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Abstract. Let (Wi, Ji)i∈N be a sequence of i.i.d. [0,∞) × R-valued
random vectors. Considering the partial sum of the first component and the
corresponding maximum of the second component, we are interested in the
limit distributions that can be obtained under an appropriate scaling. In the
case that Wi and Ji are independent, the joint distribution of the sum and
the maximum is the product measure of the limit distributions of the two
components. But if we allow dependence between the two components, this
dependence can still appear in the limit, and we need a new theory to de-
scribe the possible limit distributions. This is achieved via harmonic anal-
ysis on semigroups, which can be utilized to characterize the scaling limit
distributions and describe their domains of attraction.
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1. INTRODUCTION

Limit theorems for partial sums and partial maxima of sequences of i.i.d. ran-
dom variables have a very long history and form the foundation of many appli-
cations of probability theory and statistics. The theories, but not the methods, in
those two cases parallel each other in many ways. In both cases the class of possi-
ble limit distributions, that are sum-stable and max-stable laws, is well understood.
Moreover, the characterization of domains of attraction is in both cases based on
regular variation. See, e.g., [5]–[7], [10] to name a few.

The methods used in the analysis in those two cases appear, at least at the
first glance, to be completely different. In the sum case one usually uses Fourier
or Laplace transform methods, whereas in the max case the distribution function
(CDF) is used. However, from a more abstract point of view these two methods are
almost identical. They are both harmonic analysis methods on the plus resp. the
max-semigroup.
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Surprisingly, a thorough analysis of the joint convergence of the sum and the
maximum of i.i.d. random vectors, where the sum is taken in the first coordinate
and the maximum in the second coordinate, has never been carried out. Of course,
if the components of the random vector are independent, one can use the classical
theories componentwise and gets joint convergence. To our knowledge, the only
other case considered is the case of complete dependence where the components
are identical, see [3].

The purpose of this paper is to fill this gap in the literature and to present a the-
ory that solves this problem in complete generality. Moreover, there is a need for
a general theory describing the dependence between the components of the limit
distributions of sum/max stable laws. For example, in [15] on page 1862 it is ex-
plicitly asked how to describe such limit distributions. Moreover, there are various
stochastic process models and their limit theorems, that are constructed from the
sum of non-negative random variables Wi, interpreted as waiting times between
events of magnitude Ji, which may describe the jumps of a particle, in particular
the continuous time random maxima processes studied in [8], [11], or the shock
models studied in [12]–[14], [1], [9]. In those papers it is either assumed that the
waiting times Wi and the jumps Ji are independent or asymptotically independent,
meaning that the components of the limiting random vector are independent.

Motivated by these applications, in this paper we only consider the case of
non-negative summands. More precisely, let (Wi, Ji)i∈N be a sequence of i.i.d.
R+ × R-valued random variables. The random variables Wi and Ji can be depen-
dent. Furthermore, we define the partial sum

S(n) :=
n∑

i=1

Wi(1.1)

and the partial maximum

M(n) :=
n∨

i=1

Ji := max{J1, . . . , Jn}.(1.2)

Assume now that there exist constants an, bn > 0 and cn ∈ R, such that

(1.3)
(
anS(n), bn

(
M(n)− cn

))
⇒ (D,A) as n→∞,

where A and D are non-degenerate. We want to answer the following questions:
(i) How can we characterise the joint distribution of (D,A) in (1.3)?
(ii) How can we describe the dependence between D and A?
(iii) Are there necessary and sufficient conditions on (W,J), such that the

convergence in (1.3) is fulfilled?
Observe that by the classical theory of sum- or max-stability it follows by

projecting on either coordinate in (1.3) that D has a β sum-stable distribution for
some 0 < β < 1 and A has one of the three extreme value distributions. To answer
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all these questions we use harmonic analysis on the sum/max semigroup and derive
a theory that subsumes both the classical theories of sum-stability or max-stability,
respectively.

Recently, in [4] a rather general theory of stable distributions on convex cones
was established. Those cones are Abelian topological semigroups admitting a mul-
tiplication by positive scalars. The methods used in that paper also rely on har-
monic analysis on semigroups. However, for reasons given now, the results in [4]
do not apply to answer questions (i)–(iii). In fact, in [4] they only allow the same
scaling in both coordinates, whereas in (1.3) we need different scaling in differ-
ent coordinates. In fact, we allow different stability indices 0 < β < 1 and α > 0
for the sum- and the max-coordinate, respectively. Therefore, the Lévy measure of
the limit laws in (1.3) scales differently in different coordinates, see Corollary 3.2
below. Moreover in our concrete case we obtain explicit formulas for the Laplace
transform of the limit distributions as well as its Lévy measure, which also cannot
be derived from results in [4]. See Proposition 3.1 and Theorem 3.3 below.

It should be possible to extend the results of this paper to the case where the
Wi are R-valued and we also allow shifts in the first component in (1.3). However,
up to now this is an interesting open problem.

This paper is organised as follows: In Section 2, by applying results from
abstract harmonic analysis on semigroups to the sum/max semigroup defined by

(x1, t1)∨+(x2, t2) := (x1 + x2, t1 ∨ t2)(1.4)

for all (x1, t1), (x2, t2) ∈ R+ × R, we develop the basic machinery. We will give
a Lévy–Khintchine type formula for sum/max infinitely divisible laws based on a
modified Laplace transform on the semigroup as well as convergence criteria for
triangular arrays. These methods are then used in Section 3 to answer questions (i),
(ii) and (iii) in the α-Fréchet case, where we additionally assume that A in (1.3)
has an α-Fréchet distribution. The general case then follows by transforming the
second component in (1.3) to the 1-Fréchet case. In Section 4 we present some
examples showing the usefulness of our results and methods. Technical proofs are
given in the Appendix.

2. HARMONIC ANALYSIS ON SEMIGROUPS

Even though the random variables Ji in (1.1) are real valued, in extreme value
theory it is more natural to consider random variables with values in the two-point
compactification R = [−∞,∞]. Observe that −∞ is the neutral element with re-
spect to the max operation. The framework for analyzing the convergence in (1.3)
is the Abelian topological semigroup (R+ × R, ∨+), where ∨+ is defined in (1.4).
Observe that the neutral element is (0,−∞). The semigroup operation ∨+ naturally
induces a convolution ~ onMb(R+ × R), the set of bounded measures. Indeed,
let Π

(
(s1, y1), (s2, y2)

)
:= (s1 + s2, y1 ∨ y2). For µ1, µ2 ∈ Mb(R+ × R) we de-

fine µ1 ~ µ2 = Π(µ1 ⊗ µ2), where µ1 ⊗ µ2 denotes the product measure. Then we
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have for independent R+ × R-valued random vectors (W1, J1) and (W2, J2)

P(W1,J1) ~ P(W2,J2) = P(W1,J1)∨
+

(W2,J2) = P(W1+W2,J1∨J2).

The natural transformation on the space of bounded measures for the usual convo-
lution that transforms the convolution into a product is the Fourier or Laplace trans-
form. We will now introduce a similar concept on our semigroup (R+ ×R, ∨+) and
present its basic properties. In order to do so we first recall some basic facts about
Laplace transforms on semigroups.

On an arbitrary semigroup S a generalized Laplace transform L : µ→ L(µ)
is defined by

L(µ)(s) =
∫̂
S

ρ(s)dµ(ρ), s ∈ S,

where Ŝ is the set of all bounded semicharacters on S and µ ∈Mb(Ŝ) (see 4.2.10
in [2]). A semicharacter on (S, ◦) is a function ρ : S → R with the properties

(i) ρ(e) = 1;

(ii) ρ(s ◦ t) = ρ(s)ρ(t) for s, t ∈ S.
We now consider the topological semigroup S := (R+ × R, ∧+) with neutral

element e = (0,∞), where the operator ∧+ is defined as

(x1, t1)∧+(x2, t2) := (x1 + x2, t1 ∧ t2)(2.1)

for all (x1, t1), (x2, t2) ∈ R+ × R. The set of bounded semicharacters on S is
given by

Ŝ =
{
e−t·1{∞}(·), e−t·1[x,∞](·), e−t·1(x,∞](·)

∣∣t ∈ [0,∞], x ∈ [−∞,∞)
}(2.2)

with∞· s =∞ for s > 0 and 0 ·∞ = 0, hence for t =∞we get e−t· = 1{∞}(·).
We consider only a subset of Ŝ, which we denote by S̃:

(2.3) S̃ :=
{
ρt,x(s, y) := e−ts1[−∞,y ](x)

∣∣t ∈ [0,∞), x ∈ [−∞,∞]
}
.

This is again a topological semigroup under pointwise multiplication, and the neu-
tral element is the constant function 1. It is easy to see that this set of semichar-
acters together with the pointwise multiplication is isomorphic to (R+ × R, ∨+).
Hence, with a little abuse of notation, by identifying measures on S̃ with measures
on R+ × R we can define a Laplace transform for measures on (R+ × R, ∨+).

DEFINITION 2.1. For bounded measures µ on R+ × R, the C-L transform
L : µ→ L(µ) is given by

(2.4) L(µ)(s, y) :=
∫

R+×R
e−st1[−∞,y](x)µ(dt, dx), (s, y) ∈ R+ × R.
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Observe that setting s = 0 results in the CDF of the second component, where-
as setting y =∞ results in the usual Laplace transform of the first component. That
is, if we consider a random vector (W,J) on R+ × R with joint distribution µ and
put s = 0, resp. y =∞, we get

(2.5) L(µ)(0, y) = µ(R+ × [−∞, y]) = P {J ¬ y} = FJ(y),

resp.

(2.6) L(µ)(s,∞) =
∞∫
0

e−stP(W,J)(dt,R+) = E[e−sW ] = P̃W (s),

where P̃W is the Laplace transform of PW , and FJ the distribution function of J ,
which explains the name C-L transform.

