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Abstract. Let ∆k be the Dunkl Laplacian on Rd associated with a
reflection group W and a multiplicity function k. The purpose of this paper
is to establish the existence and the uniqueness of a positive solution on the
unit ball B of Rd to the following boundary value problem:

∆ku = φ(u) in B and u = f on ∂B.

We distinguish two cases of nonnegative perturbation φ: trivial and
nontrivial.
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1. INTRODUCTION

The Dunkl Laplacian is the sum of a second order differential operator and a
difference term associated with a multiplicity function k and a reflection group W .
An important motivation to study the Dunkl Laplacian rises from its relevance for
the analysis of certain exactly solvable models of mechanics, namely the Calogero–
Moser–Sutherland type (see [5], [13], [19]). Since its introduction by C. F. Dunkl
in [6], the analysis of Dunkl theory has been the subject of many articles and it
has deep and fruitful interactions with various mathematics fields, namely Fourier
analysis and special functions [15], [28], [29], algebra (double affine Hecke al-
gebras [17]) and probability theory (Feller processes with jumps [11], [4]). The
Dunkl Laplacian generates a positive strongly continuous contraction semigroup
[25]. This fact gives rise to a Hunt process, called a Dunkl process, and so to a
corresponding family of harmonic kernels (HV )V . If the multiplicity function k is
identically zero, then the operator ∆k reduces to the classical Laplace operator ∆,
and so the Dunkl process is the Brownian motion and HV (x, ·) is the classical har-
monic measure relative to V and x. If k is not trivial, then paths of the Dunkl pro-



250 M. Ben Chrouda et al.

cess are discontinuous (see [11]), and thus it follows from the general theory of bal-
ayage spaces [1] that ∆k generates a balyage space and not a harmonic space. This
yields that for every bounded open set V and every x ∈ V the harmonic measure
HV (x, ·) is not necessarily supported by the Euclidean boundary ∂V of V , as in
the classical setting k = 0, but it may live on the entire complement V c := Rd\V .

Throughout this paper we assume that k is strictly positive. Our first purpose
is to show that, for every bounded open subset V of Rd and every x ∈ V , the
harmonic measure HV (x, ·) is supported by a compact set of V c and not by the
whole V c. In the particular case where V is invariant under the reflection group W
(e.g. V is an open ball of Rd centered at the origin), we shall prove that the support
of HV (x, ·) is contained in ∂V . This fact allows us to investigate, for an open ball
B of center zero, the boundary value problem

(1.1)

{
∆ku = φ(u) in B,
u = f on ∂B,

where f is a nonnegative continuous function on ∂B. We impose that φ : [0,∞[→
[0,∞[ is nondecreasing, continuous and satisfies φ(0) = 0. Our main goal is to
establish the existence and the uniqueness of a positive solution to problem (1.1).
We distinguish two cases of perturbation φ (trivial and nontrivial). In the first step,
we consider φ = 0 and we prove that the function HBf defined on B by

HBf(x) =
∫
∂B

f(y)HB(x, dy)

is the unique continuous extension u of f on B satisfying ∆ku = 0 in B. That is,
HBf is the unique solution of (1.1) for φ = 0. Assuming that φ is not trivial, we
show that u satisfies (1.1) if and only if

u+Gk
B

(
φ(u)

)
= HBf,

where Gk
B is the Green operator on B. Then, by a compactness argument of Gk

B ,
we prove that the map u 7→ HBf −Gk

B

(
φ(u)

)
admits one and only one fixed point

u ∈ C(B), and so u is the unique solution of problem (1.1).

2. NOTATION AND PRELIMINARIES

For every subset F of Rd, let B(F ) be the set of all Borel-measurable func-
tions on F and let 1F be the indicator function of F . Let C(F ) be the set of all
continuous real-valued functions on F , Cn(F ) be the class of all functions that are
n times continuously differentiable on F , and C0(F ) be the set of all continuous
functions on F such that u = 0 on ∂F, which means that limx→z u(x) = 0 for all
z ∈ ∂F and limx→∞ u(x) = 0 if F is unbounded. We denote by C∞c (F ) the set
of all infinitely differentiable functions on F with compact support. If G is a set
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of numerical functions, then G+ (respectively Gb) will denote the class of all func-
tions in G which are nonnegative (respectively bounded). The uniform norm will
be denoted by ∥ · ∥.

For every α ∈ Rd \ {0}, let Hα be the hyperplane orthogonal to α and let σα
be the reflection in Hα, i.e.,

σα(x) := x− 2
⟨α, x⟩
|α|2

α,

where ⟨·, ·⟩ denotes the usual inner product on Rd and | · | is the associated norm.
A finite subset R of Rd \ {0} is called a root system if R ∩ R · α = {±α} and
σα(R) = R for all α ∈ R. For a given root system R, the reflection σα, α ∈ R,
generates a finite group W called a reflection group associated with R. A function
k : R→ R+ is called a multiplicity function if it satisfies k(σαβ) = k(β) for every
α, β ∈ R. Throughout this paper we fix a root system R and a multiplicity func-
tion k. We consider the differential-difference operators Ti, 1 6 i 6 d, defined in
[7] for every u ∈ C1(Rd) by

Tiu(x) =
∂u

∂xi
(x) +

1

2

∑
α∈R

k(α)αi
u(x)− u(σαx)
⟨α, x⟩

,

and called Dunkl operators in the literature. The Dunkl Laplacian ∆k is the sum
of squares of Dunkl operators:

∆k :=
d∑

i=1

T 2
i .

