∈ Q2

+ the mapping [0, T ] ∋ t 7→ V m(x, y, t)
is càdlàg. Furthermore, there is N2 ⊂ Ω, N1 ⊂ N2, and P (N2) = 0 such that for
(x, y), (x′, y′) ∈ Q2

+ and t ∈ [0, T ] such that

(2.3) |V̄ m(x, y, t)− V̄ m(x′, y′, t)|

¬
n(m)∑
i=1

E[sup
u
|V̄ (xi, yi, u)||Ft]|ϕi,m(x, y)− ϕi,m(x′, y′)|

and for each i = 1, 2, . . ., the mapping [0, T ] ∋ t 7→ E[supu |V̄ (xi, yi, u)||Ft] is
càdlàg (by Theorem 2.46 of [8] again). Consequently, using (2.3) we may de-
fine V m(x, y, t) for (x, y) ∈ R2

+ \Q2
+ as a unique limit, independent of a chosen

sequence of V m(xn, yn, t), where Q2
+ ∋ (xn, yn) → (x, y). By continuity, (2.3)

is also satisfied for (x, y), (x′, y′) ∈ R2
+. Furthermore, from (2.3) we also infer

that for ω ∈ Ω \N2 the mapping (x, y) 7→ V m(x, y, t) is continuous uniformly in
t ∈ [0, T ] for (x, y) from compact sets.

In addition, for (x, y) ∈ R2
+ the mapping [0, T ] ∋ t 7→ V m(x, y, t) is càdlàg.

In fact, this holds for (x, y) ∈ Q2
+. If tk ↓ t and Q2

+ ∋ (xn, yn)→(x, y)∈R2
+\Q2

+

as k →∞, n→∞, we have

(2.4) |V m(x, y, tk)− V m(x, y, t)|

¬ |V m(x, y, tk)− V m(xn, yn, tk)|
+ |V m(xn, yn, tk)− V m(xn, yn, t)|+ |V m(xn, yn, t)− V m(x, y, t)|

¬
n(m)∑
i=1

E[sup
u
|V̄ (xi, yi, u)||Ftk ]|ϕi,m(x, y)− ϕi,m(xn, yn)|

+ |V m(xn, yn, tk)− V m(xn, yn, t)|

+
n(m)∑
i=1

E[sup
u
|V̄ (xi, yi, u)||Ft]|ϕi,m(xn, yn)− ϕi,m(x, y)|

=: ak(n) + bk(n) + c(n).

For ϵ > 0 there is n(ϵ) such that for n  n(ϵ) we have ak(n) ¬ ϵ
3 for any k and

c(n) ¬ ϵ
3 . For fixed n  n(ϵ) we can find k such that bk(n) ¬ ϵ

3 . Since ϵ can
be chosen arbitrarily small, we have V m(x, y, tk)→ V m(x, y, t) as k →∞. The
existence of the left limit of the mapping [0, T ] ∋ t 7→ V m(x, y, t) for (x, y) ∈
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R2
+ \Q2

+ can be proved in a similar way. Consequently, for ω ∈ Ω \N2 we infer
that V m(x, y, t) is continuous in (x, y) ∈ R2

+ uniformly in t for (x, y) for com-
pact sets, and the mapping [0, T ] ∋ t 7→ V m(x, y, t) is càdlàg. Using Theorems 2
and 3 of [7] as well as Theorem 2.46 of [8], we see that there is N3 ⊂ Ω such that
N2 ⊂ N3, P (N3) = 0 and for ω ∈ Ω \N3, (x, y) ∈ Q2

+ there is a càdlàg version
of the supermartingale

V (x, y, t) = ess sup
t¬τ¬T

E[V̄ (x, y, τ)|Ft],

and for balls K = B(0, n), n = 1, 2, . . ., we have

(2.5) sup
t∈[0,T ]∩Q

sup
(x,y)∈Q2

+∩K
|V (x, y, t)− V m(x, y, T )|

¬ sup
t∈[0,T ]∩Q

sup
(x,y)∈Q2

+∩K

n(m)∑
i=1

E[ sup
u∈[0,T ]

|V̄ (xi, yi, u)− V̄ (x, y, u)||Ft]ϕi,m(x, y),

which by Lemma 2.1 tends to zero P -a.e. The claim now follows from Lemma 5.2
below. �

3. PROOF OF THE MAIN RESULT

Before we prove the main result we need a regularity property of the first step
in the Bellman system, i.e. regularity (in the sense defined below) of the process
Ṽ1 defined as

(3.1) Ṽ1(x, y, t) := E[V0(x, y, sT , sT )|Ft].

