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Abstract. In the paper, the construction of unconditional bootstrap pre-
diction intervals and regions for some class of second order stationary mul-
tivariate linear time series models is considered. Our approach uses the sieve
bootstrap procedure introduced by Kreiss (1992) and Bühlmann (1997). Ba-
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1. INTRODUCTION

Determination of forecasts of time series future values based on previous ob-
servations is an extremely important – from a practical point of view – part of
statistical data analysis. Since the high-speed personal computers have appeared,
we can even deal with the prediction for a large number of dimensions of data.
Methods of determining the prediction for the future and unknown observations
are now frequently used in the world around us. They have a wide range of appli-
cations, both to predict the behavior of stock prices, stock indices, interest rates,
and similar financial market and economic data ([27], [28]) as well in predicting
the data of the general nature and geographic scope. For instance, the vector autore-
gressive models V AR were used by Di Battista et al. [11] in modeling the diversity
of the population of some species in their natural environment, and Mirmirani and
Li [22] used V AR models to predict the oil prices.
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In this paper we present the construction of bootstrap prediction regions for
some class of second order stationary multivariate linear time series models. We
consider both hybrid bootstrap and bootstrap-t methods. Using the Bonferroni in-
equality, we can construct a multivariate bootstrap prediction cube, i.e. we con-
struct a prediction interval for each coordinate. We consider also bootstrap simul-
taneous prediction intervals based on extreme statistics. They are an alternative to
the bootstrap prediction intervals based on the Bonferroni correction. The main ad-
vantages of the bootstrap methods are nonparametricity (no specific assumptions
about the form of the model) and easiness to implement. Thus, the bootstrap meth-
ods are a natural alternative to the methods under general asymptotic statistical
considerations (e.g. with the popular assumption of the normality of noise distri-
bution).

We consider the most popular and nonparametric method for constructing the
replication of time series data, namely the sieve bootstrap. The algorithm was
proposed by Kreiss [18] and Bühlmann [9]. Their idea uses a Grenander sieve
[14] involving the approximation of infinite-dimensional model by a sequence
of finite-dimensional models whose size increases with the number of observa-
tions n. For the class of stationary and invertible time series models (V AR(∞)
models), Bühlmann proposed approximation as a sequence of vector autoregres-
sive (V AR(p)) models, where p = p(n) increases to infinity at an appropriate
rate. In [21] the consistency of sieve bootstrap for general statistics being estima-
tors of parameters in vector autoregressive time series models is considered under
assumptions which essentially imply the assumptions imposed on the time series
models and the sieve method investigated in our paper (see the assumptions (LA)
in Remark 2.1). However, the characterization of asymptotic behavior of paramet-
ric estimators obtained by the authors does not cover the problem of asymptotics
of V AR sieve bootstrap for predictors and bootstrap prediction regions considered
in this article.

In the case of univariate causal linear time series models admitting theAR(∞)
representation, Alonso et al. [1] constructed the sieve bootstrap estimator X⋆

T+h of
the future value XT+h. They proved that X⋆

T+h →d⋆ XT+h in probability, which
implies that the bootstrap distribution F ⋆

X⋆
T+h

approximates in probability the un-
known distribution of FXT+h

. Further, using the quantiles Q⋆() of the distribution
F ⋆
X⋆

T+h
as bootstrap estimators of quantiles Q() of the distribution FXT+h

, the au-
thors construct a prediction interval for the future value XT+h. In general, the
distribution F ⋆

X⋆
T+h

and the quantiles Q⋆() are not known. So, in simulations, the
authors use the Monte Carlo method to approximate F ⋆

X⋆
T+h

and Q⋆(). Unfortu-
nately, they did not argue that the Monte Carlo approximation of Q⋆() is a consis-
tent estimator of the quantile Q(). At least, one should mention the results of Shi
et al. [26].

Since the sieve approximation p(n) is charged with serious error as an estima-
tor of possibly finite but unknown order p of the considered univariate time series
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model, Alonso et al. [2] joined the sieve bootstrap and the moving block bootstrap
to select the order p⋆ and to introduce model uncertainty in procedures of resam-
pling. Unfortunately, no proofs of consistency are given and the simulation results
are restricted to the Gaussian errors.

In this article, we construct sieve bootstrap prediction regions for causal linear,
invertible (V AR(∞)) multivariate time series, approximating the prediction error
by bootstrap replications of the prediction error. There are two ways (described in
Section 4.2) of the bootstrap replicating of the prediction error. One can see that,
in the univariate case, prediction hybrid bootstrap intervals constructed by the first
method are identical with bootstrap prediction intervals constructed in [1] but it
does not happen when we construct bootstrap-t (studentized) prediction intervals.

In this work, we generalize the results obtained in [13] from V AR(p) models
with finite but unknown order p to some class of second order stationary multivari-
ate linear, V AR(∞) time series models.

It is worth noting that we have constructed consistent unconditional bootstrap
prediction regions and the results allow us to use these prediction regions as effec-
tive and useful tools for testing and selection of models. Moreover, it follows from
the theorems proved in the present article that the constructed bootstrap prediction
regions are good approximations of prediction regions constructed on the base of
unknown optimal linear predictors.

2. MODEL AND ASSUMPTIONS

Let {Xt}t∈Z be a second order stationary k-dimensional vector process with
meanEXt = 0 and the autocovariance function γ(j) = EXt+jX

T
t , where Z is the

set of all integers. We assume also that the process {Xt}t∈Z is purely stochastic.
Thus, using Wold’s Decomposition Theorem (see [3] or [20]), we can represent
{Xt}t∈Z as an infinite vector moving average process VMA(∞),

(2.1) Xt =
∞∑
j=0

ψjϵt−j , ψ0 = Ik,

where
∑∞

j=0 ∥ψj∥2 < ∞ and {ϵt}t∈Z is a vector white noise process with the
covariance matrix EϵtϵTt = Σ (Σ is invertible). Additionally, we assume that the
process {Xt}t∈Z is invertible. Thus, it can be represented as an infinite vector au-
toregressive process V AR(∞):

(2.2) Xt =
∞∑
j=1

ϕjXt−j + ϵt,

where
∑∞

j=1 ∥ϕj∥
2 <∞.

Further, we will use the following assumptions:
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(A1) Xt =
∑∞

j=0 ψjϵt−j , ψ0 = Ik, t ∈ Z, where

{ϵt}t∈Z = {(ϵt,1, . . . , ϵt,i, . . . , ϵt,k)T }t∈Z

is an i.i.d. sequence such that Eϵt = 0, EϵtϵTt = Σ and E|ϵt,iϵt,jϵt,lϵt,s| <∞ for
i, j, l, s = 1, . . . , k and all t.

(A2)
∣∣det (Ψ(z)

)∣∣ = ∣∣det(∑∞j=0 ψjz
j
)∣∣ > 0 for |z| ¬ 1 and

∑∞
j=0 j

r∥ψj∥ <∞
for some r ∈ N.

(B) p = p(n) → ∞ as n → ∞ and Φ̂p = [ϕ̂1,n, . . . , ϕ̂p,n]
T satisfies the Yule–

Walker equations, i.e.

(2.3) Γ̂pΦ̂p = γ̂p,

where Γ̂p = [γ̂(i− j)]pi,j=1, γ̂p = [γ̂(1), . . . , γ̂(p)]T , and γ̂(·) is the sample auto-
covariance function,

γ̂(j) =
1

n

n−j∑
t=1

(Xt+j −Xn)(Xt −Xn)
T , γ̂(−j) = γ̂T (j),

where Xn = 1
n

∑n
t=1Xt.

REMARK 2.1. In the sequel, the following list of assumptions, called (LA),
will be also imposed:

• assumption (A1),
• assumption (A2) with r ­ 1,
• assumption (B) with p(n) = o

(
(n/ log n)1/(2r+2)

)
and r ­ 1.

Under the assumptions (LA) we prove the main theorems on bootstrap consis-
tency.

3. SIEVE BOOTSTRAP ALGORITHM

The invertibility of the process {Xt}t∈Z implies the V AR(∞) representation
of the process which is crucial in the idea of the sieve bootstrap (see e.g. [9]). The
sieve bootstrap algorithm uses the idea of the Grenander method of sieve (see [14]).
Namely, we approximate V AR(∞) given by (2.2) by the sequence of V AR(p)
models, where p = p(n) is a sequence growing to infinity sufficiently slow with
the sample size n (assumption (B)).

REMARK 3.1. It is also possible to approximate the process {Xt}t∈Z given by
(2.1) and construct sieve as a sequence of finite VMA(q), where q = q(n)→∞
(see [8]).

Let X1, . . . , Xn be the observations of the process {Xt}t∈Z. We describe the
sieve bootstrap algorithm in the following steps.
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S t e p 1. Choose the approximation order p = p(n) using FPE, the final
prediction error (see [20]),

FPE(p) =

(
n+ pk + 1

n− pk − 1

)k

det(Σ̂p),

where Σ̂p is an estimator of the covariance matrix Σ of the white noise {ϵt}t∈Z in
the model V AR(p). Further, we choose p = p(n), which minimizes FPE(p) and
p ∈ {pmin(n), . . . , pmax(n)}, where pmin = log10 n, pmax = 10 log10 n.

S t e p 2. Estimate the coefficients ϕ1,n, . . . , ϕp,n of the model V AR(p) using
the Yule–Walker method (assumption (B)) and obtain estimators ϕ̂1,n, . . . , ϕ̂p,n.

S t e p 3. Compute the residuals

ϵ̂t = Xt −
p∑

j=1

ϕ̂j,nXt−j , t = p+ 1, . . . , n.

S t e p 4. Center the residuals

ϵ̃t = ϵ̂t −
1

n− p

n∑
j=p+1

ϵ̂t, t = p+ 1, . . . , n,

and draw bootstrap residuals ϵ∗t from the empirical cumulative distribution function
F̂ϵ,n, where

(3.1) F̂ϵ,n(x) =
1

n− p

n∑
t=p+1

1{ϵ̃t ¬ x},

and ¬ denotes the relation of product order (partial order) in Rk.

S t e p 5. Define bootstrap replications X∗1 , . . . , X
∗
n of X1, . . . , Xn by

X∗t =
p∑

j=1

ϕ̂j,nX
∗
t−j + ϵ∗t , t = 1, . . . , n.

In practice, we can generate replications X∗1 , . . . , X
∗
n starting the recursion from

some initial values, e.g. X∗t = ϵ∗t , t = 0,−1, . . . ,−p+ 1.

S t e p 6. Generate bootstrap replications ϕ̂∗j,n of the Yule–Walker estimators
ϕ̂j,n, where j = 1, 2, . . . , p(n).

The bootstrap construction induces a conditional probability measureP ∗ given
the sample X1, . . . , Xn. In the sequel, all quantities with respect to P ∗ will be en-
dowed with asterisk ∗.
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REMARK 3.2. The FPE criterion, used in Step 1, is asymptotically equiva-
lent to the AIC criterion (see [20]) used in [9].

REMARK 3.3. In Step 2, the Yule–Walker estimators can be computed by us-
ing Whittle’s algorithm, which is a multivariate version of the Durbin–Levinson
algorithm (see [7]).

In the sequel, we will use the following notation for the coefficients of autore-
gressive models and their related moving average models. For the stationary time
series {Xt}t∈Z given by (2.1) or (2.2) the autoregressive coefficients ϕj and the
moving average coefficients ψj are related by

Φ(z) = Ik −
∞∑
j=1

ϕjz
j , Φ−1(z) = Ψ(z) =

∞∑
j=0

ψjz
j ,

ψ0 = Ik, and ψj =
j∑

i=1

ϕiψj−i, j = 1, 2, . . .

In the model V AR(p), approximating the model (2.2), we denote by ϕj,n the au-
toregressive coefficients which fulfill the theoretical Yule–Walker equations (2.3)
(assumption (B), where the sample autocovariance function is replaced by γ(j) =
EXt+jX

T
t ), and by ψj,n the moving average coefficients:

Φn(z) = Ik −
p∑

j=1

ϕj,nz
j , Φ−1n (z) = Ψn(z) =

∞∑
j=0

ψj,nz
j ,(3.2)

ψ0,n = Ik, and ψj,n =
j∑

i=1

ϕi,nψj−i,n, j = 1, 2, . . .

We write the Yule–Walker estimators given in assumption (B):

Φ̂n(z) = Ik −
p∑

j=1

ϕ̂j,nz
j , Φ̂−1n (z) = Ψ̂n(z) =

∞∑
j=0

ψ̂j,nz
j ,(3.3)

ψ̂0,n = Ik, and ψ̂j,n =
j∑

i=1

ϕ̂i,nψ̂j−i,n, j = 1, 2, . . .