It is given explicitly, for u ∈ C2(Rd), by

(2.1) ∆ku(x) = ∆u(x) +
∑
α∈R

k(α)

(
⟨∇u(x), α⟩
⟨α, x⟩

− |α|
2

2

u(x)− u
(
σα(x)

)
⟨α, x⟩2

)
.

Likewise the classical Laplace operator ∆, the Dunkl Laplacian has the following
symmetry property: For u ∈ C2(Rd) and v ∈ C2

c (Rd),

(2.2)
∫
Rd

∆ku(x)v(x)wk(x) dx =
∫
Rd

u(x)∆kv(x)wk(x) dx,

where wk is the homogeneous weight function defined on Rd by

wk(x) =
∏
α∈R
|⟨x, α⟩|k(α).

A fundamental result in Dunkl theory is the existence of an intertwining operator
Vk : C∞(Rd)→C∞(Rd) between the classical Laplacian ∆ and Dunkl Laplacian,



252 M. Ben Chrouda et al.

i.e., ∆kVk = Vk∆. We refer to [8], [26], [28] for more details about the intertwin-
ing operator. By means of Vk, there exists a counterpart of the usual exponential
function, called a Dunkl kernel Ek(·, ·), which is defined for every y ∈ Cd and
x ∈ Rd by

Ek(x, y) = Vk(e
⟨·,y⟩)(x).

It is clear from (2.1) that if k vanishes identically, then the Dunkl Laplacian reduces
to the classical Laplacian ∆. In this case the intertwining operator Vk is the identity
operator, and so Ek reduces to the classical exponential function. Notice that Ek

is symmetric and positive on Rd × Rd and satisfies Ek(λy, x) = Ek(y, λx) = for
every λ ∈ C.

In all this paper we assume that

m := d+
∑
α∈R

k(α) > 2.

Let pkt be the Dunkl heat kernel, introduced in [25], defined for every t > 0 and
every x, y ∈ Rd by

(2.3) pkt (x, y) =
c2k
2m

∫
Rd

e−t|ξ|
2
Ek(−ix, ξ)Ek(iy, ξ)wk(ξ)dξ,

where
ck =

( ∫
Rd

e−|y|
2
wk(y) dy

)−1
.

For every x, y ∈ Rd, pkt (x, y) > 0, pkt (x, y) = pkt (y, x) and

(2.4) pkt (x, y) 6
ck

(4t)m/2
exp

(
− (|x| − |y|)2

4t

)
.

Also, for every x ∈ Rd, the function (t, y) 7→ pkt (x, y) solves the generalized heat
equation ∂tu−∆ku = 0 on ]0,∞[×Rd. More precisely, the following holds:

(2.5)
∂

∂t
pkt (x, y) = ∆k

(
pkt (·, y)

)
(x) = ∆k

(
pkt (x, ·)

)
(y).

For every f ∈ C0(Rd) and t > 0 let

P k
t f(x) =

∫
Rd

pkt (x, y)f(y)wk(y) dy, x ∈ Rd.

Then (P k
t )t>0 forms a positive strongly continuous contraction semigroup on

C0(Rd) of generator ∆k. This fact yields the existence of a Hunt process (Xt, P
x)

(see [2], Theorem I.9.4), called the Dunkl process, with state space Rd and transi-
tion kernel

P k
t (x, dy) = pkt (x, y)wk(y) dy.
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3. HARMONIC KERNELS

For every bounded open subset D of Rd, we denote by τD the first exit time
from D by (Xt), i.e.,

τD = inf{t > 0;Xt /∈ D}.

LEMMA 3.1. Let D be a bounded open set. Then, for every x ∈ D,

P x (0 < τD <∞) = 1.

P r o o f. Let x ∈ D. Since the Dunkl process has right continuous paths, we
immediately conclude that P x(0 < τD) = 1. Let r > 0 be such that D ⊂ Br, the
ball of center zero and radius r. Clearly,

Ex[τD] 6 Ex[τBr ] = Ex
[ τBr∫

0

1Br(Xt) dt
]

6
∞∫
0

Ex[1Br(Xt)]dt =
∞∫
0

∫
Br

pkt (x, y)wk(y) dy dt.

So, to prove that P x(τD <∞) = 1, it will be sufficient to show that

∞∫
0

∫
Br

pkt (x, y)wk(y) dy dt <∞.

Using spherical coordinates and applying the fact that the function wk is homoge-
neous of degree m − d, we infer from the integral representation (2.3) of pkt that,
for every y ∈ Rd,

pkt (x, y) =
c2k
2m

∞∫
0

∫
Sd−1

e−ts
2
Ek(−ix, sξ)Ek(iy, sξ)wk(ξ)s

m−1σ(dξ)ds,

where σ denotes the surface area measure on the unit sphere Sd−1 of Rd. Therefore,

∞∫
0

pkt (x, y)dt =
c2k
2m

∞∫
0

∫
Sd−1

Ek(−ix, sξ)Ek(iy, sξ)wk(ξ)s
m−3σ(dξ)ds.