We have the following

PROPOSITION 3.1. There is a version of Ṽ1 and N ⊂ Ω such that P (N) = 0
and for ω ∈ Ω \ N and (x, y) ∈ R2

+ the mapping [0, T ] ∋ t 7→ Ṽ1(x, y, t)(ω) is
càdlàg, and for any compact set K⊂R2

+ the mapping K ∋ (x, y) 7→ Ṽ1(x, y, t)(ω)
is continuous uniformly in t ∈ [0, T ].

P r o o f. The proof consists of two steps.
S t e p 1. We claim that for M ∈ Q+ there is a version of

Ṽ M
1 (x, y, t) := E [V0(x, y, sT ∧M, sT ∧M)|Ft]

such that for M ∈ Q+ there is N ⊂ Ω, P (N) = 0 such that for ω ∈ Ω \ N the
mapping [0, T ] ∋ t 7→ Ṽ M

1 (x, y, t) is càdlàg, and for any compact set K ⊂ R2
+

the mapping K ∋ (x, y) 7→ Ṽ M
1 (x, y, t) is continuous uniformly in t ∈ [0, T ].
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For fixed M ∈ Q+, a compact set K and ε > 0, by the Stone–Weierstrass
theorem (Theorem 13.4 of [10]) there are sequences of continuous functions
ϕε
1,i, ϕ

ε
2,i, i = 1, 2, . . . , k(ε), such that for ω ∈ Ω

(3.2)

sup
(x,y)∈K

∣∣V0(x, y, sT ∧M, sT ∧M)−
k(ε)∑
i=1

ϕε
1,i(x, y)ϕ

ε
2,i(sT ∧M, sT ∧M)

∣∣ ¬ ε.

By Proposition 3 of [15] there is a measurable function on R2
+ × R × Ω such

that its value Ṽ M
1 (x, y, t) for each (x, y) ∈ R2

+ is indistinguishable from an op-
tional process. By Theorem V.20 in [4] this process is indistinguishable from the
càdlàg process. Therefore, due to Lemma 1 of [15] (see also Lemma 5 of [6])
there is N1 ⊂ Ω, P (N1) = 0 such that for ω ∈ Ω \ N1 and (x, y) ∈ R2

+ the
trajectories t 7→ Ṽ M

1 are càdlàg. Let εn ↓ 0. By Theorems 2.44 and 2.46 of [8]
there is N , N1 ⊂ N , P (N) = 0 such that, for each n = 1, 2, . . ., the processes
t→ E [ϕεn

2 (sT ∧M, sT ∧M)|Ft] are càdlàg martingales. Let

V̂ M,n
1 (x, y, t) :=

k(εn)∑
i=1

ϕεn
1 (x, y)E[ϕεn

2 (sT ∧M, sT ∧M)|Ft].

Then, for ω ∈ Ω \N2, V̂ M,n
1 (x, y, t) is a càdlàg martingale, continuous in (x, y) ∈

K, uniformly in t ∈ [0, T ].
We are going now to show that

sup
t∈[0,T ]

sup
(x,y)∈K∩Q2

+

|Ṽ M
1 (x, y, t)− V̂ M,n

1 (x, y, t)| → 0

in probability. By Doob’s inequality for submartingales (see Theorem V.24 of [5]),
for p > 1

E{ sup
t∈[0,T ]

sup
(x,y)∈K∩Q2

+

|Ṽ M
1 (x, y, t)− V̂ M,n

1 (x, y, t)|p}

¬ CE
{

sup
(x,y)∈K

∣∣V0(x, y, sT ∧M, sT ∧M)−
k(εn)∑
i=1

ϕεn
1 (x, y)ϕεn

2 (sT ∧M, sT ∧M)
∣∣p}

¬ Cεpn.