Let ϕ̂∗j,n and ψ̂∗j,n be the bootstrap replications of Yule–Walker estimators ϕ̂j,n,
ψ̂j,n,

(3.4) Φ̂∗n(z) = Ik −
p∑

j=1

ϕ̂∗j,nz
j , Φ̂∗−1n (z) = Ψ̂∗n(z) =

∞∑
j=0

ψ̂∗j,nz
j ,

where ψ̂∗0,n = Ik.
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REMARK 3.4. The assumptions (A1) and (A2) provide us with the correct-
ness of defined functions Ψ(z) and Φ(z), which means that the series

∑∞
j=0 ψjz

j

and
∑∞

j=1 ϕjz
j are convergent for |z| ¬ 1 and Φ−1(z) = Ψ(z). The properties

of the Yule–Walker equations ensure the correctness of defined functions Ψn(z),

Ψ̂n(z) and Ψ̂∗n(z) (solutions of the Yule–Walker equations give us a causal model,
see [7]).

4. PREDICTION REGIONS

4.1. Linear predictors and Gaussian prediction regions. Forecasting the fu-
ture values Xn+h, h = 1, 2, . . ., is a very common task in the statistical analysis of
time series. For the second order stationary process we can construct the best linear
predictor, in the mean square sense, as an orthogonal projection of Xn+h onto a
closed subspace sp{X1, . . . , Xn} of L2(Ω,F ,P) (see [20]). We can represent the
h-step predictor as

ProjnXn+h = Projsp{X1,...,Xn}Xn+h

and the mean squared prediction error as

(4.1) ΣX(h) = E (Xn+h − ProjnXn+h) (Xn+h − ProjnXn+h)
T .

Assuming that (A1) holds, we have also

(4.2) ΣX(h) =
h−1∑
j=0

ψjΣψ
T
j .

The mean squared prediction error can be obtained by using the multivariate ver-
sion of the innovations algorithm (see [7]).

REMARK 4.1. For the autoregressive model V AR
(
p = p(n)

)
,

Xt =
p∑

j=1

ϕj,nXt−j + ϵt,n,

approximating the model V AR(∞), the best linear predictor (in the mean square
sense) and the mean squared error matrix have the forms

ProjnXn+h,V AR(p) =
p∑

j=1

ϕj,nProjnXn+h−j,V AR(p),

Σn,X(h) =
h−1∑
j=0

ψj,nΣψ
T
j,n,

where ProjnXn+j,V AR(p) = Xn+j for j ¬ 0, Σ = Eϵtϵ
T
t and coefficients ψj,n are

given by the recursive equations

ψ0,n = Ik and ψj,n =
j∑

i=1

ϕi,nψ(j−i),n, j = 1, 2, . . .
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From the continuity of the projection operator in L2 it follows that

ProjnXn+h−ProjnXn+h,V AR(p)
L2

−→ 0 and Σn,X(h)→ ΣX(h) as n→∞.

Since the form of the best linear predictor (in the mean square sense) and
the mean squared error matrix depend on unknown parameters of a model con-
sidered, we will use an estimator P̂rojnXn+h = X̂n+h of the best linear predictor
ProjnXn+h with appropriately chosen estimators of parameters of the model.

The most common method of constructing the prediction regions for Xn+h,
h = 1, 2, . . ., is the Box–Jenkins method. This method assumes that the prediction
error has at least asymptotically normal distribution

Xn+h − X̂n+h ∼ N
(
0,ΣX(h)

)
.

Thus, the quadratic form below has at least the asymptotically χ-square distribution
with k degrees of freedom:

(Xn+h − X̂n+h)
TΣ−1X (h)(Xn+h − X̂n+h) ∼ χ2(k).

So, the prediction region for Xn+h, h = 1, 2, . . ., with nominal confidence level
1− α has a shape of k-dimensional ellipse

(4.3) EB−J(h) = {(Xn+h − X̂n+h)
TΣ−1X (h)(Xn+h − X̂n+h) ¬ χ2

1−α(k)},

where χ2
α(k) is an α quantile of χ-square distribution with k degrees of freedom.

We can also use the Bonferroni inequality and construct a k-dimensional prediction
cube

(4.4) IB−J(h) = {Xn+h,j ∈ [X̂n+h,j + σX,j(h)zα/(2k),

X̂n+h,j + σX,j(h)z1−α/(2k)], j = 1, . . . , k},

where zα is an α quantile of the normal distribution N (0, 1) and σX,j(h) is a
square root of the jth diagonal element of the mean squared error matrix ΣX(h).

4.2. Bootstrap prediction regions. The bootstrap methods are very common
in the problem of constructing the confidence intervals (see e.g. [12]). The same
idea can be used in the construction of prediction regions for Xn+h, h = 1, 2, . . .
Namely, we may apply the sieve bootstrap method and generate bootstrap repli-
cations X∗1 , . . . , X

∗
n using observations X1, . . . , Xn. Then, we construct the boot-

strap replications of the future observations on the base of the V AR(p) approxi-
mation

for h = 1: X∗n+1 =
p∑

j=1

ϕ̂∗j,nXn+1−j + ϵ∗n+1,(4.5)

for h > 1: X∗n+h =
h−1∑
j=1

ϕ̂∗j,nX
∗
n+h−j +

p∑
j=h

ϕ̂∗j,nXn+h−j + ϵ∗n+h,
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where ϕ̂∗j,n is a bootstrap replication of the estimator ϕ̂j,n. It is worth noting that
we applied a modification of a standard procedure, proposed by Bühlmann [9]
for the one-dimensional case, to generate the future bootstrap observations in the
equation (4.5). Namely, we generated future observations starting recursion from
X1, . . . , Xn, in contrast to the standard method in which the recursion is started
from the bootstrap replications X∗1 , . . . , X

∗
n. The results of the simulations showed

that this type of modification improved the empirical probability of coverage of the
bootstrap prediction regions.

Using the V AR(p) approximation, we construct the estimator of the best lin-
ear predictor

(4.6) X̂n+h =
p(n)∑
j=1

ϕ̂j,nX̂n+h−j ,

where X̂n+j = Xn+j , j ¬ 0.
We construct the bootstrap prediction regions using two methods: hybrid boot-

strap and bootstrap-t.
In the hybrid bootstrap, the unknown distribution of the prediction error

(4.7) Hn(h) = Xn+h − X̂n+h

can be approximated by two bootstrap variants:

(4.8) H∗n(h) = X∗n+h − X̂n+h,

(4.9) H̃∗n(h) = X∗n+h − X̂∗n+h,

where X̂∗n+h is the bootstrap replication of X̂n+h given by (4.6). It can be proved
that both bootstrap variants of the prediction error (4.7) are consistent. However,
we will focus on (4.8) because of its good simulation results. Since the proof of
consistency for the bootstrap variant (4.9) goes along the same lines as the proof
of consistency for the bootstrap variant (4.8), we will omit it. Thus, the bootstrap
prediction cube, constructed by using the Bonferroni inequality, has the form

(4.10) IB(h) = {Xn+h,j ∈ [X̂n+h,j + q∗α/(2k),j ,

X̂n+h,j + q∗1−α/(2k),j ], j = 1, . . . , k},

where q∗α,j is an α quantile of the distribution X∗n+h,j − X̂n+h,j , j = 1, . . . , k.
Using the hybrid bootstrap, we can also create a bootstrap prediction region in

the shape of k-dimensional ellipse:

(4.11) EB(h) = {(Xn+h − X̂n+h)
T (Xn+h − X̂n+h) ¬ q∗1−α},

where q∗α is an α quantile of the distribution ∥H∗n(h)∥
2.
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In the bootstrap-t method we approximate the studentized unknown distribu-
tion of the prediction error

(4.12) Tn(h) = Σ̂
−1/2
n,X (h)(Xn+h − X̂n+h)

by its bootstrap replication

(4.13) T ∗n(h) = Σ̂
∗−1/2
n,X (h)(X∗n+h − X̂n+h),

where Σ̂n,X(h) is an estimator of the mean squared error matrix ΣX(h), and
Σ̂∗X(h) is a bootstrap replication of the estimator. By Remark 4.1, we define the
estimator Σ̂n,X(h) as

(4.14) Σ̂n,X(h) =
h−1∑
j=0

ψ̂j,nΣ̂ψ̂
T
j,n,

where ψ̂j,n =
∑j

i=1 ϕ̂i,nψ̂(j−i),n. Thus, the bootstrap prediction cube, constructed
by using the Bonferroni inequality, has the form

(4.15) IB−t(h) = {Xn+h,j ∈ [X̂n+h,j + σ̂X,j(h)t
∗
α/(2k),j ,

X̂n+h,j + σ̂X,j(h)t
∗
1−α/(2k),j ], j = 1, . . . , k},

where t∗α,j is an α quantile of the distribution σ̂∗−1X,j (h)(X
∗
n+h,j − X̂n+h) for j =

1, . . . , k.
Using the bootstrap-t, we can also create a bootstrap prediction region in the

shape of k-dimensional ellipse:

(4.16) EB−t(h) = {(Xn+h − X̂n+h)
T Σ̂−1n,X(h)(Xn+h − X̂n+h) ¬ t∗1−α},

where t∗α is an α quantile of the distribution ∥T ∗n(h)∥
2.

4.3. Bootstrap simultaneous prediction regions based on extreme statistics.
In this subsection we present different types of bootstrap confidence regions based
on the distribution of minimum and maximum of Xn+h − X̂n+h. More precisely,
we investigate simultaneous hybrid and studentized confidence regions. For each
type we propose left-sided, right-sided and both-sided regions. First, we introduce
the following notation for statistics Un+h, Vn+h and Rn+h:

Un+h = min
1¬i¬k

Wn+h,i = min
1¬i¬k

(Xn+h,i − X̂n+h,i),(4.17)

Vn+h = max
1¬i¬k

Wn+h,i = max
1¬i¬k

(Xn+h,i − X̂n+h,i),(4.18)

Rn+h = max
1¬i¬k

|Wn+h,i| = max
1¬i¬k

|Xn+h,i − X̂n+h,i|,(4.19)
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and for their bootstrap versions:

U∗n+h = min
1¬i¬k

W ∗n+h,i = min
1¬i¬k

(X∗n+h,i − X̂n+h,i),(4.20)

V ∗n+h = max
1¬i¬k

W ∗n+h,i = max
1¬i¬k

(X∗n+h,i − X̂n+h,i),(4.21)

R∗n+h = max
1¬i¬k

|W ∗n+h,i| = max
1¬i¬k

|X∗n+h,i − X̂n+h,i|.(4.22)

Let û∗n+h,(·), v̂
∗
n+h,(·) and r̂∗n+h,(·) be Monte Carlo estimators of quantiles of boot-

strap distributions of U∗n+h, V ∗n+h and R∗n+h. Then, the bootstrap prediction cubes,
constructed by using extreme statistics, can be written in the following form:

IUV
B (h) = {Xn+h,i ∈ [X̂n+h,i + û∗n+h,α/2,(4.23)

X̂n+h,i + v̂∗n+h,1−α/2], i = 1, . . . , k},

IUB (h) = {Xn+h,i ∈ [X̂n+h,i + û∗n+h,α,+∞), i = 1, . . . , k},(4.24)

IVB (h) = {Xn+h,i ∈ (−∞, X̂n+h,i + v̂∗n+h,1−α], i = 1, . . . , k},(4.25)

IRB (h) = {Xn+h,i ∈ [X̂n+h,i − r̂∗n+h,1−α,(4.26)

X̂n+h,i + r̂∗n+h,1−α], i = 1, . . . , k}.