In the following we collect some important properties of the C-L transform
needed for our analysis.

LEMMA 2.1. A normalized function φ on (R+×R, ∧+) (meaning that φ(0,∞)
= 1) is the C-L transform of a probability measure µ on R+ ×R if and only if φ is
positive semidefinite, φ(0, y) is the distribution function of a probability measure
on R, and φ(s,∞) is the Laplace transform of a probability measure on R+.

For the proof see Appendix.

PROPOSITION 2.1. Let µ1, µ2, µ ∈M1(R+ × R) and α, β ∈ R. Then:
(a) L (αµ1 + βµ2) (s, y) = αL(µ1)(s, y) + βL(µ2)(s, y)

for all (s, y) ∈ R+ × R.
(b) L(µ1 ~ µ2)(s, y) = L(µ1)(s, y) · L(µ2)(s, y) for all (s, y) ∈ R+ × R.
(c) µ1 = µ2 if and only if L(µ1)(s, y) = L(µ2)(s, y) for all (s, y) ∈ R+×R.
(d) We have 0 ¬ L(µ)(s, y) ¬ 1 for all (s, y) ∈ R+ × R.

P r o o f. Property (a) is obvious. The proof of (b) is also straightforward, be-
cause the convolution is the image measure under the mapping T : Ŝ × Ŝ → Ŝ
with T (ρ1, ρ2) := ρ1ρ2. Property (c) follows immediately from Theorem 4.2.8 in
[2] and (d) is obvious. �

The Laplace transform is a very useful tool for proving weak convergence of
sums of i.i.d. random variables using the so-called Continuity Theorem. The next
theorem is the analogue of the Continuity Theorem for the Laplace transform in
the sum/max case.

THEOREM 2.1 (Continuity Theorem for the C-L transform). Let us assume
that µn, µ ∈M1(R+ × R) for all n ∈ N. Then we have:

(a) If µn
w−→ µ, then L(µn)(s, y) −→ L(µ)(s, y) for all (s, y) ∈ R+ × R in

which L(µ) is continuous. (This is the case for all but countably many y ∈ R.)
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(b) If L(µn)(s, y) −→ φ(s, y) in all but countably many y ∈ R and we have
lims↓0 φ(s,∞) = 1, then there exists a measure µ ∈M1(R+×R) withL(µ) = φ

and µn
w−→ µ.

P r o o f. (a) With the Portmanteau Theorem (see, e.g., [7], Theorem 1.2.2)
we know that

∫
f(t, x)µn(dt, dx) →

∫
f(t, x)µ(dt, dx) as n → ∞ for all real-

valued, bounded functions f on R+ × R with µ
(
Disc(f)

)
= 0, where Disc(f) is

the set of discontinuities of f . If we choose f as fs,y(t, x) := e−st1[−∞,y](x), it
follows that

L(µn)(s, y)→ L(µ)(s, y) as n→∞

for all (s, y) ∈ R+ ×R in which L(µ) is continuous. Because Disc(fs,y) = R+ ×
{y} and µ(R+ × ·) has as probability measure at most countably many atoms,
µ
(
Disc(fs,y)

)
̸= 0 for at most countably many y ∈ R.

(b) Let us assume (µn)n∈N is a sequence of probability measures on R+×R.
With Helly’s Selection Theorem (see [5], Theorem 8.6.1) we know that for all
subsequences (nk)k∈N there exists another subsequence (nkl)l∈N and a measure
µ ∈M¬1(R+ × R) such that

µnkl

v−−→ µ as l→∞.

Then µ is a subprobability measure, i.e. µ(R+ × R) ¬ 1. With (a) it follows that

L(µnkl
)(s, y)→ L(µ)(s, y) as l→∞

for all (s, y), where L(µ) is continuous. By assumption we know that

L(µnkl
)(s, y)→ φ(s, y) as l→∞

pointwise in all but countably many y ∈ R. Then it follows because of uniqueness
of the limit that L(µ)(s, y) = φ(s, y) for all subsequences (nk)k∈N. So the limits
are equal for all subsequences (nk)k∈N. Because of the uniqueness of the C-L
transform it follows that

µn
v−−→ µ as n→∞,

where µ(R+ × R) ¬ 1. Because of the assumption lims↓0 φ(s,∞) = 1 we get

1 = lim
s↓0

φ(s,∞) = lim
s↓0
L(µ)(s,∞) = lim

s↓0

∞∫
0

e−stµ(dt,R)

=
∞∫
0

1 µ(dt,R+) = µ(R+ × R).

Hence, we have µ(R+ × R) = 1, i.e. µ ∈M1(R+ × R). �
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The following lemma extends the convergence in Theorem 2.1 to a kind of
uniform convergence on compact subsets needed later.

LEMMA 2.2. Let µn, µ ∈M1(R+ ×R) for all n ∈ N and assume L(µ)(s, y)
is continuous in y ∈ R. If µn

w−−→ µ and (sn, yn)→ (s, y), then L(µn)(sn, yn)→
L(µ)(s, y) as n→∞.

For the proof see Appendix.
As for any type of convolution structure, there is the concept of infinite divis-

ibility.

DEFINITION 2.2. A probability measure µ ∈ M1(R+ × R) is infinitely di-
visible with respect to ∨+ (or shortly: ∨+-infinitely divisible) if for all n ∈ N there
exists a probability measure µn ∈M1(R+ × R) such that µ~n

n = µ.

Trivially, every distribution on R is max-infinitely divisible. The following
example shows that sum-infinite divisibility in one component and max-infinite
divisibility in the other component not necessarily implies ∨+-infinite divisibility.

EXAMPLE 2.1. Let (X,Y ) be a random vector which distribution is given by
• P (X = k, Y = 1) = Poisλ(k) if k ∈ N0 is even;
• P (X = k, Y = 0) = Poisλ(k) if k ∈ N0 is odd;
• P (X = k, Y = l) = 0 for k ∈ N0, l  2;

for a λ > 0. Furthermore, the distribution of Y is given by

P (Y = 1) = P (Y = 0) = 1/2.

Y is trivially max-infinite divisible (every univariate distribution is max-infinite
divisible). The random variable X is Poisson distributed with parameter λ > 0
and hence sum-infinite divisible. If (X,Y ) is ∨+-infinite divisible, there exist i.i.d.
random vectors (X1, Y1), (X2, Y2), such that

(X,Y )
d
= (X1, Y1)∨+(X2, Y2).

However, there is no distribution which fulfils this. In fact, by necessity the support
of (X1, Y1) has to be a subset of N0 × {0, 1} and (X1, Y1) has no mass in (0, 0).
Consequently, there exists no distribution for (X1, Y1), such that P (X1+X2=1,
Y1 ∨ Y2 = 0) is positive. But on the other hand we have

P (X = 1, Y = 0) = Poisλ(1) > 0.

So (X,Y ) cannot be ∨+-infinite divisible.

The next lemma shows that the weak limit of a sequence of ∨+-infinite divisible
measures is ∨+-infinite divisible as well.

LEMMA 2.3. Assume that µn, µ∈M1(R+×R) for all n∈N and µn
w−−→µ as

n→∞. If µn is ∨+-infinite divisible for each n ∈ N, then µ is ∨+-infinite divisible.
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For the proof of Lemma 2.3 see Appendix.
In the following let x0 denote the left endpoint of the distribution of A in (1.3),

that is,

x0 := inf{y ∈ R : FA(y) > 0}.

For FA there are two possible cases, namely either FA(x0) = 0 or there is an atom
in x0 so that FA(x0) > 0. Since the limit distributions of rescaled maxima are the
extreme value distributions which are continuous, in the following we will only
consider the case where FA(x0) = 0. If φ is a C-L transform, we call the function
Ψ : S → R with

φ = exp(−Ψ) and Ψ(0,∞) = 0(2.7)

the C-L exponent (similar to the Laplace exponent in the context of Laplace trans-
forms). The following theorem gives us a Lévy–Khintchine representation for the
C-L exponent of ∨+-infinite divisible distributions on the semigroup R+ × R.

THEOREM 2.2. A function φ is the C-L transform of a ∨+-infinite divisible
measure µ on R+ × R with left endpoint x0 such that µ(R+ × {x0}) = 0, if and
only if there exists an a ∈ R+ and a Radon measure η on R+ × [x0,∞] with
η
(
{(0, x0)}

)
= 0 satisfying the integrability conditions∫

R+

min(1, t)η(dt, [x0,∞]) <∞ and η
(
R+ × (y,∞]

)
<∞ ∀y > x0,(2.8)

such that Ψ := − log(φ) has the representation

Ψ(s, y) =

a · s+
∫
R+

∫
[x0,∞]

(
1− e−st · 1[x0,y](x)

)
η(dt, dx) ∀y > x0,

∞ ∀y ¬ x0,
(2.9)

for all (s, y) ∈ R+ × R. The representation given in (2.9) is unique and we write
µ ∼ [x0, a, η]. We call a measure η which fulfils (2.8) a Lévy measure on the semi-
group (R+ × R, ∨+).