Using again spherical coordinates and then applying Fubini’s theorem, we get

∞∫
0

∫
Br

pkt (x, y)wk(y) dy dt =
r∫
0

∫
Sd−1

(∞∫
0

pkt (x, uy)dt
)
wk(y)u

m−1σ(dy)du

=
c2k
2m

r∫
0

∞∫
0

∫
Sd−1

( ∫
Sd−1

Ek(iuy, sξ)wk(y)σ(dy)
)

× Ek(−ix, sξ)wk(ξ)s
m−3um−1σ(dξ)dsdu.
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On the other hand, we recall from [27] that∫
Sd−1

Ek(iz, y)wk(y)σ(dy) = 2m/2c−1k

Jm/2−1(|z|)
|z|m/2−1 ,

where Jm/2−1 is the Bessel function of index m/2− 1 given by

Jm/2−1(z) :=

(
z

2

)m/2−1 ∞∑
n=0

(−1)nz2n

4nn!Γ(n+m/2)
.

Hence
∞∫
0

∫
Br

pkt (x, y)wk(y) dy dt

=
r∫
0

um−1

(u|x|)m/2−1

(∞∫
0

Jm/2−1(s|x|)Jm/2−1(us)s
−1ds

)
du,

and so
∞∫
0

∫
Br

pkt (x, y)wk(y) dy dt =
1

m− 2

r∫
0

um−1
(
max(u, |x|)

)2−m
du(3.1)

=
1

m− 2

(
|x|2

m
+
r2 − |x|2

2

)
.

To get (3.1), one should use a formula from [21], p. 100. �

For every bounded open set D, we define

WD :=
∪

w∈W
w(D) and ΓD := WD \D.

That is, WD is the smallest open bounded set containingD which is invariant under
the reflection groupW . In the following theorem, we show that if the process starts
from x ∈ D then, at the first exit time from D, it should be in the compact ΓD.

THEOREM 3.1. LetD be a bounded open subset of Rd. Then, for every x∈D,

(3.2) P x (XτD ∈ ΓD) = 1.

In particular, if D is W -invariant, i.e., WD = D, then ΓD = ∂D, and therefore

P x (XτD ∈ ∂D) = 1.

P r o o f. Let x ∈ D and consider the function z defined for every y, z ∈ Rd

by z(y, z) = 0 if z ∈ {σαy;α ∈ R} and z(y, z) = 1 otherwise. Let

Yt :=
∑
s<t

1{Xs− ̸=Xs}z(Xs− , Xs), t > 0.
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It follows from Proposition 3.2 in [11] that for every t > 0, P x(Yt = 0) = 1, and
consequently

P x
(
1{Xs− ̸=Xs}z(Xs− , Xs) = 0; ∀s > 0

)
= 1.

Then, since P x(0 < τD <∞) = 1, we deduce that

P x
(
1{X

τ−
D
̸=XτD

}z(Xτ−D
, XτD) = 0

)
= 1.

On the other hand, since Xτ−D
∈ D on {0 < τD <∞}, we have

{XτD ̸∈ ΓD, 0 < τD <∞} ⊂ {1{X
τ−
D
̸=XτD

}z(Xτ−D
, XτD) = 1}.

This completes the proof. �

For every bounded open setD and every x ∈ Rd, letHD(x, ·) be the harmonic
measure relative to x and D, i.e., for every Borel set A,

HD(x,A) := P x(XτD ∈ A).

For every f ∈ Bb(Rd), let HDf be the function defined on Rd by

HDf(x) =
∫
f(y)HD(x, dy).

Since, for x ∈ D, the harmonic measure HD(x, ·) is supported by the compact set
ΓD, it will be convenient to put again

(3.3) HDf(x) =
∫
f(y)HD(x, dy), x ∈ D,

for every f ∈ Bb(ΓD).
Let ∗H+(Rd) denote the set of all nonnegative lower semicontinuous functions

f on Rd such that

HDf 6 f for every bounded open set D.

Because (Rd, P x) is a Hunt process, it follows from Theorem IV.8.1 in [1] that(
Rd,∗H+(Rd)

)
is a balayage space. Hence, it follows from the general theory of

balayage spaces that for every f ∈ Bb(ΓD)

(3.4) HDf ∈ C(D)

and

(3.5) HVHDf = HDf on V for all open sets V such that V ⊂ D.
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Furthermore, a function f ∈ B+(Rd) belongs to ∗H+(Rd) if and only if

sup
t>0

P k
t f = f.

Let us now introduce the Green function Gk of the Dunkl Laplacian which
will play an important role in our approach. It is defined for every x, y ∈ Rd by

Gk(x, y) =
∞∫
0

pkt (x, y)dt.

For every y ∈ Rd, the function Gk
y := Gk(·, y) ∈ ∗H+(Rd). Indeed, by the semi-

group property,

P k
t G

k
y(x) =

∞∫
t

pks(x, y)ds 6 Gk(x, y).

This implies that the map t 7→ P k
t G

k
y is decreasing on ]0,∞[, and so

sup
t>0

P k
t G

k
y = lim

t→0
P k
t G

k
y = Gk

y .