Consequently, for a suitably chosen subsequence nr we have

sup
t∈[0,T ]

sup
(x,y)∈K∩Q2

+

|Ṽ M
1 (x, y, t)− V̂ M,nr

1 (x, y, t)| → 0

as r→∞, P -a.e. Using Lemma 5.2, we obtain the desired properties of Ṽ M
1 (x, y, t).
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S t e p 2. By Proposition 3 of [15], then Theorem V.20 of [4] and Lemma 1 of
[15], there is a version of Ṽ1(x, y, t) such that for ω ∈ Ω \ Ñ , where P (Ñ) = 0,
for (x, y) ∈ R2

+ the trajectories t → Ṽ1(x, y, t) are càdlàg. By Step 1, for Q+ ∋
Mn → ∞ there is N ′ such that Ñ ⊂ N ′, P (N ′) = 0 such that, for ω∈Ω\N ′,
(x, y) ∈ Q2

+, the trajectories [0, T ] ∋ t 7→ Ṽ Mn
1 (x, y, t) are càdlàg and K ∋ (x, y)

7→ Ṽ Mn
1 (x, y, t) is continuous uniformly in t. By Doob’s inequality for submartin-

gales (Theorem V.24 of [5]), for p > 1

E{ sup
t∈[0,T ]

sup
(x,y)∈K∩Q2

+

|Ṽ1(x, y, t)− V̂ Mn
1 (x, y, t)|p}

¬ CE{ sup
x,y∈K

|V1(x, y, sT , sT )− V1(x, y, sT ∧M, sT ∧M)|p} → 0

as n→∞. Therefore, we have convergence in probability and for a suitably cho-
sen subsequence (nr) the convergence

sup
t∈[0,T ]

sup
(x,y)∈K∩Q2

+

|Ṽ1(x, y, t)− V̂
Mnr
1 (x, y, t)| → 0

P -a.e. as r →∞. It remains now to use Lemma 5.2 to complete the proof. �

REMARK 3.1. Notice that in both Steps 1 and 2 we used Proposition 3 of [15],
and next Theorem V.20 of [4] and Lemma 1 of [15] to get, for each (x, y) ∈ R2

+,

càdlàg versions of the processes Ṽ M
1 or Ṽ1. In view of Lemma 5.2 we need only

càdlàg versions of the processes V̂ n,M
1 and then V̂ Mn

1 , since by uniform conver-
gence for (x, y) ∈ Q2

+ and t ∈ [0, T ] we may define (in a unique way) the pro-
cesses Ṽ M

1 and Ṽ1 to be càdlàg. In Proposition 2.1 we had no such possibility and
we had to use a direct (not simplified) version of Lemma 5.2.

We are now in a position to complete the proof of the main theorem.

P r o o f o f T h e o r e m 1.1. By Proposition 3.1, Ṽ1(x, y, t) is continuous in
(x, y) from compact subsets of R2

+ uniformly in t ∈ [0, T ] and is càdlàg in t for
fixed (x, y) ∈ R2

+. Using Lemma 5.3, we see that V̄1(x, y, st, st, t) is continuous
in (x, y) from compact subsets of R2

+ uniformly in t ∈ [0, T ] and is càdlàg in t
for fixed (x, y) ∈ R2

+. By Proposition 2.1 we infer that V1(x, y, t) is continuous
in (x, y) from compact subsets of R2

+ uniformly in t ∈ [0, T ] and is càdlàg in
t for fixed (x, y) ∈ R2

+. We now proceed by induction. Assume that Vn(x, y, t)
is continuous in (x, y) from compact subsets of R2

+ uniformly in t ∈ [0, T ] and
is càdlàg in t for fixed (x, y) ∈ R2

+. Then, by Lemma 5.3, V̄n+1(x, y, st, st, t)
is continuous in (x, y) from compact subsets of R2

+ uniformly in t ∈ [0, T ] and
is càdlàg in t for fixed (x, y) ∈ R2

+. Using Proposition 2.1 again, we infer that
Vn+1(x, y, t) is continuous in (x, y) from compact subsets of R2

+ uniformly in
t ∈ [0, T ] and is càdlàg in t for fixed (x, y) ∈ R2

+. This completes the proof. �
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4. APPLICATIONS

In this section we shall formulate some implications of the analytical result
formulated in Theorem 1.1.

PROPOSITION 4.1. Under (A1) we have

(4.1) sup
(τi,(li,mi))

Jx,y

((
τi, (l

i,mi)
))

= Vr(x, y, 0).