P r o o f. Let φ be the C-L transform of a ∨+-infinite divisible measure µ. Since

φ(s, y) =
∫

R+×R
e−st1[−∞,y](x)µ(dt, dx),

we infer by our assumptions that 0 < φ(s, y) ¬ 1 for all (s, y) ∈ R+ × (x0,∞].
On the set R+ × (−∞, x0] we have φ ≡ 0 and hence Ψ ≡ ∞. In the follow-
ing we consider φ restricted on Sx0 := R+ × (x0,∞] with the semigroup oper-
ation ∧+ . The function φ is strictly positive, positive semidefinite and ∨+-infinite
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divisible, consequently the map Ψ : Sx0 → R with Ψ := − log(φ) is due to The-
orem 3.2.7 in [2] negative semidefinite. From Theorem 4.3.20 in [2] it then fol-
lows that there exists an additive function q : Sx0 → [0,∞[ and a Radon measure
η̃ ∈M+(Ŝx0\ {1}) such that

Ψ(s, y) = Ψ(e) + q(s, y) +
∫

Ŝx0\{1}

(
1− ρ(s, y)

)
η̃(dρ),(2.10)

where Ŝx0 is the set of semicharacters on the semigroup (Sx0 , ∧
+). We now show

that the additive function q is of the form q(s, y) = a · s for some a  0. In view
of the fact that φ(s, y) is continuous in s for an arbitrary but fixed y ∈ (x0,∞], Ψ
has to be continuous and hence also q for s > 0 (the integral in (2.10) has at most
a discontinuity in s = 0). Due to the fact that q is additive we have

q(s1 + s2, y1 ∧ y2) = q(s1, y1) + q(s2, y2)

for any (s1, y1), (s2, y2) ∈ Sx0 . Because q is continuous for an arbitrary but fixed y
in s (up to s = 0) and q(s1 + s2, y) = q(s1, y) + q(s2, y) there exists an a(y)  0
such that q(s, y) = a(y) · s. Additionally, we have

q(2s, y1 ∧ y2) = q(s+ s, y1 ∧ y2) = q(s, y1) + q(s, y2) = a(y1) · s+ a(y2) · s.
(2.11)

First we assume y1 < y2. Then we have

q(2s, y1 ∧ y2) = q(2s, y1) = a(y1) · 2s.(2.12)

If we subtract (2.12) from (2.11) we obtain

a(y1) = a(y2).

Due to the fact that y1, y2 ∈ (x0,∞] were chosen arbitrarily, it follows that a(y) is
independent of y and q has the form q(s, y) = a · s with an a  0. We divide the
set Ŝx0 of semicharacters into two disjoint sets

Ŝ
′
x0

= {e−t·1[x,∞]|x ∈ [x0,∞] , s ∈ [0,∞]},

Ŝ
′′
x0

= {e−t·1(x,∞]|x ∈ [x0,∞) , s ∈ [0,∞]}.

Accordingly we divide the integral in (2.10) and get due to the fact that Ŝ
′
x0

and
Ŝ
′′
x0

are isomorphic to [0,∞]× [x0,∞] and [0,∞]× [x0,∞), respectively,

Ψ(s, y) = a · s+
∫

[0,∞]

∫
[x0,∞]

(
1− e−st · 1[x,∞](y)

)
η1(dt, dx)(2.13)

+
∫

[0,∞]

∫
[x0,∞)

(
1− e−st · 1(x,∞](y)

)
η2(dt, dx),
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η1 and η2 being Radon measures on (R+ × [x0,∞], ∨+), resp. (R+ × [x0,∞), ∨+).
If we put s = 0 in (2.13), we get

Ψ(0, y) =
∫

[0,∞]

∫
[x0,∞]

(
1− 1[x0,y](x)

)
η1(dt, dx)

+
∫

[0,∞]

∫
[x0,∞)

(
1− 1[x0,y)(x)

)
η2(dt, dx)

=
∫

[x0,∞]

1(y,∞](x)η1(R+, dx) +
∫

[x0,∞)

1[y,∞](x)η2(R+, dx).

Due to the fact that φ(0, y) is right continuous in y, Ψ(0, y) is right continuous
in y, too. Consequently, we have η2(R+ × {y}) = 0 for all y > x0 or η2 ≡ 0. If
η2(R+ × {y}) = 0, it follows that η2(A× {y}) = 0 for all A ∈ B(R+). Hence in
both cases it follows together with (2.13) that Ψ has the representation

Ψ(s, y) = a · s+
∫

[0,∞]

∫
[x0,∞]

(
1− e−st · 1[x,∞](y)

)
η(dt, dx),(2.14)

where η is a Radon measure on R+ × [x0,∞]. If we put y =∞ in (2.14), we get

Ψ(s,∞) = a · s+
∫

[0,∞)

(1− e−st)η(dt, [x0,∞]) + 1]0,∞[(s) · η({∞} × [x0,∞]).

Since Ψ(s,∞) is continuous in every s ∈ R+, it follows that

η({∞} × [x0,∞]) = 0.(2.15)

Consequently, Ψ has the representation

Ψ(s, y) = a · s+
∫

[0,∞)

∫
[x0,∞]

(
1− e−st · 1[x0,y](x)

)
η(dt, dx)(2.16)

for all y > x0, where η is a Radon measure on R+×[x0,∞] with η
(
{(0, x0)}

)
=0.

Since Ψ(s, y) <∞ for all (s, y) ∈ R+× (x0,∞], the conditions in (2.8) hold true.
Conversely, assume that Ψ has the representation in (2.16) for all y > x0. In view
of the conditions (2.8), we get for all (s, y) ∈ R+ × (x0,∞] the relations

Ψ(s, y) =
∫

R+×[x0,∞]

(
1− e−st1[x0,y](x)

)
η(dt, dx)

=
∫

R+×[x0,∞]

(1− e−st)η(dt, dx) +
∫

R+×[x0,∞]

e−st1(y,∞](x)η(dt, dx)

¬
∫
R+

(1− e−st)η(dt, [x0,∞]) + η(R+ × (y,∞])

<∞.
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We now define a homomorphism h : R+× [x0,∞] −→ Ŝx0 by h(t, x) = e−t·1[x,∞]

and write Ψ as

Ψ(s, y) = Ψ(0,∞) + q(s, y) +
∫

Ŝx0\{1}

(
1− ρ(s, y)

)
h(η)(dρ),

where (0,∞) is the neutral element on the semigroup (Sx0 , ∧
+), q an additive func-

tion and h(η) the image measure of η under h. Due to Theorem 4.3.20 in [2],
Ψ is a negative definite and bounded below function on Sx0 . Hence the function
φ = exp(−Ψ) is positive definite and due to Proposition 3.2.7 in [2] infinite divisi-
ble. The function φ(0, y) = exp

(
−Ψ(0, y)

)
is a uniquely determined distribution

function and φ(s,∞) a Laplace transform due to

Ψ(s,∞) = a · s+
∫
R+

(1− e−st)η(dt, [x0,∞])

and ∫
R+

min(1, t) η(dt, [x0,∞]) <∞.

Furthermore, we have Ψ(0,∞) = 0. Consequently, φ is normalized and it follows
from Lemma 2.1 that φ is the C-L transform of a measure µ ∈M1(R+× [x0,∞]).
Since φ(s, y) = 0 for all (s, y) ∈ R+ × [−∞, x0], we infer that φ is the C-L
transform of a ∨+-infinite divisible probability measure µ on R+ × R such that
µ(R+ × [−∞, x0]) = 0. �

REMARK 2.1. If φ(0, x0) = FA(x0) > 0, the only difference is that the case
y = x0 in (2.9) has to be included in the case y > x0.

In the following we define the Lévy measure to be zero on R+ × [−∞, x0).
Hence the C-L exponent in (2.9) can be uniquely represented by

Ψ(s, y) = a · s+
∫
R+

∫
R

(
1− e−st · 1[−∞,y](x)

)
η(dt, dx)(2.17)

for all (s, y) ∈ R+ × (x0,∞] in the case φ(0, x0) = 0.

Hereinafter we say that the set B ⊂ R+ × [x0,∞] is bounded away from the
origin (here we think of (0, x0) if we talk about the origin) if dist

(
(0, x0), B

)
> 0,

which means that for all x = (x1, x2) ∈ B there exists an ϵ > 0 such that x1 > ϵ
or x2 > x0 + ϵ. In view of the conditions (2.8), a Lévy measure has the property
that it assigns finite mass to all sets bounded away from the origin. We say that a
sequence (ηn)n∈N of measures converges vaguely to a Lévy measure η (with left
endpoint x0) if

lim
n→∞

ηn(B) = η(B)
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for all S ∈ B(R+ × [x0,∞]) with η(∂S) = 0 and dist
(
(0, x0), S

)
> 0. We write

ηn
v′−−−→

n→∞
η

in this case.

REMARK 2.2. Let Ψn,Ψ be C-L exponents of the ∨+-infinitely divisible laws
µn, µ, respectively, where µ has left endpoint x0 ∈ [−∞,∞] with µ(R+ × {x0})
= 0. If we want to show the convergence Ψn(s, y) −→ Ψ(s, y) as n → ∞ for
all (s, y) ∈ R+ × R it is enough to show the convergence for all (s, y) ∈ R+ ×
(x0,∞]. This is because L(µ)(0, x0) = 0 and

L(µn)(s, y) ¬ L(µn)(0, x0) −−−→
n→∞

L(µ)(0, x0) = 0, y ¬ x0,

meaning that
L(µn)(s, y) −−−→

n→∞
0 = L(µ)(s, y)

for all (s, y) ∈ R+ × (−∞, x0].

LEMMA 2.4. Let (µn)n∈N be a sequence of ∨+-infinite divisible probability
measures on R+ × R with µn ∼ [xn, an, ηn] for each n ∈ N. Then µn

w−→ µ,
where µ ∼ [x0, a, η] (where either xn ¬ x0 for all n ∈ N or xn → x0), if and
only if

(a) an −→ a for an a  0,

(b) ηn
v′−→ η and

(c) lim
ϵ↓0

lim
n→∞

∫
{0¬t<ϵ} t ηn(dt,R) = 0.

For the proof see Appendix.