Hence Gk
y ∈∗H+(Rd), which means that for every bounded open set D,

(3.6)
∫
Gk(z, y)HD(x, dz) 6 Gk(x, y).

Furthermore, it is obvious that Gk is positive and symmetric on Rd × Rd. There-
fore, it follows from Theorem VI.1.16 in [2] that for every bounded open setD and
every x, y ∈ Rd,

(3.7)
∫
Gk(x, z)HD(y, dz) =

∫
Gk(y, z)HD(x, dz).

4. DIRICHLET PROBLEM

LetB be an open ball of Rd of center zero and radius r > 0. We first introduce
the following three kinds of harmonicity on B:

A continuous function h : B → R is said to be

(i) ∆k-harmonic on B if h ∈ C2(B) and ∆kh(x) = 0 for every x ∈ B.
(ii) X-harmonic onB ifHDh(x) = h(x) for every bounded open set D such

that D ⊂ B and every x ∈ D.
(iii) ∆k-harmonic on B in the distributional sense if

⟨h,∆kφ⟩k :=
∫
B

h(x)∆kφ(x)wk(x)dx = 0 for all φ ∈ C∞c (B).



Boundary value problems for the Dunkl Laplacian 257

LEMMA 4.1. Let f ∈ C2
c (Rd). For every x ∈ Rd,

(4.1)
∫
Rd

Gk(x, y)∆kf(y)wk(y)dy = −f(x).

In particular, for every bounded open set D and every x ∈ D,

(4.2) HDf(x)− f(x) = Ex
[ τD∫

0

∆kf(Xs)ds
]
.

P r o o f. Let x ∈ Rd. Using Fubini’s theorem and formulas (2.2) and (2.5),
we have∫

Rd

Gk(x, y)∆kf(y)wk(y) dy =
∞∫
0

∫
Rd

pkt (x, y)∆kf(y)wk(y) dy dt

=
∞∫
0

∫
Rd

∆k

(
pkt (x, ·)

)
(y)f(y)wk(y) dy dt

=
∞∫
0

∫
Rd

∆k

(
pkt (·, y)

)
(x)f(y)wk(y) dy dt

= lim
t→∞

P k
t f(x)− lim

t→0
P k
t f(x) = −f(x).

To get limt→∞ P
k
t f(x) = 0, we only use (2.4) and the fact that f has compact

support. Formula (4.2) follows from (4.1) and the strong Markov property. In fact,
let D be a bounded open set and let x ∈ D. Then

− f(x) =
∫
Gk(x, y)∆kf(y)wk(y)dy =

∞∫
0

∫
pkt (x, y)∆kf(y)wk(y)dydt

= Ex
[∞∫

0

∆kf(Xs)ds
]
= Ex

[ τD∫
0

∆kf(Xs)ds
]
+ Ex

[ ∞∫
τD

∆kf(Xs)ds
]

= Ex
[ τD∫

0

∆kf(Xs)ds
]
+ Ex

[
EXτD

[∞∫
0

∆kf(Xs)ds
]]

= Ex
[ τD∫

0

∆kf(Xs)ds
]
+ Ex [−f(XτD)] = Ex

[ τD∫
0

∆kf(Xs)ds
]
−HDf(x). �

LEMMA 4.2. For every bounded open set D and for every φ,ψ ∈ C2
c (Rd),

(4.3) ⟨HDψ,∆kφ⟩k = ⟨∆kψ,HDφ⟩k.

P r o o f. Applying formula (4.1) to ψ, we get

⟨HDψ,∆kφ⟩k = −
∫ ∫ ∫

Gk(z, y)∆kψ(y)wk(y)dyHD(x, dz)∆kφ(x)wk(x)dx.

Then (4.3) is obtained by Fubini’s theorem by using formula (3.7) and formula
(4.1) applied to φ. �
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Now, we show that the three kinds of harmonicity on B introduced at the
beginning of this section are equivalent.

THEOREM 4.1. Let h ∈ C(B). The following three assertions are equivalent:
(i) h is ∆k-harmonic on B.
(ii) h is X-harmonic on B.
(iii) h is ∆k-harmonic on B in the distributional sense.

P r o o f. (i) Assume that h is ∆k-harmonic on B. Let D be a bounded open
set such that D ⊂ B and let x ∈ D. We claim that

(4.4) HDh(x)− h(x) = Ex
[ τD∫

0

∆kh(Xs)ds
]
.

Let V be a bounded open set such that D ⊂ V ⊂ V ⊂ B. By C∞-Uryshon’s
lemma, there exists θ ∈ C∞c (B) such that θ = 1 on V . Let f := hθ and ψ :=
h − f . Obviously, h = f on V , ψ = 0 on V and f ∈ C2

c (B). Then, using (4.2),
we obtain

(4.5) HDh(x)− h(x) = Ex
[ τD∫

0

∆kf(Xs)ds
]
+HDψ(x).

For every y ∈ Rd, let N(y, dz) be the Lévy kernel of the Dunkl process X which
is given in [11] by the following formula:

(4.6) N(y, dz) =
∑

α∈R+,⟨y,α⟩≠0

k(α)

⟨α, y⟩2
δσαy(dz).