Furthermore, for a given (x, y) ∈ R2
+ and ε > 0 there is an ε-optimal investment

strategy
(
τi, (l

i,mi)
)

given by

(4.2)

τ1 := inf{t  0 : Vr(x, y, t) ¬ V̄r(x, y, st, st, t) + ε/r},
(l1,m1) := (l̂1, m̂1) ∈ Aτ1(x, y, sτ1 , sτ1),

V̄r(x, y, sτ1 , sτ1 , τ1) = Vr−1(x+ m̂1sτ1 − l̂1sτ1 , y − m̂1 + l̂1, τ1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τi+1 := inf{t  τi : Vr−i(xτi , yτi , t) ¬ V̄r−i(xτi , yτi , st, st, t) + ε/r},
(li+1,mi+1) := (l̂i+1, m̂i+1) ∈ Aτi+1(xτi , yτi , sτi+1

, sτi+1),

V̄r−i(xτi , yτi , sτi+1
, sτi+1 , τi+1)

= Vr−i−1(xτi + m̂i+1sτi+1
− l̂i+1sτi+1 , yτi − m̂i+1 + l̂i+1, τi+1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V0(xτr , yτr , sT , sT , T ) = U(x+ yτrsT ),

where for i = 0, 1, . . . , r − 1, xτi+1 = xτi + m̂i+1sτi+1
− l̂i+1sτi+1 and yτi+1 =

yτi − m̂i+1 + l̂i+1.

P r o o f. Consider an arbitrary investment strategy
(
τi, (l

i,mi)
)

and corre-
sponding market positions (xt, yt) with (x0, y0) = (x, y). Then the value of the
reward functional Jx,y is given by E [V0(xT , yT , sT , sT )], and

(4.3) V̄1(xτr , yτr , sτr , sτr , τr)

 E[V0(xτr +mrsτr − lrst, yτr −mr + lr, sT , sT )|Fτr ].

Moreover,

(4.4) V1(xτr−1 , yτr−1 , τr−1)  E[V̄1(xτr , yτr , sτr , sτr , τr)|Fτr−1 ]

and for i = 0, 1, . . . , r − 1

(4.5) V̄r−i(xτi , yτi , sτi+1
, sτi+1 , τi+1)

 Vr−i−1(xτi +mi+1sτi+1
− li+1sτi+1 , yτi −mi+1 + li+1, τi+1),



148 T. Rogala and Ł. Stet tner

(4.6) Vr−i(xτi , yτi , τi+1)  E[V̄r−i(xτi , yτi , sτi+1
, sτi+1 , τi+1)|Fτi ].

For the strategy defined in (4.2) we have equalities in (4.3) and (4.5) (because the
strategy maximizes the left-hand sides of (4.3) and (4.5)), while in (4.4) and (4.6)
inverse inequalities with V1 or Vr−i decreased by ε

r . Now we can condition the
final reward using (4.3)–(4.6) and obtain

(4.7) E [V0(xT , yT , sT , sT )]

¬ E[V̄1(xτr , yτr , sτr , sτr , τr)] ¬ E[V1(xτr−1 , yτr−1 , τr−1)] ¬ . . .

¬ E[V̄r−i(xτi , yτi , sτi+1
, sτi+1 , τi+1)] ¬ E[Vr−i(xτi , yτi , τi+1)] ¬ . . .

¬ E[V̄r(xτ1 , yτ1 , sτ1 , sτ1 , τ1)] ¬ Vr(x, y, 0).

Notice that for the strategy (4.2) we obtain in (4.7)

E [V0(xT , yT , sT , sT )]  Vr(x, y, 0)− ε,

which is the desired ε-optimality. �

In Proposition 4.1 above we had only ε-optimality of strategies, since the ex-
istence of optimal stopping times in (1.2) could not be guaranteed. Under addi-
tional assumptions we can however expect to get optimal strategies. Assume the
following:

ASSUMPTION (A2). The filtration (Ft) is quasi-left continuous (see Defini-
tion 3.33 in [8]), and the processes (st) and (st) are quasi-left continuous (see
Definition 4.22 in [8]).