LEMMA 2.5. Let µ ∈ M1(R+ × R) with left endpoint x0 and c > 0. We de-
fine a probability measure Π(c, µ) by

Π(c, µ) := e−c
∞∑
k=0

ck

k!
µ~k

on R+ × [x0,∞], where µ~0 = ε(0,x0). Then Π(c, µ) is ∨+-infinite divisible with
Π(c, µ) ∼ [x0, 0, c · µ] and L

(
Π(c, µ)

)
(s, y) > 0 for all (s, y) ∈ R+ × [x0,∞].

For the proof see Appendix.

LEMMA 2.6. Let µn, ν ∈ M1(R+ × R) for each n ∈ N with left endpoints
xn and x0, respectively, where either xn → x0 or xn ¬ x0 for each n ∈ N. Then
the following are equivalent:

(i) Π(n, µn)
w−−→ ν as n→∞;

(ii) µ~n
n

w−−→ ν as n→∞.
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For the proof of Lemma 2.6 see Appendix.
Finally, the following theorem gives convergence criteria for triangular arrays

on (R+ × R, ∨+).

THEOREM 2.3. Let µn ∈M1(R+×R) for each n ∈ N with left endpoint xn.
Then µ~n

n
w−−→ ν as n→∞, where ν is ∨+-infinite divisible, ν ∼ [x0, 0,Φ] (where

either xn → x0 or xn ¬ x0 for all n ∈ N), if and only if

(a) n · µn
v′−→ Φ and

(b) lim
ϵ↓0

lim
n→∞

n ·
∫
{0¬t<ϵ} t µn(dt,R) = 0.

P r o o f. With Lemma 2.6 and Theorem 2.4 this assertion now follows easily.
In view of Lemma 2.6, µ~n

n
w−−→ ν is equivalent to Π(n, µn)

w−−→ ν. By Lemma 2.5
we know that Π(n, µn) ∼ [xn, 0, n · µn]. Hence we infer from Lemma 2.4 that
Π(n, µn)

w−−→ ν is equivalent to

n · µn
v′−−→ Φ and lim

ϵ↓0
lim
n→∞

n ·
∫

{0¬t<ϵ}
t µn(dt,R) = 0,

where ν ∼ [x0, 0,Φ]. �

3. JOINT CONVERGENCE

This section contains the main results of this article. Using the methods devel-
oped in Section 2 above, we answer questions (i), (ii) and (iii) from the introduc-
tion. This will be done by first considering the case that A in (1.3) has an α-Fréchet
distribution for some α > 0. The general case will then be dealt with, by transform-
ing the second component in (1.3) to the 1-Fréchet case, a standard technique in
multivariate extreme value theory (see, e.g., [10], p. 265).

Our first result partially answers question (i). As expected, the non-degenerate
limit distributions in (1.3) are sum-max stable in the sense of the following defi-
nition.

DEFINITION 3.1. Let us assume that (D,A) is an R+ × R-valued random
vector with non-degenerate marginals. We say that (D,A) is sum-max stable if
for all n  1 there exist numbers an, bn > 0 and cn ∈ R such that for i.i.d. copies
(D1, A1), . . . , (Dn, An) of (D,A) we have

(D1, A1)∨+ . . . ∨+(Dn, An) = (D1 + . . .+Dn, A1 ∨ . . . ∨An)

d
= (a−1n D, b−1n A+ cn).

THEOREM 3.1. Let (D,A) be R+×R-valued with non-degenerate marginals.
Then (D,A) is sum-max stable if and only if (D,A) is a limit distribution in (1.3).
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P r o o f. Trivially, every sum-max stable random vector is a limit distribution
in (1.3). Now assume that (D,A) is a non-degenerate limit distribution in (1.3).
Fix any k  2. Then we have

(3.1)
(
ankS(nk), bnk(M(nk)− cnk)

)
=⇒ (D,A) as n→∞.

For i = 1, . . . , k let

(S(i)
n ,M (i)

n ) =
( n∑
j=1

Wn(i−1)+j ,
n∨

j=1

Jn(i−1)+j

)
so that (S(1)

n ,M
(1)
n ), . . . , (S

(k)
n ,M

(k)
n ) are i.i.d. Moreover, by (1.3),(

anS
(i)
n , bn(M

(i)
n − cn)

)
=⇒ (Di, Ai) as n→∞,

where (D1, A1), . . . , (Dk, Ak) are i.i.d. copies of (D,A). Then we have(
anS

(1)
n , bn(M

(1)
n − cn)

)
∨+ . . . ∨+

(
anS

(k)
n , bn(M

(k)
n − cn)

)
=

(
anS(nk), bn

(
M(nk)− cn

))
=⇒ (D1, A1)∨+ . . . ∨+(Dk, Ak) as n→∞.

Hence, in view of (3.1), convergence of types yields

ank
an
→ ãk > 0,

bnk
bn
→ b̃k > 0 and bnkcn − cnbnk → c̃k

as n→∞, and therefore

(D1, A1)∨+ . . . ∨+(Dk, Ak)
d
= (ã−1k D, b̃−1k A+ c̃k),

so (D,A) is sum-max stable. �

DEFINITION 3.2. Let (D,A) be an R+ × R-valued random vector. We say
that the random vector (W,J) belongs to the sum-max domain of attraction of
(D,A) if (1.3) holds for i.i.d. copies (Wi, Ji) of (W,J). We write (W,J) ∈
sum-max-DOA(D,A). If cn = 0 in (1.3), we say (W,J) belongs to the strict sum-
max-DOA of (D,A) and write (W,J) ∈ sum-max-DOAS(D,A).

COROLLARY 3.1. Let (D,A) be R+×R-valued with non-degenerate margin-
als. Then (D,A) is sum-max stable if and only if sum-max-DOA(D,A) ̸= ∅.

The next theorem characterizes the sum-max domain of attraction of (D,A)
in the case where A has an α-Fréchet distribution.

THEOREM 3.2. Let (W,J), (Wi, Ji)i∈N be i.i.d. R+ ×R-valued random vec-
tors. Furthermore, assume that (D,A) is an R+×R-valued random vector, where
D is strictly β-stable with 0 < β < 1 and A is α-Fréchet distributed with α > 0.
Then the following are equivalent:
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(a) (W,J) ∈ sum-max-DOAS(D,A).
(b) There exist sequences (an)n∈N, (bn)n∈N with an, bn > 0 such that

n · P(anW,bnJ)
v′−−−→

n→∞
η,

where η is a Lévy measure on (R+ × R, ∨+).
Then (D,A) is sum-max stable and has the Lévy representation [0, 0, η]. We

can use the same sequences (an)n∈N and (bn)n∈N in (a) and (b). Furthermore,
(an) is regularly varying with index−1/β and (bn) is regularly varying with index
−1/α.

REMARK 3.1. Since the left endpoint of the Fréchet distribution is x0 = 0,

the convergence in (b) means n · P(anW,bnJ)(B)
v′−→ η(B) as n→∞ for all B ∈

B(R2
+) with η(∂B) = 0 and dist

(
(0, 0), B

)
> 0.

P r o o f. That assertion (a) implies (b) follows directly with Theorem 2.3. We
assume that for sequences (an)n∈N, (bn)n∈N with an > 0 and bn > 0 we have(

anS(n), bnM(n)
)
====⇒
n→∞

(D,A).(3.2)

We write
µn := P(anW,bnJ) and µ := P(W,J).

Since (Wi, Ji)i∈N are i.i.d. and distributed as (W,J), (3.2) is equivalent to

µ~n
n

w−−−→
n→∞

P(D,A), where P(D,A) ∼ [0, 0, η].

Let F (x) = P{J ¬ x} denote the distribution function of J . In case that the left
endpoint of F is −∞, the left endpoint of F (b−1n x) is equal to −∞ for each n. If
the left endpoint of F is any real number, the left endpoint of F (b−1n x) converges
as n→∞ to x0 = 0. With Theorem 2.3 it then follows that

n · P(anW,bnJ)
v′−−−→

n→∞
η.

That (b) implies (a) follows with Theorem 2.3 as well, if we show that

n · P(anW,bnJ)
v′−−−→

n→∞
η(3.3)

implies that

lim
ϵ↓0

lim
n→∞

n ·
∫

{0¬t<ϵ}
t µn(dt,R) = 0.

Due to W ∈ DOAS(D) this follows as in the proof for the domain of attraction
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theorem for stable distributions (see Theorem 8.2.10 in [7]). That the sequences
(an)n∈N and (bn)n∈N are regularly varying follows by projecting on either compo-
nent. �

The measure η in (b) in Theorem 3.2 has a scaling property as shown next.

COROLLARY 3.2. For the Lévy measure η in (b) of Theorem 3.2 we have for
all B ∈ B(R2

+)

(t · η)(B) = (tEη)(B) for all t > 0(3.4)

with E = diag(1/β, 1/α), where tE = diag(t1/β, t1/α).

P r o o f. Since (an)n∈N ∈ RV(−1/β) and (bn)n∈N ∈ RV(−1/α) in Theorem
3.2, we know that diag(an, bn) ∈ RV(−E) in the sense of Definition 4.2.8 of [7].
Observe that

L(P(
an
⌊nt⌋∑
i=1

Wi,bn
∨⌊nt⌋
i=1 Ji

))(ξ, x) = (
L(P(anWi,bnJi))

⌊nt⌋/n)n(ξ, x)
−−−→
n→∞

L(P(D,A))
t(ξ, x),

so that

P
(an

⌊nt⌋∑
i=1

Wi,bn
∨⌊nt⌋
i=1 Ji)

w−−−→
n→∞

P t
(D,A) ∼ [0, 0, t · η],

where P t
(D,A) is for t > 0 defined as the distribution whose C-L transform is given

by L(P(D,A))
t(ξ, x) and hence has the Lévy representation [0, 0, t · η].