We can also construct studentized prediction cubes:

IUV
B−t(h) = {Xn+h,i ∈ [X̂n+h,i + ûs∗n+h,α/2σ̂n+h,i,(4.27)

X̂n+h,i + v̂s∗n+h,1−α/2σ̂n+h,i], i = 1, . . . , k},

IUB−t(h) = {Xn+h,i ∈ [X̂n+h,i + ûs∗n+h,ασ̂n+h,i,+∞), i = 1, . . . , k},(4.28)

IVB−t(h) = {Xn+h,i ∈ (−∞, X̂n+h,i + v̂s∗n+h,1−ασ̂n+h,i], i = 1, . . . , k},(4.29)

IRB−t(h) = {Xn+h,i ∈ [X̂n+h,i − r̂s∗n+h,1−ασ̂n+h,i,(4.30)

X̂n+h,i + r̂s∗n+h,1−ασ̂n+h,i], i = 1, . . . , k},

where ûs∗n+h,(·), v̂s
∗
n+h,(·) and r̂s∗n+h,(·) are, respectively, Monte Carlo estimators

of quantiles of bootstrap distributions of

US∗n+h = min
1¬i¬k

W ∗n+h,i = min
1¬i¬k

(
X∗n+h,i − X̂n+h,i

σ̂∗n+h,i

)
,

V S∗n+h = max
1¬i¬k

W ∗n+h,i = max
1¬i¬k

(
X∗n+h,i − X̂n+h,i

σ̂∗n+h,i

)
,

RS∗n+h = max
1¬i¬k

|W ∗n+h,i| = max
1¬i¬k

∣∣∣∣X∗n+h,i − X̂n+h,i

σ̂∗n+h,i

∣∣∣∣,
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and US∗n+h, V S∗n+h and RS∗n+h are the following bootstrap versions of distribu-
tions:

USn+h = min
1¬i¬k

Wn+h,i = min
1¬i¬k

(
Xn+h,i − X̂n+h,i

σ̂n+h,i

)
,

V Sn+h = max
1¬i¬k

Wn+h,i = max
1¬i¬k

(
Xn+h,i − X̂n+h,i

σ̂n+h,i

)
,

RSn+h = max
1¬i¬k

|Wn+h,i| = max
1¬i¬k

∣∣∣∣Xn+h,i − X̂n+h,i

σ̂n+h,i

∣∣∣∣.
5. CONSISTENCY OF BOOTSTRAP METHODS

5.1. Representation of the V AR(∞) model by the moving average model. In
this subsection we use the following theorem proved in [15] (see Theorem 7.4.2).
The theorem is formulated below but with changed notation, adapted to the present
article.

THEOREM 5.1 ([15], Theorem 7.4.2). If det
(
Ψ(z)

)
̸= 0 for |z| ¬ 1 and

∞∑
j=0

jλ ∥ψj∥ <∞, λ > 0,

then for Φ(z) = Ψ−1(z) =
∑∞

j=1 ϕjz
j we have

∞∑
j=0

jλ ∥ϕj∥ <∞.

By analogical reasoning, we can prove the converse of Theorem 5.1. Namely,
we have

COROLLARY 5.1. The following assertions are equivalent:
(i) det

(
Φ(z)

)
̸= 0, |z| ¬ 1,

∑∞
j=0 j

λ ∥ϕj∥ <∞, λ > 0.

(ii) det
(
Ψ(z)

)
̸= 0, |z| ¬ 1,

∑∞
j=0 j

λ ∥ψj∥ <∞, λ > 0.

The next lemma is a multivariate version of a lemma given by Bühlmann ([8],
Lemma 2.2). For the purpose of this lemma (and only for this lemma) we assume
that Φn(z) = Ik −

∑∞
j=1 ϕj,nz

j is some deterministic approximation of the func-
tion Φ(z) = Ik −

∑∞
j=1 ϕjz

j (model (2.2)) and we define Ψn(z) = Φ−1n (z) =∑∞
j=0 ψj,nz

j , where ψ0,n = Ik. The lemma gives us conditions under which the
function Ψn(z) is correctly defined and also asymptotical properties of the coeffi-
cients ψj,n.

LEMMA 5.1. Let (A2) with r ­ 1 hold and
∑∞

j=1 j
r∥ϕj,n − ϕj∥ = o(1),

where n→∞. Then:
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(i) There exists n0 ∈ N such that

sup
n­n0

∞∑
j=1

jr ∥ϕj,n∥ <∞ and inf
n­n0

inf
|z|¬1

∣∣ det (Φn(z)
)∣∣ > 0.

(ii) There exists n1 ∈ N such that, for n ­ n1,Ψn(z) is absolutely convergent
for |z| ¬ 1 and

sup
n­n1

∞∑
j=0

jr ∥ψj,n∥ <∞.

P r o o f. (i) is an immediate consequence of the assumptions of the lemma
and Corollary 5.1.

(ii) By the formula for the inversion of the matrix we have

Ψn(z) = Φ−1n (z) =
1

det
(
Φn(z)

)adj(Φn(z)
)
.

Denoting the element of the matrix by ϕj,n = [ϕ(sv),j,n]
k
s,v=1, j = 1, 2, . . . , we get

Φn(z) =
[ ∞∑
j=1

ϕ(sv),j,nz
j
]k
s,v=1

.

From (i) we have det
(
Φn(z)

)
̸= 0 for |z| ¬ 1, n ­ n0 and

sup
n­n0

∞∑
j=1

jr|ϕ(sv),j,n| <∞ for all s, v = 1, . . . , k.

For some s, v, u, w = 1, . . . , k we have

∞∑
j=1

ϕ(sv),j,nz
j ·
∞∑
j=1

ϕ(uw),j,nz
j =

∞∑
j=1

(ϕ(sv) ∗ ϕ(uw))j,nz
j ,

(ϕ(sv) ∗ ϕ(uw))j,n =
∞∑
l=1

ϕ(sv),l,nϕ(uw),j−l,n.

Using properties of the convolution, we get

∞∑
j=1

jr|(ϕ(sv) ∗ ϕ(uw))j,n| ¬
∞∑
j=1

jr|ϕ(sv),j,n|
∞∑
j=1

jr|ϕ(uw),j,n|,

and further

sup
n­n0

∞∑
j=1

jr|(ϕ(st) ∗ ϕ(uw))j,n| <∞.
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In consequence, we infer that the coefficients of the determinant det
(
Φn(z)

)
and

the coefficients of all elements of the matrix adj
(
Φn(z)

)
fulfill

det
(
Φn(z)

)
=
∞∑
j=1

ϕ̌j,nz
j , sup

n­n0

∞∑
j=1

jr|ϕ̌j,n| <∞,

adj
(
Φn(z)

)
= [ϕ0(sv),n(z)]

k
s,v=1, ϕ0(sv),n(z) =

∞∑
j=1

ϕ0(sv),j,nz
j ,

sup
n­n0

∞∑
j=1

jr|ϕ0(sv),j,n| <∞ for all s, v = 1, . . . , k.

To complete the proof, we have to show that 1/det
(
Φn(z)

)
is an analytical func-

tion for |z| ¬ 1 with coefficients ϕ
j,n

satisfying

1

det
(
Φn(z)

) =
∞∑
j=1

ϕ
j,n
zj , sup

n­n0

∞∑
j=1

jr|ϕ
j,n
| <∞.

However, this is a consequence of the Wiener theorem (see [30]) and the lemma
given by Bühlmann [8] for the one-dimensional case. Finally, we get

Ψn(z) =
1

det
(
Φn(z)

)adj(Φn(z)
)
=
∞∑
j=1

ϕ
j,n
zj [ϕ0(sv),n(z)]

k
s,v=1

=
∞∑
j=1

ϕ
j,n
zj
[ ∞∑
j=1

ϕ0(sv),j,nz
j
]k
s,v=1

=
∞∑
j=0

ψj,nz
j

and

sup
n­n1

∞∑
j=0

jr ∥ψj,n∥ <∞. �

The next two theorems give us properties of the coefficients ψ̂j,n from the
representation (3.3), in which Φ̂n(z) replaces the function Φn(z) in Lemma 5.1.
These two theorems are multivariate versions of the theorems given by Bühlmann
for the one-dimensional case ([8], Theorems 3.1 and 3.2).

THEOREM 5.2. Let (LA) hold. Then there exists a random variable n1 for
which

sup
n­n1

∞∑
j=0

jr∥ψ̂j,n∥ <∞ almost surely.

P r o o f. We will use Lemma 5.1. Thus, we have to check its assumption:
∞∑
j=1

jr∥ϕ̂j,n − ϕj∥ ¬
p∑

j=1

jr∥ϕ̂j,n − ϕj,n∥+
p∑

j=1

jr∥ϕj,n − ϕj∥+
∞∑

j=p+1

jr ∥ϕj∥

= S1 + S2 + S3.
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By Theorem 2.1 from [16] we obtain S1 = o(1) almost surely. Under the assump-
tion (A2), using the Baxter inequality ([15], Theorem 6.6.12 and p. 271) and Corol-
lary 5.1, we get S2 = o(1). Similarly we show that S3 = o(1). Finally, we get

∞∑
j=1

jr∥ϕ̂j,n − ϕj∥ = o(1) almost surely.

We complete the proof using Lemma 5.1. �

THEOREM 5.3. Let (LA) hold. Then

sup
1¬j<∞

∥ψ̂j,n − ψj∥ = O
(
(log n/n)1/2

)
+O(p−r) almost surely.

P r o o f. We start from showing that

(5.1) Σ− Σ̂ = Oa.s.

(
(log n/n)1/2

)
+O(p−r).

To prove it, we use Theorem 2.1 from [16] and the Hannan and Deistler bound
([15], Theorem 7.4.3). We get

(5.2) max
0¬j<∞

∥γ̂(j)− γ(j)∥ = Oa.s.

(
(log n/n)1/2

)
,

where γ̂(j) = 0 for |j| ­ n. From the Yule–Walker equations for the models (2.2)
and (3.3) we have

Σ = γ(0)−
∞∑
j=1

ϕjγ
T (j), Σ̂ = γ̂(0)−

p∑
j=1

ϕ̂j,nγ̂
T (j).

Therefore,

∥Σ− Σ̂∥ ¬ ∥γ(0)− γ̂(0)∥+
∥∥ p∑
j=1

(
ϕ̂j,nγ̂

T (j)− ϕjγT (j)
)∥∥+

∥∥ ∞∑
j=p+1

ϕjγ
T (j)

∥∥
¬ ∥γ(0)− γ̂(0)∥

+ max
1¬j¬p

∥ϕ̂j,n − ϕj∥
(
p max
1¬j¬p

∥γ̂(j)− γ(j)∥+
p∑

j=1

∥γ(j)∥
)

+ max
1¬j¬p

∥γ̂(j)− γ(j)∥
∞∑
j=1

∥ϕj∥+ ∥[EX2
t,iEX

2
t,j ]

k
i,j=1∥

∞∑
j=p+1

∥ϕj∥

= Oa.s.

(
(log n/n)1/2

)
+O(p−r)

and we get (5.1).
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Following the ideas of the proof of Theorem 3.2 from [8] for the one-dimen-
sional case, let {Yt}t∈Z be a conditional process (given X1, . . . , Xn) in the form

(5.3) Yt =
p∑

j=1

ϕ̂j,nYt−j + ηt,

where {ηt}t∈Z is a sequence of i.i.d. random vectors and Eηt = 0, EηtηTt = Σ.
Additionally, we assume that ηt and ϵt are independent. According to properties of
the Yule–Walker estimators, {Yt}t∈Z is a causal process

(5.4) Yt =
∞∑
j=0

ψ̂j,nηt−j .

Denote by EY and CovY the conditional expectation and the autocovariance func-
tion of the process {Yt}t∈Z under the condition X1, . . . , Xn. Thus, using (5.3) and
(5.4) for Yt+i, we have

EY Yt+iη
T
t = ψ̂i,nΣ = γY (i)−

p∑
j=1

γY (i+ j)ϕ̂Tj,n,

where γY (j) = CovY (Yt+j , Yt) =
∑∞

l=0 ψ̂l+j,nΣψ̂
T
l,n. We get a similar equality

for ψi:

ψiΣ = γ(i)−
∞∑
j=1

γ(i+ j)ϕTj .

Thus, for i = 0, 1, 2, . . . we have

∥ψ̂i,n − ψi∥ ¬ ∥Σ−1∥
∥∥γY (i)− p∑

j=1

γY (i+ j)ϕ̂Tj,n − γ(i) +
∞∑
j=1

γ(i+ j)ϕTj
∥∥

¬ ∥Σ−1∥
∥∥ p∑
j=1

γY (i+ j)(ϕ̂Tj,n − ϕTj )−
∞∑

j=p+1

γY (i+ j)ϕTj
∥∥

+ ∥Σ−1∥
∥∥ ∞∑
j=1

(
γY (i+ j)−γ(i+ j)

)
ϕTi

∥∥+∥Σ−1∥ ∥γY (i)−γ(i)∥
= ∥Σ−1∥(S1,i + S2,i + S3,i).

We bound the components separately. We get

S1,i ¬
p∑

j=1

∥γY (i+ j)∥ ∥ϕ̂j,n − ϕj∥+
∞∑

j=p+1

∥γY (i+ j)∥ ∥ϕj∥

¬ ∥Σ∥ max
1¬j¬p

∥ϕ̂j,n − ϕj∥
( ∞∑
l=0

∥ψ̂l,n∥
)2

+ ∥Σ∥
( ∞∑
l=0

∥ψ̂l,n∥
)2 ∞∑

j=p+1

∥ϕj∥

= Oa.s.