Since ψ = 0 on V , it follows from Theorem 1 in [14] that

(4.7) HDψ(x) = Ex
[ τD∫

0

∫
ψ(z)N(Xs, dz)ds

]
.

On the other hand, by (2.1) and (4.6) we easily see that for every y ∈ D,

(4.8) ∆kf(y) = ∆kh(y)−
∫
ψ(z)N(y, dz).

Thus formula (4.4) is obtained by combining (4.5), (4.7) and (4.8). Hence, by (4.4),
HDh(x) = h(x), and so h is X-harmonic on B.

(ii) Assume that h is X-harmonic on B. Let φ ∈ C∞c (B) and let D ⊂ D ⊂ B
be aW -invariant bounded open set which contains the support of φ. Let (hn)n>1 ⊂
C2
c (B) be a sequence which converges uniformly to h on ∂D. Since HDφ=0

on D, applying (4.3), we obtain

(4.9) ⟨HDhn,∆kφ⟩k = 0, n > 1.
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On the other hand,

sup
x∈D
|HDhn(x)−HDh(x)| = sup

x∈D

∣∣ ∫
∂D

(
hn(y)− h(y)

)
HD(x, dy)

∣∣
6 sup

y∈∂D
|hn(y)− h(y)| → 0 as n→∞.

Hence, by letting n tend to infinity in (4.9), we get ⟨HDh,∆kφ⟩k = 0, and there-
fore ⟨h,∆kφ⟩k = 0 since h = HDh on D.

(iii) Assume that h is ∆k-harmonic onB in the distributional sense. The hypo-
ellipticity of the Dunkl Laplacian ∆k on W -invariant open sets [12], [22] yields
h ∈ C∞(B). Thus, by (2.2), it follows that, for every φ ∈ C∞c (B),∫

B

∆kh(x)φ(x)wk(x) dx = 0.

Hence ∆kh(x) = 0 for every x ∈ B, which means that h is ∆k-harmonic on B. �

It is worth noting that the equivalence established in the above theorem re-
mains valid if we replace the ball B by any W -invariant open set, for example, the
whole space Rd.

THEOREM 4.2. For every f ∈ C+(∂B), the problem

(4.10)

{
∆kh = 0 on B,
h = f on ∂B

admits one and only one solution in C+(B) which is given by HBf .

P r o o f. Let f ∈ C+(∂B). By (3.4) and (3.5), the function HBf is continu-
ous andX-harmonic onB. We shall show thatHBf is a continuous extension of f
on B. Let z ∈ ∂B and consider V = Rd\{0}, and let u be the function defined on
V by

u(x) = Gk(x, 0)−Gk(z, 0).

Since
pkt (x, 0) =

ck
(4t)m/2

e−|x|
2/(4t), x ∈ Rd,

it follows that

(4.11) Gk(x, 0) =
ck
4

Γ(m/2− 1)

|x|m−2
.

Then, using (3.6) and (4.11), it is easy to verify that u is a barrier of z (with respect
to B), i.e.,

(i) u is hyperharmonic on V ∩B,
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(ii) u is positive on V ∩B,
(iii) limx∈V ∩B,x→z u(x) = 0.

Hence, by Propositions VII.3.1 and VII.3.3 in [1], we obtain HB(z, ·) = δz and
limx∈B,x→zHBf(x) = f(z). Since z is arbitrary in ∂B, HBf is a continuous
extension of f on B. So, it remains to prove the uniqueness of the solution. Let h
be another continuous extension of f on B which is the solution to the problem
(4.10). Let x ∈ B and let (Dn)n>1 be a sequence of nonempty bounded open sets
such that x ∈ Dn ⊂ Dn ⊂ Dn+1 and B =

∪
nDn. Then (τDn)n converges to

τB almost surely. Hence, the continuity of h on B together with the quasi-left-
continuity of the Dunkl process yield HBh(x)=limnHDnh(x), and consequently
HBh(x)=h(x), sinceHDnh(x) = h(x) for every n > 1. Thus h(x)−HBf(x) =
HB(h− f)(x) = 0 since h = f on ∂B. So, h = HBf on B and the uniqueness is
proved. �

5. GREEN OPERATORS

The Green operatorGkon the whole space Rd is defined, for every f ∈B+(Rd),
by the formula

Gkf(x) :=
∫
Rd

Gk(x, y)f(y)wk(y) dy, x ∈ Rd.

By Fatou’s lemma, for each y ∈ Rd, Gk(·, y) is lower semicontinuous on Rd, and
so Gkf is lower semicontinuous on Rd.

In the sequel, Br denotes the ball of Rd of center zero and radius r > 0, and
At,s denotes the annulus of Rd of center zero and radius 0 < t < s <∞.

LEMMA 5.1. (i) For every 0 < r <∞,

(5.1) Gk1Br(x) =

 1
m−2

(
|x|2
m + r2−|x|2

2

)
if |x| 6 r,

1
m(m−2)r

m|x|2−m if |x| > r.

(ii) For every 0 6 t < s <∞,

(5.2) 0 6 sup
x∈At,s

Gk1At,s(x) 6
2

m− 2
s(s− t).

P r o o f. Formula (5.1) follows immediately from (3.1) because

Gk1Br(x) =
∞∫
0

∫
Br

pkt (x, y)wk(y) dy dt.