PROPOSITION 4.2. Under the assumptions (A1) and (A2) there is an optimal
strategy

(
τi, (l

i,mi)
)

maximizing (1.3). It is of the form

(4.8)
τ1 := inf{t  0 : Vr(x, y, t) = V̄r(x, y, st, st, t)},
(l1,m1) := (l̂1, m̂1) ∈ Aτ1(x, y, sτ1 , sτ1),

V̄r(x, y, sτ1 , sτ1 , τ1) = Vr−1(x+ m̂1sτ1 − l̂1sτ1 , y − m̂1 + l̂1, τ1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τi+1 := inf{t  τi : Vr−i(xτi , yτi , t) = V̄r−i(xτi , yτi , st, st, t)},
(li+1,mi+1) := (l̂i+1, m̂i+1) ∈ Aτi+1(xτi , yτi , sτi+1

, sτi+1),

V̄r−i(xτi , yτi , sτi+1
, sτi+1 , τi+1)

= Vr−i−1(xτi + m̂i+1sτi+1
− l̂i+1sτi+1 , yτi − m̂i+1 + l̂i+1, τi+1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V0(xτr , yτr , sT , sT , T ) = U(x+ yτrsT )

with xτi+1 = xτi + m̂i+1sτi+1
− l̂i+1sτi+1 and yτi+1 = yτi − m̂i+1 + l̂i+1.
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P r o o f. By Theorem I.3 of [2] or Theorem I.2.2 of [12] we have only to show
that the processes Vk and V̄k are quasi-left continuous for k = 0, 1, . . . , r. Notice
first that by quasi-left continuity of (Ft) the process Ṽ1 defined in (3.1) is quasi-left
continuous. Now, if a sequence of stopping times σn ↑ σ ¬ T as n→∞, then by
(A2) we have sσn

→ sσ and sσn → sσ, P -a.e., as n → ∞. Therefore, by (5.8),
using quasi-left continuity of Ṽ1, we have

V̄1(x, y, sσn
, sσn , σn)→ sup

(l,m)∈A(x,y,s−σ ,s−σ )

Ṽ −1 (x+ms−σ − ls−σ , y−m+l, σ)

= sup
(l,m)∈A(x,y,sσ ,sσ)

Ṽ1(x+msσ − lsσ, y −m+ l, σ) = V̄1(x, y, sσ, sσ, σ)

P -a.e., where Ṽ −1 denotes the left limit. Consequently, V̄1 is quasi-left continuous.
It remains to show that V1 is quasi-left continuous since then the proof can be
continued by induction. For this purpose we repeat the arguments of the proof of
Theorem I.2.2 of [12] or Theorem I.5 of [2]. Let σn ↑ σ ¬ T as n → ∞. Since
V1(x, y, t) for fixed x, y ∈ R+ is a supermartingale, we infer that V1(x, y, σn) 
V1(x, y, σ) and

(4.9) E [V1(x, y, σn)]→ E[V −1 (x, y, σ)]  E[V1(x, y, σ)].

Let ζ(σn) = inf{t  σn : V1(x, y, t) = V̄1(x, y, st, st, t)}. It is clear that
(
ζ(σn)

)
is increasing, as n→∞, to a stopping time ζ. Furthermore, by quasi-left continu-
ity of V̄1 we have

(4.10) E [V1(x, y, σn)] = E
[
V̄1

(
x, y, sζ(σn), sζ(σn), ζ(σn)

)]
→ E[V̄1(x, y, sζ , sζ , ζ)],

and it is clear that ζ  σ. Therefore,

E[V̄1(x, y, sζ , sζ , ζ)] ¬ E [V1(x, y, ζ)] ¬ E[V1(x, y, σ)],

and from (4.9) and (4.10) we obtain limn→∞E [V1(x, y, σn)] = E [V1(x, y, σ)],
which is only possible when V −1 (x, y, σ) = V1(x, y, σ), P -a.e., i.e. when V1 is
quasi-left continuous. �

We construct below a family of examples for which the assumption (A2) is
satisfied.

EXAMPLE 4.1. Let (BH
t ) be a fractional Brownian motion with parameter

H > 1
2 and continuous trajectories. Let (Ft) be a completed filtration generated

by (BH
t ). It follows from Theorem 3.1 and formula (3.1) of [11] together with

Corollaries 2.7.8, 2.7.9 and Problems 7.1, 7.6 of [9] that there is a Brownian motion
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(Wt) such that its completed filtration coincides with (Ft), and therefore (Ft) is
continuous and, in particular, quasi-left continuous. Define the processes

st = s0 exp
{ t∫

0

asds+
t∫
0

csdB
H
s

}
and

st = s0 exp
{ t∫

0

bsds+
t∫
0

csdB
H
s

}
,

where c ∈ L2(0, T ) and (at), (bt) are (Ft)-adapted such that at < bt for t ∈ [0, T ],
and a, b ∈ L1

[
Ω × [0, T ]

]
. Then (st) and (st) are continuous, and one can show

that the processes V̄k and Vk are continuous for k = 0, 1, . . . , r.