(
(log n/n)1/2

)
+O(p−r) for each i ∈ N,



Prediction intervals and regions for multivariate time series models 333

where the last approximation is obtained by using Theorem 2.1 from [16] and
Theorem 5.2. Further, using the convention

∑i
j=l aj = 0 for i < l, we have

S2,i ¬
∥∥ p−i∑
j=1

(
γY (i+ j)− γ(i+ j)

)
ϕTj

∥∥+
∥∥ ∞∑
j=p−i+1

(
γY (i+ j)− γ(i+ j)

)
ϕTj

∥∥
¬ max

1¬j¬p
∥γ̂(j)− γ(j)∥

∞∑
j=0

∥ϕj∥+ ∥Σ− Σ̂∥
( ∞∑
j=0

∥ψ̂j,n∥
)2 ∞∑

j=0

∥ϕj∥

+ ∥Σ∥
∞∑
j=0

∥ϕj∥
( ∞∑
j=0

∥ψ̂j,n∥
∞∑

j=p+1

∥ψ̂j,n∥+
∞∑
j=0

∥ψj∥
∞∑

j=p+1

∥ψj∥
)

= Oa.s.

(
(log n/n)1/2

)
+O(p−r) for each i ∈ N,

where the last approximation is due to (5.1), (5.2), Theorem 5.2 and the assumption
(A2). The component S3,i can be bounded analogously to the component S2,i and
we get S3,i = Oa.s.

(
(log n/n)1/2

)
+O(p−r) for each i ∈ N. Finally, we have

sup
0¬i
∥ψ̂i,n − ψi∥ = Oa.s.

(
(log n/n)1/2

)
+O(p−r). �

5.2. Consistency of sieve bootstrap. From the construction of the bootstrap
replications algorithm we have E∗ϵ∗t = 0. The following lemma gives us the con-
vergence of the bootstrap covariance matrix Σ∗ = E∗ϵ∗t ϵ

∗T
t to the covariance ma-

trix Σ of the white noise {ϵt}t∈Z. In the one-dimensional case, this fact was proved
in [9] (see Lemma 5.3).

LEMMA 5.2. Let (A1), (A2) with r ­ 1 and (B) with p(n) = o
(
(n/ log n)1/2

)
hold. Then

E∗ϵ∗t ϵ
∗T
t = Eϵtϵ

T
t + oP (1).

P r o o f. Although the proof of this lemma is similar to the proof of Lem-
ma 5.3 in [9] for the one-dimensional case, we will give it for completeness. Notice
the following equality holds:

(5.5) ϵ̂t,n = Xt −
p∑

j=1

ϕ̂j,nXt−j = ϵt +Qt,n +Rt,n,

where

Qt,n =
p∑

j=1

(ϕj,n − ϕ̂j,n)Xt−j ,

Rt,n =
∞∑
j=1

(ϕj − ϕj,n)Xt−j , ϕj,n = 0 for j > p.
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The bootstrap covariance matrix has the form

E∗ϵ∗t ϵ
∗T
t =

1

n− p

n∑
t=p+1

(ϵ̂t,n − ϵn) (ϵ̂t,n − ϵn)T ,

where ϵn = 1
n−p

∑n
t=p+1 ϵ̂t,n. First, we show that ϵn = oP (1). We have

ϵn =
1

n− p

n∑
t=p+1

ϵ̂t,n =
1

n− p

n∑
t=p+1

(ϵt +Qt,n +Rt,n) = S1 + S2 + S3.

From the assumption (A1) and the Markov inequality we get S1 = OP (n
−1/2).

Using the Cauchy–Schwarz inequality and the Jensen inequality, we obtain

∥S2∥ =
∥∥∥∥ 1

n− p

n∑
t=p+1

p∑
j=1

(ϕj,n − ϕ̂j,n)Xt−j

∥∥∥∥
¬

( p∑
j=1

∥ϕj,n − ϕ̂j,n∥2
)1/2( 1

n− p

n∑
t=p+1

p∑
j=1

∥Xt−j∥2
)1/2

.

By Theorem 2.1 from [16] we have

p∑
j=1

∥ϕj,n − ϕ̂j,n∥2 ¬ p max
1¬j¬p

∥ϕj,n − ϕ̂j,n∥2 = oa.s.
(
(log n/n)1/2

)
.

Under the assumption (A1) and using the Markov inequality, we have

1

n− p

n∑
t=p+1

p∑
j=1

∥Xt−j∥2 = OP

(
p(n)

)
,

and further
S2 = oa.s.

(
(log n/n)1/4

)
OP

(
p(n)1/2

)
= oP (1).

To bound S3, we use the Baxter inequality (see [15], Theorem 6.6.12 and p. 271)
and get

E ∥S3∥ ¬
∞∑
j=1

∥ϕj − ϕj,n∥E ∥Xt−j∥ ¬ const · E ∥Xt∥
∞∑

j=p+1

∥ϕj∥ .

Using Corollary 5.1 and the Markov inequality, we see that S3 = oP (1). Thus, we
have ϵn = oP (1). By formula (5.5) for ϵ̂t,n we can write

1

n− p

n∑
t=p+1

ϵ̂t,nϵ̂
T
t,n =

1

n− p

n∑
t=p+1

(ϵtϵ
T
t +Qt,nQ

T
t,n +Rt,nR

T
t,n + ϵtQ

T
t,n

+ ϵtR
T
t,n +Qt,nϵ

T
t +Qt,nR

T
t,n +Rt,nϵ

T
t +Rt,nQ

T
t,n).
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Under the assumption (A1) we obtain 1
n−p

∑n
t=p+1 ϵtϵ

T
t = Eϵtϵ

T
t + OP (n

−1/2).
Using the Cauchy–Schwarz inequality, we have∥∥∥∥ 1

n− p

n∑
t=p+1

Qt,nQ
T
t,n

∥∥∥∥ ¬ p∑
j=1

∥ϕj,n − ϕ̂j,n∥2
1

n− p

n∑
t=p+1

p∑
j=1

∥Xt−j∥2 = oP (1).

From the Baxter inequality we get

E

∥∥∥∥ 1

n− p

n∑
t=p+1

Rt,nR
T
t,n

∥∥∥∥ ¬ ∞∑
i,j=1

∥ϕj − ϕj,n∥ ∥ϕi − ϕi,n∥E ∥Xt−j∥ ∥Xt−i∥

¬ const · E ∥Xt∥2
( ∞∑
j=p+1

∥ϕj∥
)2

= O(p−2r).

Thus 1
n−p

∑n
t=p+1Rt,nR

T
t,n = oP (1). The remaining components can be bounded

analogously, by using the Cauchy–Schwarz inequality. Finally, we obtain

1

n− p

n∑
t=p+1

ϵ̂t,nϵ̂
T
t,n = Eϵtϵ

T
t + oP (1),

which completes the proof of the lemma. �

By similar arguments to those given above, we obtain

COROLLARY 5.2. Let us assume that (A1), (A2) with r ­ 1 and (B) with
p(n) = o

(
(n/ log n)1/2

)
hold. Then

E∗(ϵ∗t ϵ
∗T
t )2 = E(ϵtϵ

T
t )

2 + oP (1).

In the next lemma we prove the consistency of the bootstrap replications ϵ∗t .
It is a multivariate version of Lemma 5.5 given by Bühlmann [9] for the one-
dimensional case.

LEMMA 5.3. Let (A1), (A2) with r ­ 1 and (B) with p(n) = o
(
(n/ log n)1/2

)
hold. Then

ϵ∗t
D∗−→ ϵt in probability.

P r o o f. Write Fϵ,n(x) =
1

n−p
∑n

t=p+1 1{ϵt ¬ x} and Fϵ(x) = P (ϵt ¬ x).
Let F̂ϵ,n be given by (3.1) and d2(·, ·) be the Mallows metric. Consequently, we
have (see [6])

d2(Fϵ,n, Fϵ) = o(1) almost surely.

To complete the proof, we have to show that

d2(F̂ϵ,n, Fϵ,n) = oP (1).
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By the definition of the Mallows metric and (5.5) we obtain

d22(F̂ϵ,n, Fϵ,n) ¬
1

n− p

n∑
t=p+1

∥ϵ̃t,n − ϵt∥2 =
1

n− p

n∑
t=p+1

∥ϵ̂t,n − ϵt − ϵn∥2

=
1

n− p

n∑
t=p+1

∥Qt,n +Rt,n − ϵn∥2 .

Using bounds from the proof of Lemma 5.2, we have d2(F̂ϵ,n, Fϵ,n) = oP (1), and
as a consequence

d2(F̂ϵ,n, Fϵ) ¬ d2 (Fϵ,n, Fϵ) + d2(F̂ϵ,n, Fϵ,n) = oP (1),

which completes the proof of the lemma. �

The following lemma gives us asymptotic bounds for some sample bootstrap
estimators.

LEMMA 5.4. Let (A1), (A2) with r ­ 1 and (B) with p(n) = o
(
(n/ log n)1/2

)
hold. Then

1

n

n∑
t=1

ϵ∗t = OP ∗(n
−1/2) in probability,(5.6)

1

n

n∑
t=1

ϵ∗t ϵ
∗T
t+s = OP ∗(n

−1/2) in probability,(5.7)

1

n

n∑
t=1

ϵ∗t ϵ
∗T
t = Σ∗ +OP ∗(n

−1/2) in probability,(5.8)

where Σ∗ = E∗ϵ∗t ϵ
∗T
t and s ̸= 0.

P r o o f. Let ϵ, η > 0. According to Lemma 5.2 we have

E∗ ∥ϵ∗t ∥
2 = E∗

k∑
i=1

ϵ∗2t,i
P−→ E

k∑
i=1

ϵ2t,i = E∥ϵt∥2.

So, there exists some constant Mη such that

P (E∗ ∥ϵ∗t ∥
2 > Mη) < η.

Let δϵ,η =
√
Mη/ϵ. Thus, (5.6) is a consequence of the following inequality:

P

(
P ∗

(
n1/2

∥∥∥∥ 1n n∑
t=1

ϵ∗t

∥∥∥∥ > δϵ,η

)
> ϵ

)
¬ P

(
E∗∥ϵ∗t ∥2

δ2ϵ,η
> ϵ

)
< η.

The bounds (5.7) and (5.8) can be shown analogously, by using Corollary 5.2. �
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In the next lemma we prove the convergence of the bootstrap replications ϕ̂∗j
of the Yule–Walker estimators. It is a multivariate version of the result given by
Alonso et al. [1].

LEMMA 5.5. Let (LA) hold. Then

max
1¬j¬p

∥ϕ̂∗j − ϕj,n∥
P ∗−→ 0 in probability.

P r o o f. We have the following bounds:

∥Φ̂∗p − Φp,n∥kp×p,∞ = ∥Γ̂∗−1p γ̂∗p − Γ−1p γp∥kp×p,∞
= ∥(Γ̂∗−1p − Γ−1p )γ̂∗p − Γ−1p (γp − γ̂∗p)∥kp×p,∞
¬ ∥Γ̂∗−1p − Γ−1p ∥kp×kp,∞∥γ̂∗p∥kp×p,∞
+ ∥Γ−1p ∥kp×kp,∞∥γp − γ̂∗p∥kp×p,∞,

where Φ̂∗p = (ϕ̂∗1, . . . , ϕ̂
∗
p)

T , Φp,n = (ϕ1,n, . . . , ϕp,n)
T , Γ̂∗p = [γ̂∗(i− j)]pi,j=1, γ̂∗p =(

γ̂∗(1), . . . , γ̂∗(p)
)T , Γp = [γ(i − j)]pi,j=1, and γp =

(
γ(1), . . . , γ(p)

)T . Hannan
and Deistler ([15], Theorem 6.6.11) proved that the norm of the matrix Γ−1p is uni-
formly bounded with respect to p, i.e. sup0<p<∞ ∥Γ−1p ∥kp×kp,∞ ¬ C <∞. Thus,
we get

∥Γ̂∗−1p − Γ−1p ∥kp×kp,∞ = ∥Γ̂∗−1p (Γ̂∗p − Γp)Γ
−1
p ∥kp×kp,∞

¬ ∥Γ̂∗−1p ∥kp×kp,∞∥Γ̂∗p − Γp∥kp×kp,∞∥Γ−1p ∥kp×kp,∞
¬ (C + ∥Γ̂∗−1p − Γ−1p ∥kp×kp,∞)C∥Γ̂∗p − Γp∥kp×kp,∞.

Further, we have

∥Γ̂∗−1p − Γ−1p ∥kp×kp,∞
(C + ∥Γ̂∗−1p − Γ−1p ∥kp×kp,∞)C

¬ ∥Γ̂∗p − Γp∥kp×kp,∞.

So, we have to show that ∥Γ̂∗p − Γp∥kp×kp,∞ = oP ∗(1) in probability.
Notice that ∥Γ̂∗p − Γp∥kp×kp,∞ ¬ pmax0¬i¬p ∥γ̂∗(i)− γ(i)∥. We have

p∥γ̂∗(i)− γ(i)∥ ¬ p∥γ̂∗(i)− γ∗(i)∥+ p∥γ∗(i)− γ(i)∥ = S1 + S2.