On the other hand, using ana
−1
⌊nt⌋ → t1/β and bnb

−1
⌊nt⌋ → t1/α as n→∞, we

obtain

P
(an

⌊nt⌋∑
i=1

Wi,bn
∨⌊nt⌋
i=1 Ji)

= P(
ana

−1
⌊nt⌋a⌊nt⌋

⌊nt⌋∑
i=1

Wi,bnb
−1
⌊nt⌋b⌊nt⌋

∨⌊nt⌋
i=1 Ji

)
w−−−→

n→∞
PtE(D,A) ∼ [0, 0, tEη].

Because of the uniqueness of the Lévy–Khintchine representation the assertion
follows. �

One of our aims was to describe possible limit distributions that can appear
as limits of the sum and the maximum of i.i.d. random variables. We call these
limit distributions sum-max stable. Due to the harmonic analysis tools in Section 2
we have a method to describe sum-max infinite divisible distributions, namely by
the Lévy–Khintchine representation (see Theorem 2.2). The sum-max stable dis-
tributions are a special case of sum-max infinite divisible distributions and the next
theorem describes the sum-max stable distributions by a representation of its Lévy
measure.
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THEOREM 3.3 (Representation of the Lévy measure). Under the assumptions
of Theorem 3.2, there exist constants C  0,K > 0 and a probability measure
ω ∈ M1(R) with ω(R+) > 0 and

∫∞
0

xαω(dx) <∞ such that the Lévy measure
η of P(D,A) on R2

+ is given by

η(dt, dx) = ϵ0(dt)Cαx−α−1dx+ 1(0,∞)×R+
(t, x)(tβ/αω)(dx)Kβt−β−1dt.

(3.5)

P r o o f. First we define two measures

η1
(
(r,∞)×B1

)
:= η

(
(r,∞)×B1

)
and η2(B2) := η({0} ×B2)

for all Borel sets B1 ∈ B(R+), B2 ∈ B
(
(0,∞)

)
and r > 0. The Lévy measure η

on R2
+\ {(0, 0)} of the limit distribution P(D,A) can then be represented by

η(dt, dx) = ϵ0(dt)η2(dx) + 1(0,∞)×R+
(t, x)η1(dt, dx).

With Corollary 3.2 we get for all t > 0 setting E = diag(1/β, 1/α)

t · η2(B2) = (tEη)({0} ×B2) = η({0} × t−1/αB2) = (t1/αη2)(B2).(3.6)

The measure η2 is a Lévy measure of a probability distribution on the semigroup
(R+,∨). If η2 ̸≡ 0, there exists a distribution function F on R+ such that F (y) =
exp

(
− η2(y,∞)

)
for all y > 0 . From (3.6) it follows that

F (y)t = F (t−1/αy) for all t > 0 and y > 0.

Hence we infer (see the proof of Proposition 0.3. in [10]) that F (y)=exp(−Cy−α)
with C > 0 for all y > 0. So the measure η2 on B

(
(0,∞)

)
is given by

η2(dx) = Cαx−α−1dx.(3.7)

The measure η2 can also be the zero measure and so η2 has the representation (3.7)
with C  0. We still have to show that η1 has the representation

η1(dt, dx) = (tβ/αω)(dx)Kβt−β−1dt.

For B1 ∈ B(R+) and r > 0 we define the set

T (r,B1) := {(t, tβ/αx) : t > r, x ∈ B1}.
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All sets of this form are a ∩-stable generator of B
(
(0,∞) × R+

)
. This follows

because the map (t, x)→ (t, tβ/αx) is a homeomorphism from (0,∞)×R+ onto
itself. Furthermore, we have T (r,B1) = rβET (1, B1) with E = diag(1/β, 1/α)
and so we infer from equation (3.4) that

η1
(
T (r,B1)

)
= η1

(
rβET (1, B1)

)
= (r−βEη1)

(
T (1, B1)

)
= r−β · η1

(
T (1, B1)

)
.

(3.8)

Additionally, we get for any probability measure ω on R and a constant K > 0∫
T (r,B1)

(tβ/αω)(dy)Kβt−β−1dt =
∞∫
r

∫
tβ/αB1

(tβ/αω)(dy)Kβt−β−1dt(3.9)

=
∞∫
r

ω(B1)Kβt−β−1dt = ω(B1)Kr−β.

We define ω(B1) :=
1
K η1

(
T (1, B1)

)
, where K is given by K :=η1

(
T (1,R+)

)
>0,

since η1 ̸≡ 0, because of non-degeneracy and the fact that T (1,R+) is bounded
away from zero. It then follows with (3.8) and (3.9) that

η1
(
T (r,B1)

)
=r−βη1

(
T (1, B1)

)
=ω(B1)r

−βK=
∫

T (r,B1)

(tβ/αω)(dy)Kβt−β−1dt

for all r > 0 and B1 ∈ B(R+). Altogether it follows that the Lévy measure has the
representation (3.5). Since η1 is a Lévy measure on (R+ × R, ∨+), it necessarily
satisfies condition (2.8) so that for all y > 0 we have η1

(
R+ × (y,∞)

)
< ∞.

Using the above established representation of η1, a simple calculation shows that
this is equivalent to

∫∞
0

xα ω(dx) <∞. This concludes the proof. �

With the next theorem we are able to construct random vectors which are
in the sum-max domain of attraction of particular sum-max stable distributions.
A random variable W is in the strict domain of normal attraction of a β-stable
random variable D (shortly: W ∈ DONAS(D)) if one can choose the normalizing
constant an = n−1/β . That means we have

n−1/βS(n) =⇒
n→∞

D.

THEOREM 3.4. Let (Wi)i∈N be a sequence of i.i.d. R+-valued random vari-

ables with W
d
= Wi and W ∈ DONAS(D), where D is strictly β-stable with

0 < β < 1 and E[e−sD] = exp
(
−KΓ(1− β)sβ

)
with K > 0 for s  0. Further,

(J̄i)i∈N are i.i.d. R-valued random variables with

P (J̄i ∈ B2|Wi = t) = (tβ/αω)(B2) ∀B2 ∈ B(R),(3.10)
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where ω is a probability measure on R with ω(R+) > 0 and
∫∞
0

xαω(dx) <∞.
Then the sequence (Wi, J̄i)i∈N fulfils (3.2) with an = n−1/β, bn = n−1/α and a
limit distribution P(D,A) whose Lévy measure η has the form (3.5) with C = 0.

Furthermore, if we choose i.i.d. (J̃i)i∈N with P (J̃i ¬ x) = exp(−Cx−α) with
C > 0 for all x > 0 and such that (Wi, J̄i) and J̃i are independent for all i ∈
N, and we define Ji by Ji := J̃i ∨ J̄i, then (Wi, Ji)i∈N fulfils (3.2) with an =
n−1/β, bn = n−1/α and a limit distribution P(D,A) whose Lévy measure has the
representation (3.5) with C > 0.

P r o o f. We first consider the case C = 0. In view of Theorem 3.2 it is enough
to show that for any continuity set B ∈ B(R2

+) with dist
(
(0, 0), B

)
> 0 we have

n · P(n−1/βW,n−1/αJ̄)(B) −−−→
n→∞

η1(B),(3.11)

where η1 is given by (3.5) with C = 0. First let r > 0 and x  0. Then we get

nP(n−1/βW,n−1/αJ̄)

(
(r,∞)× (x,∞)

)
= n · P (W > n1/βr, J̄ > n1/αx)

= n
∞∫
0

P (J̄ > n1/αx|W = t)1(r,∞)(n
−1/βt)PW (dt)

= n
∞∫
0

(tβ/αω)(n1/αx,∞)1(r,∞)(n
−1/βt)PW (dt)

= n
∞∫
r

(tβ/αω)(x,∞)Pn−1/βW (dt)

−−−→
n→∞

∞∫
r

(tβ/αω)(x,∞)Kβt−β−1dt

= η1
(
(r,∞)× (x,∞)

)
,

where the last step follows from Proposition 1.2.20 in [7], since the set (r,∞) is
bounded away from zero and furthermore the map t→ (tβ/αω)(x,∞) is continu-
ous and bounded. On the other hand, for r  0 and x > 0 we get

nP(n−1/βW,n−1/αJ̄)

(
(r,∞)× (x,∞)

)
= nP (W > n1/βr, J̄ > n1/αx)

= n
∞∫
r

(tβ/αω)(x,∞)Pn−1/βW (dt)

= n
∞∫
0

P
(
n−1/βW > max

(
r, (u/x)−α/β

))
ω(du).
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Observe that

nP
(
n−1/βW > max

(
r, (u/x)−α/β

))
→

∞∫
max(r,(u/x)−α/β)

Kβt−β−1 dt = Kmax
(
r, (u/x)−α/β

)−β
as n→∞. Moreover, since W ∈ DONAS(D), we know that there exists a con-
stant M > 0 such that P (W > t) ¬Mt−β for all t > 0. Hence

nP
(
n−1/βW>max

(
r, (u/x)−α/β

))
¬nP

(
W>n1/β(u/x)−α/β

)
¬Mx−αuα.

Since by assumption
∫∞
0

uα ω(du) <∞, dominated convergence yields

nP(n−1/βW,n−1/αJ̄)

(
(r,∞)× (x,∞)

)
→
∞∫
0

Kmax
(
r, (u/x)−α/β

)−β
ω(du) = η1

(
(r,∞)× (x,∞)

)
as n→∞ again. Hence we have shown that for r, x  0 with max(x, r) > 0 we
have

nP(n−1/βW,n−1/αJ̄)

(
(r,∞)× (x,∞)

)
→ η1

(
(r,∞)× (x,∞)

)
as n→∞,

which implies (3.11). In view of Theorem 3.2 we therefore have(
n−1/β

n∑
i=1

Wi, n
−1/α

n∨
i=1

J̄i
)
====⇒
n→∞

(D, Ā)

and the Lévy measure η1 of (D, Ā) is given by (3.5) with C = 0.
If we now choose a sequence of i.i.d. and α-Fréchet distributed random vari-

ables (J̃i)i∈N with P (J̃i ¬ x) := exp(−Cx−α) which are independent of (Wi, J̄i),
we obtain[(

0, n−1/α
n∨

i=1

J̃i
)
,
(
n−1/β

n∑
i=1

Wi, n
−1/α

n∨
i=1

J̄i
)]

====⇒
n→∞

[(0, Ã), (D, Ā)].