Proposition 4.1 concerned the case when we had not more than r transactions
over time interval [0, T ]. A natural question is what happens when we let r→∞.
Since the bid price st is strictly smaller than the ask price st, we may expect
that we shall have a finite number of transactions in time horizon [0, T ], although
the number of transactions might be random, not necessarily bounded uniformly
in ω. Notice that Vr and V̄r are nondecreasing in r. Consequently, the processes
V (x, y, t) :=limr→∞ Vr(x, y, t) and V̄ (x, y, st, st, t) :=limn→∞ V̄r(x, y, st, st, t)
are well defined although might be equal to +∞. Therefore, we shall assume the
following.

ASSUMPTION (A3). For each x, y ∈ R+, and t ∈ [0, T ] we have

(4.11) E[ sup
t∈[0,T ]∩Q

sup
n

V̄n(x, y, st, st, t)] <∞.

We have

PROPOSITION 4.3. Under the assumption (A3) the processes
(
V (x, y, t)

)
and

(
V̄ (x, y, st, st, t)

)
for (x, y) ∈ R2

+ and t ∈ [0, T ] are finite and are solutions
to the following system of equations:

(4.12)

V̄ (x, y, st, st, t) = ess sup
(l,m)∈At(x,y,st,st)

V (x+mst − lst, y −m+ l, t),

V (x, y, t) = ess sup
t¬τ¬T

E[V̄ (x, y, sτ , sτ , τ)|Ft].

Furthermore, for each (x, y) ∈ Q2
+ the process

(
V (x, y, t)

)
is indistinguishable

from a càdlàg process.

P r o o f. Notice that under (A3) we are allowed to enter ess sups with limit
r → ∞. For each (x, y) the processes

(
Vr(x, y, t)

)
are right continuous super-

martingales so that, by Theorem VI.18 of [5], the process
(
V (x, y, t)

)
is indistin-

guishable from a càdlàg process. �
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REMARK 4.1. In the case of continuous time we have to extend the class of
controls to finite variation controls. The problem in the case of power or loga-
rithmic utility leads to singular control problems as one can see for the infinite
horizon case for lognormal prices in [1] and references therein. The control con-
sisting of a finite number of transactions can be considered only as a potential
approximation of the singular control problem. If we impose additional fixed costs
for transactions, we can expect to find optimal control within the class of strategies
consisting of a finite number of transactions, however the number of transactions
will not be bounded deterministically from above. Under the assumption that we
have a decision lag or execution delay, following each transaction decision (see
[14]) we may expect to have optimal strategies consisting of a finite and bounded
number of transactions. The last two approaches will be a subject of further work.

5. APPENDIX

We formulate here and prove some continuity results which are used in the
paper. Denote by h the Hausdorff metric defined on the space H(R4

+) of compact
subsets of R4

+ as follows:

h(A,B) := max{d(A,B), d(B,A)}

with d(A,B) :=sup{dist(a,B) : a∈A} and dist(x,A) :=inf{dist(x, a) : a∈A}.
Clearly,

(
H(R4

+), h
)

is a complete metric space (see, e.g., [3]). We have, by The-
orem 2.1 of [13], the following

LEMMA 5.1. Let (xn, yn, sn, sn) be a sequence with coordinates in R4
+ such

that sn ¬ sn, which converges to (x, y, s, s), where s < s. Then

(5.1) h
(
A(x, y, s, s), A(xn, yn, sn, sn)

) n→∞−−−→ 0.