Let 0 6 t < s <∞. It is clear that 0 6 Gk1At,s and that

Gk1At,s = Gk1Bs −Gk1Bt .
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Then, by (5.1), it follows that for every x ∈ At,s,

Gk1At,s(x) =
1

m− 2

[
|x|2

m
+
s2 − |x|2

2

]
− 1

m(m− 2)
tm|x|2−m

=
1

m− 2

[
|x|2

m

(
1−

(
t

|x|

)m)
+
s2 − |x|2

2

]
6 1

m− 2

[
s2

m

(
1−

(
t

s

)m)
+
s2 − t2

2

]
6 1

m− 2

[
s2
(
1− t

s

)
+
s2 − t2

2

]
6 2

m− 2
s(s− t). �

An immediate consequence of the above lemma is that for each x ∈ Rd the
function Gk(·, x)wk is locally Lebesgue-integrable on Rd. Thus, by Fubini’s theo-
rem, for every f ∈ Bb(Rd) with compact support, we have

Gkf(x) =
∫
Rd

Gk(x, y)f(y)wk(y)dy =
∞∫
0

∫
Rd

pkt (x, y)f(y)wk(y)dydt

=
∞∫
0

Ex [f(Xt)] dt = Ex
[∞∫

0

f(Xt)dt
]
.

PROPOSITION 5.1. Let f ∈Bb(Rd) with compact support. ThenGkf ∈C0(Rd)
and

(5.3) ∆kG
kf = −f in Rd

in the distributional sense, i.e., for every ψ ∈ C∞c (Rd),∫
Rd

Gkf(x)∆kψ(x)wk(x) dx = −
∫
Rd

f(x)ψ(x)wk(x) dx.

Moreover, Gkf is radially symmetric whenever f is.

P r o o f. Let r > 0 be such that the support of f is contained in Br. Let us as-
sume first that f > 0 and put g = ∥f∥ 1Br − f . Then, applying the Green operator
Gk, we obtain

(5.4) Gkf +Gkg = ∥f∥Gk1Br .

Since Gkf and Gkg are lower semicontinuous on Rd and Gk1Br ∈ C0(Rd) (see
(5.1)), we immediately deduce from (5.4) that Gkf ∈ C0(Rd). For f of arbitrary
sign, we write f = f+− f−, where f+ = max(f, 0) and f− = max(−f, 0). Then
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the same reasoning shows that Gkf+ and Gkf− are in C0(Rd). Hence Gkf =
Gkf+ − Gkf− is in C0(Rd), as desired. Let ψ ∈ C∞c (Rd). Then, by (4.1), for
every y ∈ Rd we have ∫

Rd

Gk(x, y)∆kψ(x)wk(x) = −ψ(y).

Hence,∫
Rd

Gkf(x)∆kψ(x)wk(x) dx =
∫
Rd

( ∫
Rd

Gk(x, y)f(y)wk(y) dy
)
∆kψ(x)wk(x) dx

=
∫
Rd

( ∫
Rd

Gk(x, y)∆kψ(x)wk(x) dx
)
f(y)wk(y) dy

= −
∫
Rd

f(y)ψ(y)wk(y) dy.

Formula (5.1) justifies the transformation of the above integrals by Fubini’s the-
orem. Now, assume that f is radially symmetric. Let (fn)n be an increasing se-
quence of functions of the form

fn =
n∑

i=1

αi1Bri
,

which converges pointwise to f on Rd. Clearly, by formula (5.1), Gkfn is radi-
ally symmetric. On the other hand, using the dominated convergence theorem, we
get for every x ∈ Rd, limn→∞G

kfn(x) = Gkf(x). Thus Gkf is radially sym-
metric. �

For every open set D, we define the Green operator Gk
D on Bb(D) by

Gk
Df(x) := Ex

[ τD∫
0

f(Xs) ds
]
, x ∈ D.

For every f ∈ Bb(D), we denote by f̃ the extension of f on Rd such that f̃ = 0
on Rd \D. Since the Dunkl process satisfies the strong Markov property, for every
x ∈ D we have

Gkf̃(x) = Ex
[∞∫

0

f̃(Xs) ds
]

= Ex
[ τD∫

0

f̃(Xs) ds
]
+ Ex

[ ∞∫
τD

f̃(Xs) ds
]

= Ex
[ τD∫

0

f(Xs) ds
]
+ Ex

[
EXτD

[∞∫
0

f̃(Xs)ds
]]

= Ex
[ τD∫

0

f(Xs) ds
]
+HDG

kf̃(x).
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Therefore,

(5.5) Gk
Df = Gkf̃ −HDG

kf̃ on D.

Let B be an open ball of Rd of center zero and radius r > 0. Then it follows from
(5.5) that, for every f ∈ Bb(B), Gk

Bf can be represented by

Gk
Bf(x) =

∫
B

Gk
B(x, y)f(y)wk(y) dy,

where, for every x, y ∈ B,

(5.6) Gk
B(x, y) := Gk(x, y)−

∫
∂B

Gk(y, z)HB(x, dz).

Since, by (2.4), for every y, z ∈ Rd, we have

(5.7) Gk(y, z) 6 ckΓ(m/2− 1)

4 (|y| − |z|)m−2
,

it is immediate to see that, for every x, y ∈ B,∫
∂B

Gk(y, z)HB(x, dz) 6
ckΓ(m/2− 1)

4 (|y| − r)m−2
<∞.