The component S1 contains a sample bootstrap autocovariance function, thus we
are able to bound it only for |i| ¬ p. We have

S1 = p

∥∥∥∥ 1n n−i∑
t=1

X∗t+iX
∗T
t − γ∗(i)

∥∥∥∥
¬ p

∥∥∥∥ ∞∑
j,l=0

ψ̂j,n
1

n

n−i∑
t=1

ϵ∗t+i−jϵ
∗T
t−lψ̂

T
l,n −

∞∑
j=0

ψ̂j+i,nΣ
∗ψ̂T

j,n

∥∥∥∥
= oP ∗(1) in probability,
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where the obtained bounds are a consequence of Theorem 5.2 and Lemma 5.4.
Notice that with p(n) = o

(
(log n/n)−1/(2r+2)

)
in assumption (B) of Lemma 5.2

we get

(5.9) p (Σ− Σ∗) = oP (1).

We bound the component S2 for each i ∈ Z. We get

S2 = p
∥∥ ∞∑
j=0

ψ̂j+i,nΣ
∗ψ̂T

j,n −
∞∑
j=0

ψj+iΣψ
T
j

∥∥
¬
∞∑
j=0

p∥ψ̂j+i,n − ψj+i∥∥Σ∗∥∥ψ̂j,n∥+
∞∑
j=0

∥ψj+i∥p∥Σ∗ − Σ∥∥ψ̂j,n∥

+
∞∑
j=0

∥ψj+i∥∥Σ∥p∥ψ̂j,n − ψj∥

= oP (1),

where the bounds are obtained by Theorems 5.2 and 5.3 and formula (5.9). Finally,
we have

(5.10) p max
0¬i¬p

∥γ̂∗(i)− γ(i)∥ = oP ∗(1) in probability,

which completes the proof of the lemma. �

Moreover, from Lemma 5.5, Theorem 2.1 in [16] and the Baxter inequality
([15], Theorem 6.6.12 and p. 271) we obtain

COROLLARY 5.3. Let (LA) hold. Then

max
1¬j¬p

∥ϕ̂∗j − ϕj∥
P ∗−→ 0 in probability.

In the next lemmas we present multivariate generalizations of the results given
by Różański and Zagdański for the one-dimensional case (see [24]) and concerning
the prediction error Xn+h − X̂n+h. Since the proofs of these lemmas are similar
to the proofs for the one-dimensional case, we omit them.

LEMMA 5.6. Let (LA) hold. Then for h ∈ N

Xn+h − X̂n+h = OP (1).

LEMMA 5.7. Let (LA) hold. Then for h ∈ N

Xn+h − X̂n+h = D1,h(Φh−1)ϵn+1 + . . .+Dh−1,h(Φh−1)ϵn+h−1

+ ϵn+h + oP (1),

where D1,h(·), . . . , Dh−1,h(·) are some continuous functions and

Φh−1 = (ϕ1, . . . , ϕh−1)
T .
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In the following, we prove analogous results for the bootstrap prediction error
X∗n+h − X̂n+h approximating the prediction error Xn+h − X̂n+h.

LEMMA 5.8. Let (LA) hold. Then for h ∈ N

X∗n+h − X̂n+h = OP ∗(1) in probability.

P r o o f. We give the proof by induction on h. For h = 1 we have

X∗n+1 − X̂n+1 =
p∑

j=1

ϕ̂∗jXn+1−j + ϵ∗n+1 −
p∑

j=1

ϕ̂jXn+1−j

=
p∑

j=1

Xn+1−j(ϕ̂
∗
j − ϕ̂j) + ϵ∗n+1

= ϵ∗n+1 + oP ∗(1) = OP ∗(1) in probability.

Let us assume that for all l such that 1 ¬ l ¬ h − 1 we have X∗n+l − X̂n+l =
OP ∗(1) in probability and we prove it for h. We have

X∗n+h − X̂n+h =
( h−1∑
j=1

ϕ̂∗jX
∗
n+h−j +

p∑
j=h

ϕ̂∗jXn+h−j + ϵ∗n+h

)
−
( h−1∑
j=1

ϕ̂jX̂n+h−j +
p∑

j=h

ϕ̂jXn+h−j
)

=
h−1∑
j=1

ϕ̂∗j (X
∗
n+h−j − X̂n+h−j) +

h−1∑
j=1

X̂n+h−j(ϕ̂
∗
j − ϕ̂j)

+
p∑

j=h

Xn+h−j(ϕ̂
∗
j − ϕ̂j) + ϵ∗n+h

= OP ∗(1) in probability,

where the last bounds are a consequence of Lemma 5.5, Corollary 5.3, the Baxter
inequality ([15], Theorem 6.6.12 and p. 271) and the induction assumption. �

LEMMA 5.9. Let (LA) hold. Then for h ∈ N

X∗n+h − X̂n+h = D1,h(Φh−1)ϵ
∗
n+1 + . . .+Dh−1,h(Φh−1)ϵ

∗
n+h−1

+ ϵ∗n+h + oP ∗(1) in probability,

where D1,h(·), . . . , Dh−1,h(·) are the same continuous functions as in Lemma 5.7
and Φh−1 = (ϕ1, . . . , ϕh−1)

T .
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P r o o f. We give the proof by induction on h. For h = 1 we have

X∗n+1 − X̂n+1 =
p∑

j=1

ϕ̂∗jXn+1−j + ϵ∗n+1 −
p∑

j=1

ϕ̂jXn+1−j

=
p∑

j=1

Xn+1−j(ϕ̂
∗
j − ϕ̂j) + ϵ∗n+1

= ϵ∗n+1 + oP ∗(1) in probability.

Let us assume that for all l such that 1 ¬ l ¬ h− 1 we have

X∗n+l − X̂n+l = D̃1,l(Φl−1)ϵ
∗
n+1 + . . .+ D̃l−1,l(Φl−1)ϵ

∗
n+l−1

+ ϵ∗n+l + oP ∗(1) in probability.

We prove the equality for h. We have

X∗n+h − X̂n+h =
( h−1∑
j=1

ϕ̂∗jX
∗
n+h−j +

p∑
j=h

ϕ̂∗jXn+h−j + ϵ∗n+h

)
−
( h−1∑
j=1

ϕ̂jX̂n+h−j +
p∑

j=h

ϕ̂jXn+h−j
)

=
h−1∑
j=1

ϕ̂∗j (X
∗
n+h−j − X̂n+h−j) +

h−1∑
j=1

X̂n+h−j(ϕ̂
∗
j − ϕ̂j)

+
p∑

j=h

Xn+h−j(ϕ̂
∗
j − ϕ̂j) + ϵ∗n+h

=
h−1∑
j=1

ϕj(X
∗
n+h−j − X̂n+h−j) + oP ∗(1) + ϵ∗n+h in probability,

where the last bounds are obtained by Corollary 5.3, Lemma 5.8 and the Baxter
inequality ([15], Theorem 6.6.12 and p. 271). We complete the proof of the lemma
using the induction assumption. �

In the same way as in the one-dimensional case (see [24]) we can prove the
following useful lemma.

LEMMA 5.10. Assume that

|P ∗ (X∗n ¬ u)− P (X ¬ u)| P−→ 0

for some continuity point u of the cumulative distribution function FX , where ¬
means the relation of product order (partial order) in Rk,

Y ∗n
P ∗−→ 0 in probability,

Vn
P−→ 0.
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Then
|P ∗ (X∗n + Y ∗n ¬ u)− P (X + Vn ¬ u)|

P−→ 0.

The next theorem gives us consistency of the hybrid bootstrap. An analo-
gous result for the one-dimensional case was given by Różański and Zagdański
(see [24]).

THEOREM 5.4. Let (LA) hold. Then for h ∈ N we have

|P ∗(X∗n+h − X̂n+h ¬ u)− P (Xn+h − X̂n+h ¬ u)| = oP (1)

for each u being a continuity point of the cumulative distribution function of the
random vector D1,h(Φh−1)ϵ1 + . . . + Dh−1,h(Φh−1)ϵh−1 +ϵh, where Φh−1 =
(ϕ1, . . . , ϕh−1)

T .

P r o o f. Let h ∈ N. According to Lemmas 5.7 and 5.9 we can write

P ∗(X∗n+h − X̂∗n+h ¬ u)− P (Xn+h − X̂n+h ¬ u)
= P ∗

(
D1,h(Φh−1)ϵ

∗
n+1 + . . .+Dh−1,h(Φh−1)ϵ

∗
n+h−1 + ϵ∗n+h + oP ∗(1) ¬ u

)
− P

(
D1,h(Φh−1)ϵn+1 + . . .+Dh−1,h(Φh−1)ϵn+h−1 + ϵn+h + oP (1) ¬ u

)
= P ∗

(
D1,h(Φh−1)ϵ

∗
1 + . . .+Dh−1,h(Φh−1)ϵ

∗
h−1 + ϵ∗h + oP ∗(1) ¬ u

)
− P

(
D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh + oP (1) ¬ u

)
.

Using the independence of ϵt, conditional independence of ϵ∗t and Lemmas 5.3 and
5.10 we complete the proof of the theorem. �

By Theorem 5.4 and Remark 4.1 we have

COROLLARY 5.4. Let (LA) hold. Then for h ∈ N we have

|P ∗(X∗n+h − X̂n+h ¬ u)− P (Xn+h − ProjnXn+h ¬ u)| = oP (1)

for each u being a continuity point of the cumulative distribution function of the
random vector D1,h(Φh−1)ϵ1 + . . . + Dh−1,h(Φh−1)ϵh−1 + ϵh, where Φh−1 =
(ϕ1, . . . , ϕh−1)

T and ProjnXn+h is the best linear h-step predictor (in the mean
square sense) of Xn+h.

COROLLARY 5.5. Let (LA) hold. Additionally, assume that the cumulative
distribution function of the distribution ϵt is continuous. Then for h ∈ N we have

sup
u∈Rk

|P ∗(X∗n+h − X̂n+h ¬ u)− P (Xn+h − X̂n+h ¬ u)| = oP (1)

and

sup
u∈Rk

|P ∗(X∗n+h − X̂n+h ¬ u)− P (Xn+h − ProjnXn+h ¬ u)| = oP (1).
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To prove the consistency of bootstrap-t, we have to show the consistency of
the estimator Σ̂n,X(h) (estimator of the mean squared prediction error (4.1)).

LEMMA 5.11. Let (LA) hold. Then

Σ̂n,X(h)
P−→ ΣX(h),(5.11)

Σ̂−1n,X(h)
P−→ Σ−1X (h).(5.12)

P r o o f. We consider an estimator of the mean squared prediction error of the
form (4.2):

ΣX(h) =
h−1∑
j=0

ψjΣψ
T
j , Σ̂n,X(h) =

h−1∑
j=0

ψ̂j,nΣ̂ψ̂
T
j,n.

Thus

∥∥ h−1∑
j=0

ψ̂j,nΣ̂ψ̂
T
j,n −

h−1∑
j=0

ψjΣψ
T
j

∥∥ ¬ h−1∑
j=0

∥ψ̂j,n − ψj∥∥Σ̂∥∥ψ̂j,n∥

+
h−1∑
j=0

∥ψj∥∥Σ̂− Σ∥∥ψ̂j,n∥+
h−1∑
j=0

∥ψj∥∥Σ∥∥ψ̂j,n − ψj∥

= oP (1),

where the bounds are obtained by using (5.1) and Theorems 5.2 and 5.3. From the
consistency of Σ̂n,X(h) it follows that P (Σ̂n,X(h) is invertible)→ 1 as n→∞,
which together with the continuity of Σ̂−1X (h) as a function of elements of Σ̂X(h)
imply (5.12) (see [25], Theorem 5.18, p. 188). �

In the next lemma we prove the convergence of the bootstrap replication ψ̂∗j .
It is a multivariate version of the result given by Zagdański [29].

LEMMA 5.12. Let (LA) hold. Then

sup
0¬j
∥ψ̂∗j − ψj∥ = oP ∗(1) in probability.

P r o o f. We use a similar method to that given in the proof of Theorem 5.3.
We can write analogous equations:

ψjΣ = γ(j)−
∞∑
i=1

γ(j + i)ϕTi , ψ̂∗jΣ
∗ = γ∗(j)−

p∑
i=1

γ∗(j + i)ϕ̂∗Ti .



Prediction intervals and regions for multivariate time series models 343

For j ∈ N we have

∥ψ̂∗j − ψj∥ ¬ ∥Σ−1 − Σ∗−1∥
∥∥γ(j)− ∞∑

i=1

γ(j + i)ϕTi
∥∥

+ ∥Σ∗−1∥∥γ∗(j)− γ(j)∥

+ ∥Σ∗−1∥
∥∥ ∞∑
i=1

γ(j + i)ϕTi −
p∑

i=1

γ∗(j + i)ϕ̂∗Ti
∥∥

= S1 + S2 + S3.