LEMMA 5.2. Assume that rmt (x, y) is a family of càdlàg trajectories depend-
ing on (x, y) ∈ R2

+ and m = 1, 2 . . . , i.e. for each m the mapping [0, T ] ∋ t 7→
rmt (x, y) is càdlàg, and furthermore, for each m = 1, 2, . . . the mapping R2

+ ∋
(x, y) 7→ rmt (x, y) is continuous uniformly in t for (x, y) from compact subsets in
R2

+. If for any compact set K ⊂ R2
+ there is rt(x, y) for (x, y) ∈ K ∩ Q2 and

t ∈ [0, T ] ∩Q such that

(5.2) sup
t∈[0,T ]∩Q

sup
(x,y)∈K∩Q2

|rmt (x, y)− rt(x, y)| → 0

as m→∞, then rt(x, y) := lim[0,T ]∩Q∋tn↓t,Q2∩R2
+∋(xn,yn)→(x,y) rtn(xn, yn) de-

fined for each (x, y) ∈ R2
+ is such that the mapping [0, T ] ∋ t 7→ rt(x, y) is càdlàg

and the mapping R2
+ ∋ (x, y) 7→ rt(x, y) is continuous uniformly in t for (x, y)

from compact subsets of R2
+.
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P r o o f. For given ε > 0 and a compact set K ⊂ R2
+ there is M(K, ε) such

that for m M(K, ε) we have

(5.3) sup
t∈[0,T ]∩Q

sup
(x,y)∈K∩Q2

|rmt (x, y)− rt(x, y)| ¬ ε.

Notice first that rt(x, y) is well defined for any (x, y) ∈ R2
+ and t ∈ [0, T ]. In fact,

if K ∩Q2 ∋ (xn, yn), (x
′
n, y
′
n)→ (x, y), [0, T ] ∩Q ∋ tn ↓ t, [0, T ] ∩Q ∋ t′n ↓ t

and r̄t(x, y) = limn→∞ rtn(xn, yn), r̃t(x, y) = limn→∞ rt′n(x
′
n, y
′
n), then by (5.3)

and continuity of R2
+ ∋ (x, y) 7→ rmt (x, y) for m M(K, ε) we have

|rtn(xn, yn)− rt′n(x
′
n, y
′
n)|

¬ |rtn(xn, yn)− rmtn(xn, yn)|
+ |rmtn(xn, yn)− rmt′n(x

′
n, y
′
n)|+ |rmt′n(x

′
n, y
′
n)− rt′n(x

′
n, y
′
n)|

¬ 2ε+ |rmtn(xn, yn)− rmt′n(x
′
n, y
′
n)| → 2ε,

letting n→∞, which means that r̄t(x, y) = r̃t(x, y). Furthermore, (5.3) and (5.2)
hold for any (x, y) ∈ K and t ∈ [0, T ]. If K ∋ (xn, yn)→ (x, y), then

sup
t∈[0,T ]

|rt(xn, yn)− rt(x, y)|

¬ sup
t∈[0,T ]

{|rt(xn, yn)− rmt (xn, yn)|

+ |rmt (xn, yn)− rmt (x, y)|+ |rmt (x, y)− rt(x, y)|}
¬ 2ε+ sup

t∈[0,T ]
{|rmt (xn, yn)− rmt (x, y)|},

letting first n→∞, then m→∞, since ε could be chosen arbitrarily small. Con-
sequently, we infer that for each compact set K we have uniform in t continuity of
(x, y) 7→ rt(x, y). The càdlàg property of t 7→ rt(x, y) follows now directly from
convergence (5.2). �

LEMMA 5.3. Assume that the mappings [0, T ] ∋ t 7→ st and [0, T ] ∋ t 7→ st
are càdlàg and st < st for t ∈ [0, T ]. Assume furthermore that the mapping R2

+ ∋
(x, y) 7→ V (x, y, t) is continuous uniformly in t for (x, y) from compact sets, while
the mapping [0, T ] ∋ t 7→ V (x, y, t) is càdlàg for each (x, y) ∈ R2

+. Then

(5.4) V̄ (x, y, st, st, t) := sup
(l,m)∈A(x,y,st,st)

V (x+mst − lst, y −m+ l, t)

is continuous in (x, y) from compact subsets in R2
+ uniformly in t, and the mapping

[0, T ] ∋ t 7→ V̄ (x, y, st, st, t) is càdlàg.
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P r o o f. Since A(x, y, s, s) is compact and V (x, y −m+ l, t) is continuous
in (x, y), there is (l,m) ∈ A(x, y, s, s) such that

V̄ (x, y, s, s, t) = V (x+ms− ls, y −m+ l, t).

Let now R2
+ ∋ (xn, yn)→ (x, y) and (ln,mn) ∈ A(xn, yn, st, st) be such that

V̄ (xn, yn, st, st, t) = V (x+mnst − lnst, y −mn + ln, t).