The distribution of (0, Ã) has the Lévy measure η1(dt, dx) = ϵ0(dt)Cαx−α−1.
Since (Wi, J̄i) and J̃i are independent, the random vectors (0, Ã) and (D, Ā) are
also independent. With the continuous mapping theorem applied to the semigroup
operation ∨+ it then follows that(

n−1/β
n∑

i=1

Wi, n
−1/α

n∨
i=1

Ji
)
====⇒
n→∞

(D,A),

where A := Ã ∨ Ā. Hence the Lévy measure of the distribution of (D,A) is η :=
η1 + η2 and thus has the representation in (3.5) with C > 0. �
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The next corollary characterizes the case of asymptotic independence, i.e. D
and A are independent.

COROLLARY 3.3. The random variables A and D in Theorem 3.2 are in-
dependent if and only if in the Lévy representation in (3.5) we have C > 0 and
ω = ϵ0.

P r o o f. If A and D are independent, the Lévy measure has the representation

η(dt, dx) = ϵ0(dt)ΦA(dx) + ϵ0(dx)ΦD(dt),

where ΦA(dx) = Cαx−α−1dx with C > 0, α > 0 and ΦD(dt) = Kβt−β−1dt
with K > 0, 0 < β < 1. With Theorem 3.3 the Lévy measure has the representa-
tion (3.5). The uniqueness of the Lévy measure implies that C > 0 and tβ/αω = ϵ0,
hence we get ω = ϵ0. Conversely, if C > 0 and ω = ϵ0, the Lévy measure is given
by the formula

η(dt, dx) = ϵ0(dt)Cαx−α−1dx+ ϵ0(dx)Kβt−β−1dt.

This implies that the C-L exponent of (D,A) is

Ψ(s, y) =
∫
R2
+

(
1− e−st1[0,y](x)

)
ϵ0(dt)Cαx−α−1dx

+
∫
R2
+

(
1− e−st1[0,y](x)

)
ϵ0(dx)Kβt−β−1dt

= − logFA(y) + ΨD(s),

which implies that A and D are independent. �

The following proposition delivers us a representation for the C-L exponent of
the sum-max stable distributions in the α-Fréchet case.

PROPOSITION 3.1. The C-L exponent of the limit distribution P(D,A)∼ [0, 0, η]
in Theorem 3.3 is given by

Ψ(s, y) = KΓ(1− β)sβ + y−α
(
C +

∞∫
0

e−sty
α/β

ω(t−β/α,∞)Kβt−β−1dt
)(3.12)

for all (s, y) ∈ R2
+, y > 0.

P r o o f. For the proof we look at the two additive parts of the Lévy measure
in (3.5) separately. For the first part we get

Ψ1(s, y) :=
∫
R2
+

(
1− e−st1[0,y](x)

)
ϵ0(dt)Cαx−α−1dx

=
∞∫
0

1(y,∞)Cαx−α−1dx = Cy−α.
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For the second part we compute

Ψ2(s, y) :=
∫
R2
+

(
1− e−st1[0,y](x)

)
(tβ/αω)(dx)Kβt−β−1dt

=
∞∫
0

(1−e−st)Kβt−β−1dt+
∫
R2
+

e−st1(y,∞)(x)(t
β/αω)(dx)Kβt−β−1dt

=KΓ(1− β)sβ +
∞∫
0

e−stω(t−β/αy,∞)Kβt−β−1dt

=KΓ(1− β)sβ + y−α
∞∫
0

e−suy
α/β

ω(u−β/α,∞)Kβu−β−1du.

The C-L exponent Ψ of the limit distribution P(D,A) is Ψ(s, y) = Ψ1(s, y) +
Ψ2(s, y) and this corresponds to (3.12). �

After analysing the α-Fréchet case above, we now consider the general case,
where A in (1.3) can have any extreme value distribution. As before, let x0 ∈
[−∞,∞) denote the left endpoint of FA. Furthermore, let x1 denote the right end-
point of FA.

THEOREM 3.5. Let (W,J), (Wi, Ji)i∈N be i.i.d. R+ ×R valued random vec-
tors. Furthermore, let (D,A) be R+ × R valued with non-degenerate marginals.
Then the following are equivalent:

(a) There exist sequences (an), (bn), (cn) with an, bn > 0 and cn ∈ R such
that

(3.13)
(
anS(n), bn

(
M(n)− cn

))
====⇒
n→∞

(D,A),

that is, (W,J) ∈ sum-max-DOA(D,A).
(b) There exist sequences (an), (bn), (cn) with an, bn > 0 and cn ∈ R such

that

(3.14) n · P(anW,bn(J−cn))
v′−−−→

n→∞
η,

where η is a Lévy measure on (R+ × R, ∨+).
Then (D,A) is sum-max stable and has the Lévy representation [x0, 0, η].

P r o o f. The proof is similar to that of Theorem 3.2 and left to the reader. �

As in the α-Fréchet case it is also possible to describe the Lévy measure η in
(3.14) in the general case.
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THEOREM 3.6. Under the assumptions of Theorem 3.5 and (3.13), there exist
constants C  0,K > 0 and a probability measure ω ∈M1(R) with

ω(R+) > 0 and
∞∫
0

xω(dx) <∞

such that the Lévy measure of (D,A) on R+ × [x0, x1] \ {(0, x0)} is given by

(3.15) η(dt, dx)

= ε0(dt)CΓ(x)−2Γ′(x)dx+1(0,∞)×(x0,x1)(t, x)
(
Γ−1(tβω)

)
(dx)Kβt−β−1dt,

where Γ(x) = 1/
(
− logFA(x)

)
.

P r o o f. Observe that
(
D,Γ(A)

)
is sum-max stable where Γ(A) is 1-Fréchet.

In view of Theorem 3.3 the Lévy measure η̃ of
(
D,Γ(A)

)
has the representation

(3.16) η̃(dt, dx) = ε0(dt)Cx−2dx+ 1(0,∞)×R+
(t, x)(tβω)(dx)Kβt−β−1dt

with constants C  0,K > 0 and ω ∈ M1(R) with ω(R+) > 0 and
∫∞
0

xω(dx)

<∞. Now, let Ψ̃ denote the C-L-exponent of
(
D,Γ(A)

)
. Since

L(P(D,A))(s, y) = L(P(D,Γ(A)))
(
s,Γ(y)

)
= exp

(
− Ψ̃

(
s,Γ(y)

))
,

the C-L exponent of (D,A) is given by Ψ(s, y) = Ψ̃
(
s,Γ(y)

)
. Setting g(t, x) =(

t,Γ−1(x)
)
, we therefore get

Ψ(s, y) = Ψ̃
(
s,Γ(y)

)
=

∫
R+×R+

(
1− e−st1[−∞,Γ(y)](x)

)
η̃(dt, dx)

=
∫

R+×R+

(
1− e−st1([−∞,y]

(
Γ−1(x)

))
η̃(dt, dx)

=
∫

R+×[x0,x1)

(
1− e−st1[−∞,y](x)

)
g(η̃)(dt, dx),

so g(η̃) is the Lévy measure of (D,A). Using (3.16), it is easy to see that g(η̃) has
the form (3.15), and the proof is complete. �

4. EXAMPLES

In this section we present some examples of random vectors (W,J) which are
in the domain of attraction of a sum-max stable distribution and calculate the Lévy
measures of the corresponding limit distributions as well as the C-L exponent,
using the theory developed in Section 3 above. In the following let (Wi, Ji)i∈N be

a sequence of R+ × R-valued random vectors with (Wi, Ji)
d
= (W,J).
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EXAMPLE 4.1. First we consider the case of complete dependence, that is,
Wi = Ji for all i ∈ N. This is, the case which was already studied in [3]. We choose
W to be in the strict normal domain of attraction (meaning that we have an =
n−1/β in (1.3)) of a β-stable random variable D with 0 < β < 1 and E(e−sD) =
exp(−sβ). The Lévy measure of PD is given by

Φβ(dt) = η(dt,R+) =
β

Γ(1− β)
t−β−1dt.(4.1)

We now choose an = bn = n−1/β and α = β to get

n · P (n−1/βW > t, n−1/βJ > y) = n · P
(
n−1/βW > max(t, y)

)
−−−→
n→∞

1

Γ(1− β)
max(t, y)−β

for t, y > 0. Thus we know with Theorem 3.2 that the Lévy measure η is given by
η
(
(t,∞) × (y,∞)

)
= 1

Γ(1−β) max(t, y)−β . If we choose α = β, ω = ϵ1, K =
1

Γ(1−β) and C = 0 in equation (3.5), we get as well

η
(
(t,∞)× (y,∞)

)
=
∞∫
t

∞∫
y

(rϵ1)(dx)
β

Γ(1− β)
r−β−1dr

=
∞∫
0

1(t,∞)(r)1(y,∞)(r)
β

Γ(1− β)
r−β−1dr =

1

Γ(1− β)
max(t, y)−β.

Hence the limit distribution in case of total dependence is uniquely determined by
P(D,A) ∼ [0, 0, η] with

η(dt, dx) = 1(0,∞)×R+
ϵt(dx)Φβ(dt).