Therefore, Gk
B(x, y) introduced in (5.6) exists, and so the Green function Gk

B(·, ·)
is well defined fromB ×B into ]0,∞]. In the following corollary, we collect some
properties of the Green operator Gk

B .

COROLLARY 5.1. Let f ∈ Bb(B). Then Gk
Bf ∈ C0(B) and

(5.8) ∆kG
k
Bf = −f in B

in the distributional sense.

P r o o f. Clearly, Gk
Bf is continuous on B since Gkf̃ and HBG

kf̃ are. For
every z ∈ ∂B,

lim
x→z

Gk
Bf(x) = 0

since limx→zHBG
kf̃(x) = Gkf̃(z). Thus Gk

Bf ∈ C0(B). Formula (5.8) follows
immediately from (5.3) and (5.5). �

PROPOSITION 5.2. For every M > 0, the family {Gk
Bf, ∥f∥ 6 M} is rela-

tively compact in C0(B) endowed with the uniform norm.
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P r o o f. In virtue of the Arzelà–Ascoli theorem, we need to show that {Gk
Bf,

∥f∥ 6M} is uniformly bounded and equicontinuous on B. Let r be the radius of
the ballB. Let f ∈ Bb(B) be such that ∥f∥ 6M . Obviously, ∥Gk

Bf∥ 6M∥Gk
B1∥

6M∥Gk1B∥. Thus, using (5.1), we obtain

∥Gk
Bf∥ 6

r2M

2(m− 2)
.

This means that the family {Gk
Bf, ∥f∥ 6 M} is uniformly bounded. Next, we

claim that the family {Gk
B(x, ·), x ∈ B} is uniformly integrable with respect to the

measure wk(y) dy. Let x ∈ B and ϵ > 0 be small enough. Let At,s be the annulus
of Rd of center zero and radius t = max(0, |x| − ϵ) and s = |x| + ϵ. Then, for
every Borel subset D of B, we have∫

D

Gk
B(x, y)wk(y)dy 6

∫
D

Gk(x, y)wk(y)dy

=
∫

D∩At,s

Gk(x, y)wk(y) dy +
∫

D\At,s

Gk(x, y)wk(y)dy

6 Gk1At,s(x) +
(

sup
y∈D\At,s

Gk(x, y)
) ∫
D

wk(y)dy.

Hence, it follows from (5.7) and (5.2) that∫
D

Gk
B(x, y)wk(y) dy 6 4r

m− 2
ϵ+

ckΓ(m/2− 1)

4ϵm−2

∫
D

wk(y) dy.

Put η = ϵm−1. Then for every Borel subset D ofB such that
∫
D
wk(y) dy < η, we

have ∫
D

Gk
B(x, y)wk(y) dy 6

(
4r

m− 2
+
ckΓ(m/2− 1)

4

)
ϵ.

Thus, the uniform integrability of the family {Gk
B(x, ·), x ∈ B} is shown. There-

fore, in virtue of Vitali’s convergence theorem, for z ∈ B,

lim
x→z

∫
B

|Gk
B(x, y)−Gk

B(z, y)|wk(y) dy = 0.

Hence, the family {Gk
Bf, ∥f∥ 6M} is equicontinuous on B since

lim
x→z

sup
∥f∥6M

|Gk
Bf(x)−Gk

Bf(z)|

6M lim
x→z

∫
B

|Gk
B(x, y)−Gk

B(z, y)|wk(y) dy = 0. �
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6. SEMILINEAR DIRICHLET PROBLEM

Let B be an open ball of Rd of center zero. Let φ : [0,∞[→ [0,∞[ be a non-
decreasing continuous function such that φ(0) = 0. By a solution of

(6.1) ∆ku = φ(u) in B

we shall mean every function u ∈ C(B) such that∫
B

u(x)∆kψ(x)wk(x) dx =
∫
B

φ
(
u(x)

)
ψ(x)wk(x) dx

holds for every ψ ∈ C∞c (B). We recall from Theorem 4.2 that if φ ≡ 0, then HBf
is the unique solution of (6.1) satisfying u = f on ∂B. In all the following, we
assume that φ is not identically zero.

LEMMA 6.1. Let u ∈ C+(B). Then u is a solution of equation (6.1) if and
only if u+Gk

B

(
φ(u)

)
= HBu on B.

P r o o f. Let us note first that Gk
B

(
φ(u)

)
∈ C0(B) since the function φ(u) is

bounded on B. Put h := u + Gk
B

(
φ(u)

)
. Clearly, h ∈ C(B) and h = u on ∂B.

On the other hand, using Fubini’s theorem and formula (5.8), we obtain for every
ψ ∈ C∞c (B),∫

B

h(x)∆kψ(x)wk(x) dx

=
∫
B

u(x)∆kψ(x)wk(x) dx+
∫
B

Gk
B

(
φ(u)

)
(x)∆kψ(x)wk(x) dx

=
∫
B

u(x)∆kψ(x)wk(x) dx−
∫
B

φ
(
u(x)

)
ψ(x)wk(x) dx.