We treat the components Si individually. We have

∥Σ−1 − Σ∗−1∥ = ∥Σ∗−1(Σ∗ − Σ)Σ−1∥
¬ ∥Σ∗−1∥∥Σ∗ − Σ∥∥Σ−1∥
¬ (∥Σ−1∥+ ∥Σ−1 − Σ∗−1∥)∥Σ∗ − Σ∥∥Σ−1∥.

Further we get

(5.13)
∥Σ−1 − Σ∗−1∥

(C + ∥Σ−1 − Σ∗−1∥)C
¬ ∥Σ∗ − Σ∥ = oP (1),

where ∥Σ−1∥ ¬ C. Thus S1 = oP (1) by Lemma 5.2 and the assumption (A2). We
bound the components S2 and S3 using the same method. Thus, we present the
calculations only for S3:

S3 = ∥Σ∗−1∥
∥∥ p∑
i=1

γ(j + i)(ϕTi − ϕ̂∗Ti ) +
∞∑

i=p+1

γ(j + i)ϕTi

+
p∑

i=1

(
γ(j + i)− γ∗(j + i)

)
ϕ̂∗Ti

∥∥
¬ ∥Σ∗−1∥

(
max
1¬i¬p

∥ϕi − ϕ̂∗i ∥
∞∑
i=1

∥γ(i)∥+
∥∥[EX2

t,iEX
2
t,j ]

k
i,j=1

∥∥ ∞∑
i=p+1

∥ϕi∥

+ p max
1¬i¬p

∥γ(i)− γ∗(i)∥ max
1¬i¬p

∥ϕ̂∗i ∥
)

= oP ∗(1),

where the bounds are a consequence of (5.10), (5.13) and Corollary 5.3. �

LEMMA 5.13. Let (LA) hold. Then

Σ̂∗X(h)
P ∗−→ ΣX(h) in probability,(5.14)

Σ̂∗−1X (h)
P ∗−→ Σ−1X (h) in probability.(5.15)
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P r o o f. We consider the bootstrap estimator of the mean squared prediction
error in the form

Σ̂∗X(h) =
h−1∑
j=0

ψ̂∗jΣ
∗ψ̂∗Tj .

Thus, using (5.10) and Lemma 5.12, we obtain

∥∥ h−1∑
j=0

ψ̂∗jΣ
∗ψ̂∗Tj −

h−1∑
j=0

ψjΣψ
T
j

∥∥ ¬ h−1∑
j=0

∥ψ̂∗j − ψj∥∥Σ∗∥∥ψ̂∗j ∥

+
h−1∑
j=0

∥ψj∥∥Σ∗ − Σ∥∥ψ̂∗j ∥+
h−1∑
j=0

∥ψj∥∥Σ∥∥ψ̂∗j − ψj∥

= oP ∗(1),

which proves (5.14). And (5.15), in the same way as (5.12), follows from the con-
tinuity of Σ̂∗−1X (h) as a function of elements of Σ̂∗X(h) (see [25], Theorem 5.18,
p. 188). �

REMARK 5.1. All proofs of the theorems and lemmas above remain valid for
p(n) chosen as in Step 1 of the sieve bootstrap algorithm.

The next theorem gives us consistency of bootstrap-t. An analogous result for
the one-dimensional case was given by Zagdański (see [29]).

THEOREM 5.5. Let (LA) hold. Then for h ∈ N we have∣∣P ∗(Σ̂∗−1/2X (h)(X∗n+h − X̂n+h) ¬ u
)

− P
(
Σ̂
−1/2
X (h)(Xn+h − X̂n+h) ¬ u

)∣∣ = oP (1)

for each u being a continuity point of the cumulative distribution function of the
random vector Σ−1/2X (h)

(
D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh

)
, where

Φh−1 = (ϕ1, . . . , ϕh−1)
T .

P r o o f. We have the convergence

Xn+h − X̂n+h
D−→ D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh.

Using the multidimensional version of Slutsky’s theorem ([20], Proposition C,
p. 683) and Lemma 5.11, we have

Σ̂
−1/2
X (h)(Xn+h − X̂n+h)

D−→ Σ
−1/2
X (h)

(
D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh

)
.
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Similarly, using the conditional independence of ϵ∗t and Lemma 5.3, we obtain
convergence for the bootstrap prediction error

X∗n+h−X̂n+h
D∗−→ D1,h(Φh−1)ϵ1+. . .+Dh−1,h(Φh−1)ϵh−1+ϵh in probability.

By the Conditional Slutsky’s Theorem ([19], p. 77) and Lemma 5.13 we get

Σ̂
∗−1/2
X (h)(X∗n+h − X̂n+h)

D∗−→ Σ
−1/2
X (h)

(
D1,h(Φh−1)ϵ1+ . . .+Dh−1,h(Φh−1)ϵh−1+ ϵh

)
in probability.

Finally, we show that∣∣P ∗(Σ̂∗−1/2X (h)(X∗n+h − X̂n+h) ¬ u
)

− P
(
Σ̂
−1/2
X (h)(Xn+h − X̂n+h) ¬ u

)∣∣ = oP (1)

for some u being a continuity point of the cumulative distribution function of the
random vector Σ−1/2X (h)

(
D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh

)
. �

From Corollary 5.4, Lemmas 5.11, 5.13 and Theorem 5.5 we deduce the fol-
lowing corollaries.

COROLLARY 5.6. Let (LA) hold. Then for h ∈ N we have∣∣P ∗(Σ̂∗−1/2X (h)(X∗n+h − X̂n+h) ¬ u
)

− P
(
Σ̂
−1/2
X (h)(Xn+h − ProjnXn+h) ¬ u

)∣∣ = oP (1)

for each u being a continuity point of the cumulative distribution function of the
random vector Σ−1/2X (h)

(
D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh

)
, where

Φh−1 = (ϕ1, . . . , ϕh−1)
T .

COROLLARY 5.7. Let (LA) hold. Additionally, assume that the cumulative
distribution function of the distribution ϵt is continuous. Then for h ∈ N we have

sup
u∈Rk

∣∣P ∗(Σ̂∗−1/2X (h)(X∗n+h − X̂n+h) ¬ u
)

− P
(
Σ̂
−1/2
X (h)(Xn+h − X̂n+h) ¬ u

)∣∣ = oP (1)

and

sup
u∈Rk

∣∣P ∗(Σ̂∗−1/2X (h)(X∗n+h − X̂n+h) ¬ u
)

− P
(
Σ̂
−1/2
X (h)(Xn+h − ProjnXn+h) ¬ u

)∣∣ = oP (1).
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5.3. Consistency of extreme statistics. By Lemma 5.7 and the continuous map-
ping theorem we conclude that Un+h, Vn+h and Rn+h given by formulas (4.17)–
(4.19) are convergent in distribution to some random variables.

LEMMA 5.14. Assume that (LA) hold and that ϵt has a continuous distribu-
tion function. Then, as n→∞, Un+h

D−→U, Vn+h
D−→V andRn+h

D−→R, where
U, V and R are random variables with continuous distribution functions.

In the next lemma we show that distributions of U∗n+h, V ∗n+h and R∗n+h given
by formulas (4.20)–(4.22) are close to their corresponding non-bootstrap distribu-
tions.

LEMMA 5.15. Assuming that (LA) hold, we have U∗n+h
D∗−→U, V ∗n+h

D∗−→V

and R∗n+h
D∗−→R in probability.

P r o o f. By Lemma 5.7, Lemma 10 from [5], and Theorem 5.4 we conclude
that, as n→∞,

Wn+h=Xn+h− X̂n+h
D−→W =D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh,

and the sequence of bootstrap distributions of W ∗n+h weakly approaches in prob-

ability the sequence of distributions of Wn+h. In consequence, W ∗n+h
D∗−→W in

probability. Since the mappings defining U∗n+h, V ∗n+h, R∗n+h are continuous func-

tions, the version of the continuous mapping theorem (see [4]) impliesU∗n+h
D∗−→U

in probability, V ∗n+h
D∗−→V in probability and R∗n+h

D∗−→R in probability, which
completes the proof. �

Using Lemmas 5.11, 5.13, and Theorem 5.5 we can prove analogous results
for asymptotic distributions of USn+h, V Sn+h, RSn+h and their bootstrap ver-
sions US∗n+h, V S∗n+h, RS∗n+h in the same way as in the proofs of the lemmas
above.

LEMMA 5.16. With (LA) we have, as n→∞,

USn+h
D−→US, V Sn+h

D−→V S and RSn+h
D−→RS.

LEMMA 5.17. With (LA)

US∗n+h

D∗∼= US, V S∗n+h

D∗∼= V S and RS∗n+h

D∗∼= RS in probability.

In the construction of simultaneous confidence intervals we should replace un-
known quantiles with their bootstrap equivalences. Therefore, we show that boot-
strap quantiles of U∗n+h, V ∗n+h and R∗n+h are approximations of the quantiles of U ,
V and R. This fact has been proved in [24] (see Lemma 5.2). For the clearance let
us reformulate their lemma with notation stated in Lemma 5.15.
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LEMMA 5.18. With (LA)

u∗n+h,α = uα + oP (1), v∗n+h,α = vα + oP (1), r∗n+h,α = rα + oP (1).

In practice, we also do not know the exact bootstrap distributions of U∗n+h,
V ∗n+h and R∗n+h. Therefore, using the result by Shi et al. [26], we apply the Monte
Carlo method to approximate corresponding quantiles. In consequence, we obtain
the following lemmas.

LEMMA 5.19. With (LA)

û∗n+h,α = uα + oP (1),

v̂∗n+h,α = vα + oP (1),

r̂∗n+h,α = rα + oP (1).

LEMMA 5.20. With (LA) and for a continuous distribution function of ϵt

ûs∗n+h,(·) = us(·) + oP (1),

v̂s∗n+h,(·) = vs(·) + oP (1),

r̂s∗n+h,(·) = rs(·) + oP (1),

where ûs∗n+h,(·), v̂s
∗
n+h,(·) and r̂s∗n+h,(·) are Monte Carlo bootstrap estimators of

quantiles of US∗n+h, V S
∗
n+h, RS

∗
n+h, and thus the approximations of quantiles of

USn+h, V Sn+h, RSn+h.

6. CONSISTENCY OF BOOTSTRAP PREDICTION REGIONS

In this section we present results about the consistency of the bootstrap pre-
diction regions for the stationary time series models. Theorem 6.1 is a multivariate
version of the result given by Różański and Zagdański (see [24]), and Theorem 6.3
is a multivariate version of the result given by Zagdański (see [29]).

To prove the consistency of the prediction regions we will use auxiliary results
about convergence of quantiles for a weakly convergent sequence of the cumula-
tive distribution function. The first lemma was given by Politis et al. [23] and the
second one, the modification for the conditional case, was given by Różański and
Zagdański [24].

LEMMA 6.1 ([23], Lemma 1.2.1). Let {Fn} be a sequence of cumulative dis-
tribution functions which converges to F in a weak sense and assume that F is con-
tinuous and strictly increasing at y = F−1(α) (for x ∈ (0, 1), F−1(x) = inf{y :
x ¬ F (y)}). Then

F−1n (α)→ F−1(α).
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LEMMA 6.2 ([24]). Let {F ∗n} be a sequence of cumulative distribution func-
tions which converges to F in a weak sense (i.e. F ∗n ⇒ F in probability) and
assume that F is continuous and strictly increasing at y = F−1(α). Then

F ∗−1n (α)
P−→ F−1(α).

In Subsection 4.3 we have presented the hybrid bootstrap prediction cube
given by (4.10). In practice we do not know the distribution of the random vec-
tor H∗n(h), and in consequence we are not able to compute its quantiles. Thus, we
define the modified hybrid bootstrap prediction cube in the form

(6.1) ÎB(h) = {Xn+h,j ∈ [X̂n+h,j + q̂∗α/(2k),j ,

X̂n+h,j + q̂∗1−α/(2k),j ], j = 1, . . . , k},

where q̂∗α/(2k),j , q̂
∗
1−α/(2k),j are Monte Carlo approximations of quantiles q∗α/(2k),j ,

q∗1−α/(2k),j (computed by using B bootstrap replications).

REMARK 6.1. The replacement of the quantiles is made due to the result given
by Shi et al. [26], i.e.

q∗α,j − q̂∗α,j = oP (1), j = 1, . . . , k, α ∈ (0, 1).