Setting α = β, ω = ϵ1, K = 1
Γ(1−β) and C = 0 in (3.12), we obtain the C-L ex-

ponent in this case in the form

Ψ(s, y) = sβ + y−β
(∞∫

1

e−sty
β

Γ(1− β)
t−β−1dt

)
.(4.2)

EXAMPLE 4.2. Again we choose W to be in the strict normal domain of at-
traction of a β-stable random variable D with 0<β<1 and E(e−sD)=exp(−sβ).
Furthermore, let Z be a standard normal distributed random variable, i.e. Z ∼ N0,1

and Z is independent of W . We define J := W 1/2Z, hence the conditional dis-
tribution of J given W = t is N0,t distributed. Define a homeomorphism T :

R+ × R → R+ × R with T (t, x) = (t, t1/2x). Then we get for continuity sets
A ⊆ R2

+ that are bounded away from {(0, 0)}

n · P(n−1/βW,n−1/2βJ)(A) = n · PT (n−1/βW,Z)(A)

= n · (Pn−1/βW ⊗ PZ)
(
T−1(A)

)
−−−→
n→∞

(Φβ ⊗N0,1)
(
T−1(A)

)
,
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where Φβ is again the Lévy measure of D, given by (4.1). Hence the Lévy measure
of (D,A) is given by

η(dt, dx) = T (Φβ ⊗N0,1) (dt, dx) = N0,t(dx)Φβ(dt).

This coincides with (3.5) in Theorem 3.3, if we choose C = 0, α = 2β, ω = N0,1

and K = 1
Γ(1−β) . For the C-L exponent we get with (3.12) in Proposition 3.1

Ψ(s, y) = sβ + y−2β
∞∫
0

e−sty
2N0,t(1,∞)

β

Γ(1− β)
t−β−1dt.(4.3)

EXAMPLE 4.3. Again we choose W to be in the strict normal domain of at-
traction of a β-stable random variable D with 0<β<1 and E(e−sD)=exp(−sβ).
Furthermore, let Z be a γ-Fréchet distributed random variable with distribution
function P (Z ¬ t)=e−C1t−γ

with C1>0 and γ>0, and Z is independent of W .
We define J := W 1/γZ. Let T : R+ ×R→ R+ ×R be the homeomorphism with
T (t, x) = (t, t1/γx). We then have for all continuity sets B ⊆ R2

+ bounded away
from {(0, 0)}

n · P(n−1/βW,n−1/(βγ)J)(B) = n · PT (n−1/βW,Z)(B)

= n · P(n−1/βW,Z)

(
T−1(B)

)
= n · (Pn−1/βW ⊗ PZ)

(
T−1(B)

)
−−−→
n→∞

(Φβ ⊗ PZ)
(
T−1(B)

)
= T (Φβ ⊗ PZ)(B),

where Φβ denotes the Lévy measure of PD. Consequently, the Lévy measure of
(D,A) is given by

η(dt, dx) = (t1/γPZ)(dx)
β

Γ(1− β)
t−β−1dt.

This coincides with Theorem 3.3 if we let ω = PZ , α = βγ, K = 1/Γ(1− β) and
C = 0 in (3.5). By Theorem 3.2 we know that(

n−1/βS(n), n−1/βγM(n)
)
====⇒
n→∞

(D,A),

where D is strictly stable with 0 < β < 1, and A is α = βγ-Fréchet distributed.
The condition

∫∞
0

xαω(dx) <∞ is fulfilled then due to 0 < β < 1 is α = βγ < γ
and ω is γ-Fréchet distributed. This means that (W,J) is in the sum-max do-
main of attraction of (D,A). Using Proposition 3.1, we compute the C-L exponent
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with K := 1/Γ(1− β):

Ψ(s, y)

= sβ + y−βγ
∞∫
0

e−sty
γ
ω(t−1/γ ,∞)βKt−β−1dt

= sβ + y−βγ
∞∫
0

e−sty
γ
(1− e−C1t)βKt−β−1dt

= sβ + y−βγ
(∞∫

0

(e−sty
γ − 1)βKt−β−1dt+

∞∫
0

(1− e−t(sy
γ+C1))βKt−β−1dt

)
= sβ + y−βγ

(
− (syγ)β + (syγ + C1)

β
)

= y−βγ(syγ + C1)
β

= (s+ C1y
−γ)β.

5. APPENDIX

In this section we give some of the technical proofs of Section 2 above.

P r o o f o f L e m m a 2.1. First we assume that φ is the C-L transform of a
probability measure µ ∈M1(R+ × R). The map

h : (R+ × R, ∨+)→ Ŝ, (t, x)→ e−t ·1[−∞, · ](x)

is an injective homomorphism, where Ŝ is the set of all bounded semicharacters on
S = (R+ × R, ∧+) in (2.2). We get

φ(s, y) =
∫
R+

∫
R
e−st1[−∞,y](x)µ(dt, dx)

=
∫̂
S

ρ(s, y)h(µ)(dρ) for all (s, y) ∈ R+ × R.

Theorem 4.2.5 in [2] implies that φ is positive semidefinite. It is obvious that φ is
also bounded and normalized. If we put s = 0, we get

φ(0, y) = µ(R+ × [−∞, y])

for all y ∈ R and hence the distribution function of a probability measure on R.
Otherwise, if we put y =∞, we get

φ(s,∞) =
∫
R+

e−stµ(dt,R)

for all s ∈ R+, hence the Laplace transform of a probability measure on R+.
Conversely, φ is now a positive semidefinite, bounded and normalized func-

tion on (R+ × R, ∧+). Theorem 4.2.8 in [2] implies that there exists exactly one
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probability measure µ on the set of bounded semicharacters Ŝ of the semigroup
S = (R+ × R, ∧+), such that

φ(s, y) =
∫̂
S

ρ(s, y)µ(dρ) for all (s, y) ∈ R+ × R.

We divide Ŝ into (2.2) in the two disjoint subsets

Ŝ
′
= {e−t·1[x,∞](·),x ∈ [−∞,∞], t ∈ [0,∞]}

and
Ŝ
′′
= {e−t·1(x,∞](·),x ∈ [−∞,∞), t ∈ [0,∞]}.

We define the isomorphisms h1 : R+ × R→ Ŝ
′

and h2 : R+ × R→ Ŝ
′′

by

h1(t, x) := e−t ·1[x,∞](·) and h2(t, x) := e−t ·1(x,∞](·).

Hence we get

φ(s, y)

=
∫

[0,∞]

∫
R
e−st1[−∞,y](x)h

−1
1 (µ)(dt, dx)+

∫
[0,∞]

∫
R
e−st1[−∞,y)(x)h

−1
2 (µ)(dt, dx)

=
∫
R
1[−∞,y](x)

{ ∫
[0,∞)

e−sth−11 (µ)(dt, dx) + h−11 (µ)({∞}, dx) · 1{0}(s)
}

+
∫
R
1[−∞,y)(x)

{ ∫
[0,∞)

e−sth−12 (µ)(dt, dx) + h−12 (µ)({∞}, dx) · 1{0}(s)
}
.

Due to the right continuity of φ(0, y) in y ∈ R there are only two possible cases:
either h−12 (µ)([0,∞]× {y}) = 0 for all y ∈ R or h−12 (µ)([0,∞]× ·) ≡ 0. In the
first case we choose µ̃ := h−11 (µ) + h−12 (µ). In the second case the last integral
disappears and we choose µ̃ := h−11 (µ). Since φ(s,∞) is continuous in s, it fol-
lows that h−1i (µ)({∞}, dx) = 0 for i = 1, 2. Due to the fact that φ is normalized,
µ is a probability measure. Hence we get the desired form in (2.4). �

P r o o f o f L e m m a 2.2. We write

L(µn)(sn, yn) =
∫

R+×R
e−snt1[−∞,yn](x)µn(dt, dx)

=
∫
R+

e−sntµn(dt, [−∞, yn])

= L(µ̃n)(sn),
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where we define the measures µ̃n(dt) :=µn(dt, [−∞, yn]) and µ̃ :=µ(dt, [−∞, y]).
The assertion follows, if we can show that

µ̃n
w−−−→

n→∞
µ̃.(5.1)

Then due to the uniform convergence of the Laplace transform it follows that

L(µ̃n)(sn) −−−→
n→∞

L(µ̃)(s).

So it remains to show (5.1). Because µn
w−−→ µ, we know that

µn(A1 ×A2) −−−→
n→∞

µ(A1 ×A2)(5.2)

for A1 ×A2 ∈ B(R+ × R) with µ
(
∂(A1 ×A2)

)
= 0. Hence

µn(B × [−∞, y]) −−−→
n→∞

µ(B × [−∞, y])(5.3)

for all B ∈ B(R+) with µ(∂B × [−∞, y]) = 0, then (5.3) is fulfilled for all sets
B × [−∞, y] with µ

(
∂(B × [−∞, y])

)
= 0. We have

∂(B × [−∞, y]) = ∂B × [−∞, y] ∪B × {y},

and because y is a point of continuity of the function µ(R+ × [−∞, y]), it follows
from µ(∂B × [−∞, y]) = 0 that µ

(
∂(B × [−∞, y])

)
= 0. For a set B ∈ B(R+),

µn(B × [−∞, y]) is an increasing, right continuous function which is continuous
in y, and so an (improper) distribution function. But then it follows that

µn(B × [−∞, yn]) −−−−→
n→∞

µ(B × [−∞, y])

if yn → y for n→∞, and (5.1) holds true. �

P r o o f o f L e m m a 2.3. From Theorem 2.1 we know that L(µn)(s, y)→
L(µ)(s, y) as n→∞ in all (s, y) ∈ R+ ×R but countably many y ∈ R. Since the
probability measures µn are ∨+-infinite divisible, there exists a measure µm,n for
all n,m  1 such that µn = µ~m

m,n. Because of Proposition 2.1 (b) and (c) this is
equivalent to

L(µn)(s, y) = L(µm,n)
m(s, y)

for all (s, y) ∈ R+ × R. It then follows that

L(µm,n)(s, y) = L(µn)
1/m(s, y) −−−−→

n→∞

(
L(µ)

)1/m
(s, y)

in all (s, y) ∈ R+ × R but countably many y ∈ R. Since

lim
s↓0

(
L(µ)

)1/m
(s,∞) =

(
lim
s↓0

∞∫
0

e−stµ(dt,R)
)1/m

=
(
µ(R+ × R)

)1/m
= 1,

it follows from Theorem 2.1 that there exists a measure ν ∈ M1(R+ × R) with
L(ν) =

(
L(µ)

)1/m. Hence µ = ν~m, so µ is ∨+-infinite divisible. �
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P r o o f o f L e m m a 2.4. In view of Lemma 2.3 we already know that µ
is ∨+-infinite divisible. By Theorem 2.2 and Remark 2.1 we know that the C-L
exponent has the form

Ψ(s, y) = a · s+
∫
R+

∫
R

(
1− e−st · 1[−∞,y](x)

)
η(dt, dx) ∀(s, y) ∈ R+ × (x0,∞].