So, ∆ku = φ(u) in B if and only if ∆kh = 0 in B. In this case, since h = u on
∂B, the uniqueness of the solution to problem (4.10) yields h = HBu on B. This
completes the proof. �

LEMMA 6.2. Let u, v ∈ C+(B) be two solutions of equation (6.1). If u > v
on ∂B, then u > v on B.

P r o o f. Define w := u− v and ρ := φ(u)− φ(v). By Lemma 6.1, we have

(6.2) w +Gk
Bρ = HBw on B.

Suppose that the open set D := {x ∈ B; w(x) < 0} is not empty. Since φ is
nondecreasing, it follows that ρ 6 0 on D, and hence Gk

Dρ 6 0 on D. Let x ∈ D.
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It is clear that B contains the support of the measure HD(x, ·). Now integrate (6.2)
with respect to HD(x, ·) to obtain

HDw(x) +HD(G
k
Bρ)(x) = HDHBw(x) = HBw(x).

Consequently,

(6.3) HDw(x)=HBw(x)−HD(G
k
Bρ)(x)=w(x) +

(
Gk

Bρ(x)−HDG
k
Bρ(x)

)
.

On the other hand, using the strong Markov property, we obtain

Gk
Bρ(x)−Gk

Dρ(x) = Ex
[ τB∫
τD

ρ(Xs) ds
]
= Ex

[
EXτD

[ τB∫
0

ρ(Xs) ds
]]

(6.4)

= HDG
k
Bρ(x).

Thus, it follows from (6.3) and (6.4) that w(x) +Gk
Dρ(x) = HDw(x). But this is

absurd since w(x) +Gk
Dρ(x) < 0 and HDw(x) > 0. Therefore, D is empty, and

consequently u > v on B. �

THEOREM 6.1. For every f ∈ C+(∂B), the semilinear Dirichlet problem

(6.5)

{
∆ku = φ(u) in B,
u = f on ∂B

admits one and only one solution u ∈ C+(B).

P r o o f. It follows from Lemma 6.2 that problem (6.5) admits at most one
solution. To prove the existence, in virtue of Lemma 6.1, it will be sufficient to
establish the existence of u ∈ C+(B) such that

(6.6) u+Gk
B

(
φ(u)

)
= HBf on B.

Since Gk
B1 6 Gk1B , we immediately deduce by (5.1) that supx∈B G

k
B1(x) <∞.

Let f ∈ C+(∂B), a = ∥f∥ and M = a+ φ(a)∥Gk
B1∥. Let ϕ be the function de-

fined on R by

ϕ(t) =


0 if t 6 0,

φ(t) if 0 6 t 6 a,

φ(a) if t > a.

Let Λ := {u ∈ C(B); ∥u∥ 6 M} and consider the operator T : Λ → C(B) de-
fined by

Tu(x) = HBf(x)−Gk
B

(
ϕ(u)

)
(x), x ∈ B.



Boundary value problems for the Dunkl Laplacian 267

Since supx∈B ϕ
(
u(x)

)
6 φ(a), we easily deduce that

∥Tu∥ 6M

for every u ∈ Λ. This implies that T (Λ) ⊂ Λ. Now, let (un)n be a sequence in Λ
converging uniformly to u ∈ Λ. Let ε > 0. Since ϕ is uniformly continuous on the
interval [−M,M ], we immediately deduce that there exists n0 ∈ N such that, for
every n > n0,

∥ϕ(un)− ϕ(u)∥ 6 ε.

Then, for every n > n0 and every x ∈ B,

|Tun(x)− Tu(x)| 6 Gk
B

(
|ϕ(un)− ϕ(u)|

)
(x) 6 ε sup

x∈B
Gk

B1(x).

This show that (Tun)n converges uniformly to Tu, and therefore T is continuous.
On the other hand, Λ is a closed bounded convex subset of C(B) and, in virtue of
Proposition 5.2, T (Λ) is relatively compact. Thus, the Schauder fixed point theo-
rem ensures the existence of a function u ∈ Λ such that

u+Gk
B

(
ϕ(u)

)
= HBf on B.

Clearly, u ∈ C(B) and u(x) 6 HBf(x) 6 a for every x ∈ B. So, to obtain (6.6),
we need to show that ϕ(u) = φ(u) on B, or equivalently, u > 0 on B. Assume
that the open set D := {x ∈ B, u(x) < 0} is not empty. Let x ∈ D. Then,

HDu(x) = HD

(
HBu−Gk

B

(
ϕ(u)

))
(x) = HBu(x)−HDG

k
B

(
ϕ(u)

)
(x).

The same reasoning as in (6.4), based on the strong Markov property, shows that

HDG
k
B

(
ϕ(u)

)
(x) = Gk

B

(
ϕ(u)

)
(x)−Gk

D

(
ϕ(u)

)
(x).

Thus, because ϕ(u) = 0 on D, we get

HDu(x) = HBu(x)−Gk
B

(
ϕ(u)

)
(x) +Gk

D

(
ϕ(u)

)
(x)

= u(x) +Gk
D

(
ϕ(u)

)
(x) = u(x) < 0.

But, HDu(x)>0 since u>0 on B \D, which contains the support of HD(x, ·).
So D must be empty, and consequently u>0 on B. This completes the proof. �
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