THEOREM 6.1. Let (LA) hold. Additionally, assume that cα/(2k),j , c1−α/(2k),j
are continuity points of the cumulative distribution function of the random vari-
ables Hj , which are the jth coordinates of the random vector D1,h(Φh−1)ϵ1 +
. . .+Dh−1,h(Φh−1)ϵh−1 + ϵh . Then for h ∈ N we have

P
(
Xn+h ∈ ÎB(h)

)
­ 1− α as n→∞.

P r o o f. Using Theorem 5.4 we get for 1 ¬ j ¬ k

Xn+h,j − X̂n+h,j
D−→ Hj .

By the result given by Różański and Zagdański [24] we have for 1 ¬ j ¬ k

P (Xn+h,j ∈ [X̂n+h,j + q̂∗α/(2k),j , X̂n+h,j + q̂∗1−α/(2k),j ])→ 1− α/k.

Using the Bonferroni inequality, we obtain

P
(
Xn+h ∈ ÎB(h)

)
­ 1−

k∑
j=1

P (Xn+h,j ∈ [X̂n+h,j + q̂∗α/(2k),j , X̂n+h,j + q̂∗1−α/(2k),j ]
c)→ 1−α. �
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In a similar way, we define ÊB(h) as an equivalent of EB(h) given by (4.11)
in the form

(6.2) ÊB(h) = {(Xn+h − X̂n+h)
T (Xn+h − X̂n+h) ¬ q̂∗1−α},

where q̂∗1−α is the Monte Carlo approximation of quantile q∗1−α (computed by using
B bootstrap replications). The consistency of this hybrid prediction region is given
in the next theorem.

THEOREM 6.2. Let (LA) hold. Additionally, assume that c1−α is a continuity
point of the cumulative distribution function of the random variable ∥D1,h(Φh−1)ϵ1
+ . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh∥2. Then for h ∈ N

P
(
Xn+h ∈ ÊB(h)

)
→ 1− α.

P r o o f. Using continuity of the function ∥ · ∥2 and Theorem 5.4, we have

∥Hn(h)∥2
D−→ ∥D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1+ϵh∥2 ,

∥H∗n(h)∥
2 D∗−→ ∥D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1+ϵh∥2 in probability.

Let q1−α be the 1− α quantile of the distribution ∥Hn(h)∥2. By Lemmas 6.1, 6.2
and the consistency of the bootstrap sample quantiles (Remark 6.1) we have

q1−α − c1−α = o(1), q∗1−α − q1−α = oP (1), q̂∗1−α − q∗1−α = oP (1).

Notice that

P
(
Xn+h ∈ ÊB(h)

)
= P

(
∥Hn(h)∥2 ¬ q̂∗1−α

)
= P

(
∥Hn(h)∥2 ¬ (q̂∗1−α − q1−α) + (q∗1−α − q1−α) + (q1−α − c1−α) + c1−α

)
= P

(
∥Hn(h)∥2 + oP (1) ¬ c1−α

)
.

We use the Slutsky theorem to complete the proof:

P
(
∥Hn(h)∥2 + oP (1) ¬ c1−α

)
→ P

(
∥D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh∥2 ¬ c1−α

)
= 1−α. �

We define the modified bootstrap-t prediction cube ÎB−t(h) and the modified
bootstrap-t prediction ellipse ÊB−t(h):

(6.3) ÎB−t(h) = {Xn+h,j ∈ [X̂n+h,j + σ̂X,j(h)t̂
∗
α/(2k),j ,

X̂n+h,j + σ̂X,j(h)t̂
∗
1−α/(2k),j ], j = 1, . . . , k},
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(6.4) ÊB−t(h) = {(Xn+h − X̂n+h)
T Σ̂−1n,X(h)(Xn+h − X̂n+h) ¬ t̂∗1−α},

where t̂∗α/(2k),j , t̂
∗
1−α/(2k),j are the Monte Carlo approximations of the quantiles

t∗α/(2k),j , t
∗
1−α/(2k),j , and t̂∗1−α is the Monte Carlo approximation of the quantile

t∗1−α (all the approximations are computed by using B bootstrap replications).

THEOREM 6.3. Let (LA) hold. Additionally, assume that dα/(2k),j , d1−α/(2k),j
are continuity points of the cumulative distribution functions of the random vari-
ables Tj = Hj/σX,j(h). Then for h ∈ N we have

P
(
Xn+h ∈ ÎB−t(h)

)
­ 1− α as n→∞.

P r o o f. Using Theorem 5.4, Lemma 5.11 and the Slutsky theorem, we get
for 1 ¬ j ¬ k

Xn+h,j − X̂n+h,j

σ̂X,j(h)

D−→ Tj .

By the result given by Zagdański [29] we have for 1 ¬ j ¬ k

P
(
Xn+h,j∈ [X̂n+h,j + t̂∗α/(2k),j σ̂X,j(h), X̂n+h,j + t̂∗1−α/(2k),j σ̂X,j(h)]

)
→1−α/k.

Using the Bonferroni inequality, we obtain

P
(
Xn+h ∈ ÎB−t(h)

)
­ 1−

k∑
j=1

P
(
Xn+h,j∈ [X̂n+h,j+ t̂

∗
α/(2k),j σ̂X,j(h), X̂n+h,j+ t̂

∗
1−α/(2k),j σ̂X,j(h)]

c
)

→ 1− α. �

THEOREM 6.4. Let (LA) hold. Assume that d1−α is a continuity point of the
cumulative distribution function of the random variable∥∥Σ−1/2X (h)

(
D1,h(Φh−1)ϵ1 + . . .+Dh−1,h(Φh−1)ϵh−1 + ϵh

)∥∥2.
Then for h ∈ N

P
(
Xn+h ∈ ÊB−t(h)

)
→ 1− α.

P r o o f. The proof is analogous to the proof of Theorem 6.2. �

Now, we will prove the consistency of simultaneous bootstrap prediction in-
tervals. First, assume that we know the distribution of U , V and R. By the Slutsky
lemma, we obtain the following theorem.
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THEOREM 6.5. With the assumptions from Lemma 5.14 we get

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ [X̂n+h,i + uα/2, X̂n+h,i + v1−α/2]

)
­ 1− α,(6.5)

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ [X̂n+h,i + uα,+∞)

)
= 1− α,(6.6)

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ (−∞, X̂n+h,i + v1−α]

)
= 1− α,(6.7)

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ [X̂n+h,i − r1−α, X̂n+h,i + r1−α]

)
= 1− α,(6.8)

where u(·), v(·) and r(·) are quantiles of corresponding distributions of U , V
and R.

Further, we can formulate the main theorem about consistency of bootstrap
prediction simultaneous intervals with theoretical quantiles in formulas (6.5)–(6.8)
replaced by their Monte Carlo approximations by using the result given by Shi
et al. [26]:

THEOREM 6.6. Assume that (LA) hold and that ϵt has a continuous distri-
bution. Then for each u being the continuity point of limited distribution we have
simultaneous prediction intervals satisfying the following:

lim
n→∞

P
(
∀i=1,...,k Xn+h,i ∈ [X̂n+h,i + û∗n+h,α/2,(6.9)

X̂n+h,i + v̂∗n+h,1−α/2]
)
­ 1− α,

lim
n→∞

P
(
∀i=1,...,k Xn+h,i ∈ [X̂n+h,i + û∗n+h,α,+∞)

)
= 1− α,(6.10)

lim
n→∞

P
(
∀i=1,...,k Xn+h,i ∈ (−∞, X̂n+h,i + v̂∗n+h,1−α]

)
= 1− α,(6.11)

lim
n→∞

P
(
∀i=1,...,k Xn+h,i ∈ [X̂n+h,i − r̂∗n+h,1−α,(6.12)

X̂n+h,i + r̂∗n+h,1−α]
)
= 1− α.

P r o o f. For the formula (6.9) we have the following relations:

1− P
(
∀i=1,...,k Xn+h,i ∈ [X̂n+h,i + û∗n+h,α/2, X̂n+h,i + v̂∗n+h,1−α/2]

)
= 1− P

(
min
1¬i¬k

(Xn+h,i − X̂n+h,i) ­ û∗n+h,α/2

∧ max
1¬i¬k

(Xn+h,i − X̂n+h,i) ¬ v̂∗n+h,1−α/2
)

= P (Un+h < û∗n+h,α/2 ∨ Vn+h > v̂∗n+h,1−α/2)

¬ P (Un+h < û∗n+h,α/2) + P (Vn+h > v̂∗1−α/2)

≈P
(
U < oP (1) + uα/2

)
+ P

(
V > oP (1) + v1−α/2

)
→ α

2
+
α

2
= α as n→∞,
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where the above approximation is a consequence of Lemma 5.19, and the last con-
vergence follows from the Slutsky lemma. For formulas (6.10)–(6.12) the reason-
ing is analogous. �

As in the case of hybrid intervals defined in Theorem 6.6 we can construct
studentized bootstrap intervals and prove the following theorem.

THEOREM 6.7. With the assumptions from Lemma 5.14 we have the following
simultaneous prediction intervals:

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ [X̂n+h,i + ûs∗n+h,α/2σ̂n+h,(6.13)

X̂n+h,i + v̂s∗n+h,1−α/2σ̂n+h]
)
­ 1− α,

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ [X̂n+h,i + ûs∗n+h,ασ̂n+h,+∞)

)
= 1− α,(6.14)

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ (−∞, X̂n+h,i + v̂s∗n+h,1−ασ̂n+h]

)
= 1− α,(6.15)

lim
n→∞

P
(
∀i=1,...,kXn+h,i ∈ [X̂n+h,i − r̂s∗n+h,1−ασ̂n+h,(6.16)

X̂n+h,i + r̂s∗n+h,1−ασ̂n+h]
)
= 1− α,

where ûs∗n+h,(·), v̂s
∗
n+h,(·) and r̂s∗n+h,(·) are Monte Carlo estimators of quantiles

of bootstrap distributions of US∗n+h, V S∗n+h and RS∗n+h, respectively.

REMARK 6.2. It is worth noting that by Remark 4.1 and Corollaries 5.4–5.7
all the constructed bootstrap prediction intervals and regions are asymptotically
equivalent to corresponding prediction intervals and regions based on the best
linear mean squared prediction of Xn+h.

7. SIMULATIONS

In this section we investigate how the presented procedures work on simulated
data. We consider the following V ARMA(5, 4) model:

Xt =

[
−0.91 0.01
0.37 −0.90

]
Xt−1 +

[
−0.37 0.12
0.42 −0.49

]
Xt−2

+

[
−0.18 0.10
0.30 0.18

]
Xt−3 +

[
−0.12 0.08
0.14 0.24

]
Xt−4

+

[
0.17 −0.02
0.18 0.36

]
Xt−5 +

[
−0.91 0.01
0.37 −0.90

]
ϵt−1

+

[
−0.37 0.12
0.42 −0.49

]
ϵt−2 +

[
−0.18 0.10
0.30 0.18

]
ϵt−3

+

[
−0.12 0.08
0.14 0.24

]
ϵt−4 + ϵt.
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In the model V ARMA(5, 4) we used the following distributions for the noise
process ϵt:
(N) normal distribution N (0,Σ),
(T) t-Student distribution T (5),
(χ2) χ-square distribution χ2(5),
(M) mixture of the normal distributions 0.1N ([9, 9]T ,Σ) + 0.9N ([−1,−1]T ,Σ).

The observations of the noise process ϵt for each of these distributions have
been scaled (observations from χ2 have been centered). Thus for each considered
distribution we have the mean Eϵt = [0, 0]T and the covariance matrix

Eϵtϵ
T
t = Σ =

[
1.0 0.5
0.5 1.0

]
.

On the base of the simulation results, we compare sample coverage of the
prediction regions, which were computed by using the Box–Jenkins method (this
method assumes normality of ϵt), with the sample coverage of the bootstrap pre-
diction regions. We check performance of each method for different distributions
of ϵt. We use t-Student distribution (T) as a heavy tailed distribution, χ-square
distribution (χ2) as a nonsymmetric distribution, and mixture (M) of the normal
distributions as a bimodal distribution.

In simulations we used parameters:
• confidence level 1− α = 90%,
• forecast horizon h = 1, 2, 3, 4, 5,
• number of observations n = 50, 200,
• number of bootstrap replications B = 1000,
• number of Monte Carlo repetitions N = 1000.
We have constructed three types of the prediction regions. The first type of

the prediction regions is constructed by using the Bonferroni inequality and the
prediction regions have cubical shape. The Box–Jenkins prediction cube is given as
in equation (4.4) and the bootstrap prediction cubes have forms of hybrid bootstrap
(6.1) and bootstrap-t (6.3).

The prediction regions of the second type have elliptical shape. The Box–
Jenkins prediction ellipse is given by (4.3) and the bootstrap prediction ellipses are
given by hybrid bootstrap (6.2) and bootstrap-t (6.4).