First we define for any h1 > 0 and any h2 > x0 a function Ψ∗ on R+ × (x0,∞] as
follows:

Ψ∗(s, y) = Ψ(s+ h1, y ∧ h2)−Ψ(s, y).

For Ψ∗ we get for all (s, y) ∈ R+ × (x0,∞]

Ψ∗(s, y) = ah1 +
∫

R+×R

(
e−st1[−∞,y](x)− e−(s+h1)t1[−∞,y∧h2](x)

)
η(dt, dx)

= ah1 +
∫

R+×R
e−st1[−∞,y](x)

(
1− e−h1t1[−∞,h2](x)

)
η(dt, dx)

= ah1 +
∫

R+×R
e−st1[−∞,y](x)K(t, x)η(dt, dx),

where K(t, x) := 1 − e−h1t1[−∞,h2](x). By the Taylor expansion we get for all
x ¬ h2

K(t, x) = h1t+ o(t) as t→ 0.

Now we define a measure M on R+ × [x0,∞] by

M(dt, dx) := K(t, x)η(dt, dx) on R+ × [x0,∞]\ {(0, x0)}

and

M
(
{(0, x0)}

)
:= ah1.

This is a finite measure, because for 0 < ϵ < 1 we get

M(R+ × [x0,∞])

= ah1 +
∫
tϵ

∫
x0¬x¬h2

(1− e−h1t)η(dt, dx) +
∫

0<t<ϵ

∫
x0¬x¬h2

(1− e−h1t)η(dt, dx)

+
∫
tϵ

∫
x>h2

1 η(dt, dx) +
∫

0<t<ϵ

∫
x>h2

1 η(dt, dx) <∞.

The first integral is finite, because η([ϵ,∞] × [x0,∞]) <∞. The second integral
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is finite because of the Taylor expansion of K and due to the integrability condition
of η we have

∫
t<ϵ

t η(dt, [x0,∞]) <∞. The third integral is finite, since we have
η
(
[ϵ,∞) × (h2,∞]

)
< ∞, and the last integral due to η

(
R+ × (h2,∞]

)
< ∞.

Hence the function Ψ∗ is the C-L transform of the finite measure M and therefore,
due to Proposition 2.1 (c), M is uniquely determined by Ψ∗ and hence also by Ψ.

Now we show (b). The measures µn ∼ [xn, an, ηn] are ∨+-infinite divisible
measures with µn

w−−→ µ as n→∞ and µ ∼ [x0, a, η]. Define Ψ∗n and Mn as Ψ∗

and M above, that is,

Mn(dt, dx) = K(t, x)ηn(dt, dx)(5.4)

and

Ψ∗n(s, y) = anh1 +
∫

R+×R
e−st1[−∞,y](x)

(
1− e−h1t1[−∞,h2](x)

)
ηn(dt, dx),

(5.5)

where n is in the case xn −→ x0 chosen large enough to ensure xn ¬ h2. In view of
the Continuity Theorem it follows that Ψn(s, y)→ Ψ(s, y) in all (s, y) ∈ R+ ×R
but countably many y > x0, and hence also Ψ∗n(s, y)→ Ψ∗(s, y). Because Ψ∗ is
the C-L transform of M , we infer by Theorem 2.1 that

Mn
w−−−−→

n→∞
M.

Now we choose S ∈ B(R+ × [h2,∞]) with dist
(
(0, h2), S

)
> 0 and η(∂S) = 0.

Then M(∂S) = 0 as well and it follows that

Mn(S) =
∫
S

K(t, x)ηn(dt, dx) −−−→
n→∞

M(S) =
∫
S

K(t, x)η(dt, dx).

Due to K(t, x) > 0, if t>0 or x>h2 it follows that ηn(S) −→ η(S) as n → ∞.

Since h2 > x0 was chosen arbitrarily, we obtain ηn
v′−→ η, i.e. (b) is fulfilled. Be-

cause µn
w−→ µ implies Ψn(s, y) → Ψ(s, y) as n → ∞ for all (s, y) ∈ R+ × R

where Ψ is continuous, we have Ψn(s,∞) −→ Ψ(s,∞) and it follows that an −→ a
as n→∞. Hence (a) is also fulfilled. It remains to show (c). For all but countably
many y > x0 we have

Ψ(s, y) = lim
n→∞

[
ans+

∫
R+×R

(
1− e−st1[−∞,y](x)

)
ηn(dt, dx)

]
= as+ lim

n→∞

[ ∫
R+×R

(1− e−st)ηn(dt, dx) +
∫

R+×R
e−st1(y,∞)(x)ηn(dt, dx)

]
.
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We divide the first integral into two parts and get

Ψ(s, y)

= as+ lim
ϵ↓0

lim
n→∞

[ ∫
{t:0¬t<ϵ}

(1− e−st)ηn(dt,R) +
∫

{t:tϵ}
(1− e−st)ηn(dt,R)

]
+

∫
R+×R

e−st1(y,∞)(x)η(dt, dx)

= as+ lim
ϵ↓0

lim
n→∞

[ ∫
{t:0¬t<ϵ}

(1− e−st)ηn(dt,R)
]
+

∫
R+

(1− e−st)η(dt,R)

+
∫

R+×R
e−st1(y,∞)(x)η(dt, dx)

= s
(
a+lim

ϵ↓0
lim
n→∞

[ ∫
{t:0¬t<ϵ}

t ηn(dt,R)
])
+

∫
R+×R

(
1−e−st1[−∞,y](x)

)
η(dt, dx).

Hence (c) also holds.
Conversely, we assume that (a)–(c) are fulfilled. It then follows for all y > x0

with the same decomposition:

lim
n→∞

Ψn(s, y) = as+ lim
ϵ↓0

lim
n→∞

[ ∫
{t:0<t<ϵ}

st ηn(dt,R)
]

+
∫

R+×R

(
1− e−st1[−∞,y](x)

)
η(dt, dx)

= Ψ(s, y).

Hence
L(µn)(s, y) = e−Ψn(s,y) −−−→

n→∞
e−Ψ(s,y) = L(µ)(s, y)

for at most countably many y > x0, and as a consequence it follows from Theo-
rem 2.1 that

µn
w−−−→

n→∞
µ

with µ ∼ [x0, a, η]. �

P r o o f o f L e m m a 2.5. This probability measure is the analogue to the
compound Poisson distribution induced by the convolution ~ which itself is in-
duced by the semigroup operation ∨+ . Consequently, as for the usual Poisson dis-
tribution (see [7], Corollary 3.1.8), it follows that the C-L transform is given by
exp

(
− c[1− L(µ)(s, y)]

)
for all y  x0:

L
(
Π(c, µ)

)
(s, y) = e−c

∞∑
k=0

ck

k!

(
L(µ)(s, y)

)k
= exp

(
− c

(
1− L(µ)(s, y)

))
for all y  x0.
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For the C-L exponent it then follows that

Ψ(s, y) = c
(
1− L(µ)(s, y)

)
=

∫
R+×R

(
1− e−st1[−∞,y](x)

)
(c · µ)(dt, dx).

The measure Π(c, µ) has the same left endpoint as the measure µ and since µ~0 =
ε(0,x0), it is obvious that L

(
Π(c, µ)

)
(s, y)>0 for all (s, y)∈R+×[x0,∞]. Hence,

by Theorem 2.2 the measure Π(c, µ) is ∨+-infinite divisible with Lévy representa-
tion Π(c, µ) ∼ [x0, 0, c · µ]. �

P r o o f o f L e m m a 2.6. This also follows along the same lines as for the
compound Poisson distribution. With Theorem 2.1 and Proposition 2.1(b),
µ~n
n

w−−→ ν as n→∞ if and only if

L(µn)
n(s, y)→ L(ν)(s, y) as n→∞

in all (s, y) ∈ R+ × R but countably many y > x0. Since L(ν)(s, y) > 0 for all
y > x0, this is equivalent to

n · logL(µn)(s, y) −→ logL(ν)(s, y) as n→∞

in all but countably many y > x0. Because L(µn)(s, y) → 1 as n → ∞ for all
y > x0 and log z ∼ z − 1 as z → 1, this is equivalent to

n ·
(
L(µn)(s, y)− 1

)
−→ logL(ν)(s, y) as n→∞

in all but countably many y > x0. And this is equivalent to

exp
(
n [L(µn)(s, y)− 1]

)
−→ L(ν)(s, y) as n→∞

in all but countably many y > x0, and because of Theorem 2.1 and Lemma 2.5,
this is equivalent to

Π(n, µn)
w−→ ν as n→∞. �
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