Without loss of generality, by Lemma 5.1, choosing a suitable subsequence, we
may assume that (ln,mn)→ (l,m) ∈ A(x, y, st, st). Hence, by continuity,

(5.5) V (xn +mnst − lnst, yn −mn + ln, t)→ V (x+mst − lst, y −m+ l, t)

uniformly in t ∈ [0, T ], since trajectories of (st) and (st) take values in a compact
set. Then

V̄ (x, y, st, st, t)  V (x+mst − lst, y −m+ l, t).

If there is (l′,m′) ∈ A(x, y, st, st) such that

(5.6) V (x+m′st − l′st, y −m′ + l′, t) > V (x+mst − lst, y −m+ l, t),

then by Lemma 5.1 there is (l′n,m
′
n) ∈ A(xn, yn, st, st) such that (l′n,m

′
n) →

(l,m) and

V (xn +m′nst − l′nst, yn −m′n + l′n, t)→ V (x+m′st − l′st, y −m′ + l′, t).

Then

V (xn +m′nst − l′nst, yn −m′n + l′n, t) ¬ V̄ (xn, yn, st, st, t),

and consequently

V (x+m′st − l′st, y −m′ + l′, t) ¬ V (x+mst − lst, y −m+ l, t),

which is a contradiction to (5.6). Therefore, by (5.5) we have V̄ (xn, yn, st, st, t)→
V̄ (x, y, st, st, t) uniformly in t ∈ [0, T ].

Assume now that tn ↓ t ∈ [0, T ]. Fix (x, y) ∈ R2
+. There is (ln,mn) ∈ A

(x, y, stn , stn) such that

V̄ (x, y, stn , stn , tn) = V (x+mnstn − lnstn , y −mn + ln, tn).

Using Lemma 5.1 again, we may assume, taking into account right continuity of
the trajectories of (st) and (st), that (ln,mn)→ (l,m) ∈ A(x, y, st, st). We have

|V (x+mnstn − lnstn , y −mn + ln, tn)− V (x+mst − lst, y −m+ l, t)|
¬ |V (x+mnstn − lnstn , y −mn + ln, tn)− V (x+mst − lst, y −m+ l, tn)|
+ |V (x+mst − lst, y −m+ l, tn)− V (x+mst − lst, y −m+ l, tn)|

= an + bn
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and an → 0 as n → ∞, by right continuity of the trajectories of (st) and (st)
and uniform in t continuity of V with respect to the first two coordinates taking
values in compact sets. Also, bn → 0 as n → ∞, by right continuity of [0, T ] ∋
t 7→ V (x, y, t) for any fixed (x, y) ∈ R2

+. Consequently,

(5.7) lim sup
n→∞

V̄ (x, y, stn , stn , tn) ¬ V̄ (x, y, st, st, t).

Suppose now we have in (5.7) a strict inequality. Let (l,m) ∈ A(x, y, st, st) be
such that

V̄ (x, y, st, st, t) = V (x+mst − lst, y −m+ l, t).

By Lemma 5.1, there is a sequence (ln,mn) ∈ A(x, y, stn , stn) such that (ln,mn)
→ (l,m), and therefore

V (x+mnstn − lnstn , y −mn + ln, tn)→ V (x+mst − lst, y −m+ l, t).

Since for every n

V (x+mnstn − lnstn , y −mn + ln, tn) ¬ V̄ (x, y, stn , stn , tn),

we have equality in (5.7) and instead of lim sup we have just lim there. This means
that V̄ is right continuous in t. To show that it has also the left-hand limit, it remains
to show that for tn ↑ t and (x, y) ∈ R2

+

(5.8) lim
n→∞

V̄ (x, y, stn , stn , tn)

→ sup
(l,m)∈A(x,y,s−t ,s−t )

V −(x+ms−t − ls−t , y −m+ l, t)

as n→∞, where s−t , s
−
t are left limits of (st), (st) at time t and V −(x, y, t) de-

notes the left limit of V (x, y, t) at time t. The proof is similar to that of right
continuity and is left to the reader. �
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ul. Śniadeckich 8
00-656 Warsaw, Poland

E-mail: stettner@impan.pl

Received on 29.6.2016;
revised version on 6.12.2016


	1 Introduction
	2 Auxiliary results
	3 Proof of the main result
	4 Applications
	5 Appendix
	References