The third type of prediction regions is constructed by using extreme statistics,
and the prediction regions have cubical shape. We have constructed the hybrid
bootstrap prediction cubes IUV

B (h) (see (4.23)), IRB (h) (see (4.26)) and bootstrap-t
prediction cubes IUV

B−t(h) (see (4.27)), IRB−t(h) (see (4.30)).
In Tables 1 and 3, we present empirical coverage of the prediction cubes, and

in Table 2, we present empirical coverage of the prediction ellipses for different
number of observations n = 50, 200. In the brackets, next to the empirical cover-
age, we present the mean area of the prediction regions.
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The area of the prediction ellipse, constructed by using the Box–Jenkins meth-
od, has been calculated via the formula (see [17])

(7.1) V
(
EB−J(h)

)
=

πk/2

Γ
(
k
2 + 1

) (χ2
1−α(k)

)k/2 (
det

(
ΣX(h)

))1/2
,

where ΣX(h) is replaced by Σ̂X(h).
The area of the bootstrap-t prediction ellipse has been calculated by using (7.1)

with ΣX(h) replaced by Σ̂X(h) and the quantile χ2
1−α(k) replaced by t̂∗1−α.

It is worth noting the better performance of the bootstrap prediction regions
in comparison with the performance of the prediction regions constructed via the
Box–Jenkins method.

In all cases we observe that empirical coverage of bootstrap-t prediction re-
gions is larger than empirical coverage of hybrid bootstrap prediction regions but
bootstrap-t prediction regions have larger areas.

The empirical coverage of the bootstrap prediction cubes is similar to empir-
ical coverage of the bootstrap prediction ellipses. However, areas of the bootstrap
prediction ellipses are smaller than areas of the bootstrap prediction cubes.

The bootstrap prediction regions constructed with extreme statistics are more
stable than the bootstrap prediction regions constructed by using the Bonferroni
inequality.

Table 1. The empirical coverage of the bootstrap prediction cubes for the model V ARMA(5, 4).

Distribution h
n = 50 n = 200

Box–Jenkins hybrid bootstrap bootstrap-t Box–Jenkins hybrid bootstrap bootstrap-t
1 77.2 (3.1) 83.1 (3.8) 89.0 (4.7) 86.1 (3.1) 88.1 (3.4) 90.3 (3.6)
2 75.6 (5.2) 80.1 (6.2) 86.6 (8.0) 85.2 (5.5) 86.7 (5.8) 88.9 (6.4)

N 3 77.0 (6.0) 82.0 (7.1) 87.8 (9.1) 87.2 (6.3) 88.1 (6.7) 89.9 (7.4)
4 79.3 (6.7) 82.7 (7.7) 87.4 (9.7) 87.7 (7.0) 89.1 (7.4) 91.3 (8.2)
5 79.3 (7.2) 82.3 (8.2) 87.5 (10.3) 87.7 (7.7) 89.2 (8.1) 90.6 (8.9)
1 78.0 (3.1) 82.6 (3.9) 88.0 (4.9) 86.7 (3.1) 88.4 (3.4) 90.6 (3.8)
2 77.0 (5.2) 82.7 (6.4) 88.9 (8.3) 85.6 (5.6) 87.3 (6.0) 89.2 (6.7)

T 3 77.7 (6.1) 82.6 (7.3) 87.1 (9.4) 85.8 (6.4) 87.6 (6.8) 89.4 (7.6)
4 80.1 (6.7) 83.4 (7.8) 89.0 (10.1) 87.4 (7.1) 88.4 (7.6) 90.4 (8.5)
5 80.1 (7.3) 83.7 (8.4) 89.1 (10.7) 87.4 (7.8) 88.3 (8.3) 90.6 (9.2)
1 75.6 (3.1) 81.7 (3.9) 86.6 (4.8) 85.4 (3.1) 86.5 (3.5) 88.7 (3.8)
2 77.7 (5.2) 80.7 (6.3) 87.3 (8.2) 84.2 (5.5) 85.5 (5.9) 87.9 (6.6)

χ2 3 76.0 (6.1) 81.3 (7.2) 87.2 (9.2) 84.3 (6.3) 85.2 (6.8) 87.7 (7.5)
4 76.9 (6.7) 81.7 (7.8) 86.9 (9.9) 85.9 (7.0) 86.9 (7.5) 88.3 (8.3)
5 76.9 (7.3) 80.3 (8.3) 85.2 (10.5) 85.9 (7.7) 86.4 (8.2) 88.2 (9.1)
1 74.7 (3.0) 80.8 (4.0) 85.6 (5.1) 81.1 (3.1) 86.0 (4.0) 87.6 (4.4)
2 73.4 (5.2) 77.8 (6.5) 83.6 (8.6) 81.0 (5.5) 83.5 (6.3) 85.2 (7.0)

M 3 72.8 (6.1) 77.1 (7.4) 82.3 (9.6) 80.2 (6.4) 83.4 (7.1) 85.2 (7.9)
4 76.2 (6.7) 79.4 (8.0) 84.9 (10.3) 80.2 (6.4) 83.4 (7.1) 85.2 (7.9)
5 76.2 (7.4) 78.2 (8.6) 83.6 (11.0) 83.4 (7.8) 85.6 (8.6) 86.5 (9.5)
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Table 2. The empirical coverage of the bootstrap
prediction ellipses for the model V ARMA(5, 4).

Distribution h
n = 50 n = 200

Box–Jenkins hybrid bootstrap bootstrap-t Box–Jenkins hybrid bootstrap bootstrap-t
1 75.6 (2.8) 85.3 (5.7) 88.7 (4.4) 84.6 (2.9) 87.6 (5.1) 88.9 (3.3)
2 75.0 (4.8) 84.5 (8.8) 86.3 (7.6) 84.3 (5.1) 87.9 (7.7) 88.5 (5.9)

N 3 74.0 (5.5) 83.9 (9.4) 86.0 (8.5) 85.9 (5.7) 89.4 (8.3) 89.1 (6.7)
4 78.6 (6.2) 85.0 (10.1) 87.6 (9.2) 86.0 (6.5) 88.9 (9.3) 89.6 (7.5)
5 78.6 (6.7) 84.8 (11.0) 88.2 (9.8) 86.0 (7.2) 89.7 (10.4) 90.0 (8.3)
1 77.2 (2.8) 86.6 (5.7) 88.1 (4.5) 86.7 (2.9) 89.4 (5.0) 90.1 (3.4)
2 75.7 (4.8) 85.6 (9.0) 88.6 (7.8) 85.8 (5.1) 87.8 (7.8) 89.0 (6.1)

T 3 76.9 (5.6) 85.3 (9.7) 87.6 (8.8) 86.4 (5.8) 87.8 (8.4) 88.7 (6.8)
4 77.7 (6.2) 85.5 (10.3) 89.1 (9.4) 85.8 (6.6) 88.9 (9.4) 89.4 (7.7)
5 77.7 (6.8) 85.4 (11.3) 89.3 (10.1) 85.8 (7.3) 88.8 (10.5) 88.8 (8.5)
1 74.4 (2.8) 83.1 (5.7) 86.8 (4.5) 85.1 (2.9) 87.1 (5.1) 88.6 (3.4)
2 74.7 (4.8) 86.0 (8.9) 87.3 (7.8) 83.9 (5.1) 87.4 (7.8) 88.3 (6.0)

χ2 3 75.7 (5.5) 84.6 (9.5) 87.6 (8.6) 84.0 (5.7) 88.2 (8.4) 87.8 (6.8)
4 75.1 (6.2) 82.8 (10.2) 87.1 (9.3) 85.4 (6.5) 86.7 (9.3) 89.0 (7.6)
5 75.1 (6.8) 83.4 (11.1) 85.5 (9.9) 85.4 (7.2) 86.3 (10.5) 88.7 (8.4)
1 73.3 (2.8) 82.8 (5.8) 86.8 (4.8) 80.7 (2.9) 88.3 (5.8) 88.3 (4.0)
2 71.5 (4.8) 81.7 (9.0) 83.9 (8.1) 81.1 (5.1) 86.0 (8.3) 85.5 (6.6)

M 3 72.3 (5.6) 83.1 (9.6) 83.8 (9.0) 79.8 (5.8) 84.0 (8.9) 85.2 (7.3)
4 75.0 (6.2) 83.5 (10.3) 84.1 (9.6) 82.7 (6.6) 88.1 (9.8) 86.7 (8.1)
5 75.0 (6.8) 82.7 (11.2) 84.6 (10.3) 82.7 (7.3) 88.3 (10.9) 87.6 (8.8)

Table 3. The empirical coverage of the bootstrap prediction cubes
constructed by extreme statistics for the model V ARMA(5, 4).

Distri-
h

n = 50 n = 200
bution UV R UV-t R-t UV R UV-t R-t

1 85.6 (6.6) 85.6 (6.7) 88.5 (4.7) 89.1 (4.7) 88.1 (6.0) 88.0 (6.0) 90.2 (3.6) 89.7 (3.5)
2 85.1 (10.0) 85.1 (10.3) 86.3 (7.9) 87.6 (8.0) 88.2 (8.9) 88.8 (9.0) 88.5 (6.3) 88.8 (6.3)

N 3 83.7 (10.6) 84.5 (10.8) 87.6 (8.9) 88.3 (9.0) 89.0 (9.5) 89.6 (9.6) 89.8 (7.2) 89.4 (7.2)
4 84.9 (11.4) 86.0 (11.7) 87.0 (9.6) 87.6 (9.6) 88.4 (10.7) 88.7 (10.7) 90.9 (8.0) 90.7 (8.0)
5 84.5 (12.4) 86.1 (12.7) 87.7 (10.2) 88.8 (10.3) 90.6 (12.0) 90.6 (12.1) 90.6 (8.7) 90.5 (8.7)
1 86.2 (6.6) 87.4 (6.8) 87.5 (4.8) 87.5 (4.7) 89.0 (5.9) 89.2 (6.0) 90.0 (3.7) 89.3 (3.6)
2 84.6 (10.3) 85.6 (10.5) 87.4 (8.1) 88.1 (8.2) 87.9 (9.0) 88.1 (9.0) 88.5 (6.4) 88.6 (6.4)

T 3 84.7 (10.9) 85.4 (11.2) 86.8 (9.2) 87.7 (9.2) 87.7 (9.5) 87.7 (9.6) 88.8 (7.3) 89.1 (7.3)
4 85.4 (11.7) 85.8 (11.9) 87.7 (9.9) 88.7 (9.9) 89.4 (10.7) 89.5 (10.8) 90.0 (8.2) 89.8 (8.1)
5 85.4 (12.8) 85.6 (13.1) 88.7 (10.6) 88.7 (10.6) 89.0 (12.1) 89.6 (12.1) 89.8 (8.9) 89.4 (8.9)
1 82.7 (6.6) 83.7 (6.7) 86.2 (4.8) 87.1 (4.8) 87.6 (6.0) 87.9 (6.0) 88.6 (3.7) 88.4 (3.6)
2 85.0 (10.1) 86.4 (10.4) 87.1 (8.0) 87.0 (8.1) 87.2 (9.0) 87.8 (9.0) 88.0 (6.3) 87.4 (6.3)

χ2 3 83.5 (10.7) 85.1 (10.9) 86.7 (9.0) 87.4 (9.0) 87.8 (9.5) 88.2 (9.5) 87.6 (7.2) 87.6 (7.2)
4 82.5 (11.5) 84.2 (11.7) 86.7 (9.7) 86.9 (9.8) 86.1 (10.6) 87.3 (10.7) 88.0 (8.1) 88.3 (8.1)
5 82.7 (12.6) 83.8 (12.8) 85.1 (10.4) 85.8 (10.4) 86.0 (12.0) 86.5 (12.1) 88.2 (8.9) 88.2 (8.8)
1 82.8 (6.8) 84.0 (6.9) 84.9 (5.0) 86.1 (5.0) 87.7 (6.7) 88.1 (6.8) 87.4 (4.3) 87.3 (4.2)
2 82.5 (10.3) 83.0 (10.5) 83.8 (8.4) 85.0 (8.4) 86.8 (9.5) 86.5 (9.5) 84.6 (6.7) 85.0 (6.7)

M 3 83.7 (10.9) 84.4 (11.1) 82.3 (9.4) 82.8 (9.4) 84.2 (10.0) 84.2 (10.0) 84.5 (7.6) 85.1 (7.6)
4 83.1 (11.6) 84.1 (11.8) 84.6 (10.0) 84.9 (10.1) 88.5 (11.1) 88.2 (11.1) 86.1 (8.5) 86.3 (8.4)
5 82.9 (12.8) 83.7 (13.0) 84.1 (10.8) 83.8 (10.8) 88.4 (12.5) 88.9 (12.6) 86.4 (9.2) 86.6 (9.2)
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