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Abstract. We construct a dependence structure for binomial, Poisson
and Gaussian random vectors, based on partially ordered binary trees and
sums of independent random variables. Using this construction, we char-
acterize the supermodular ordering of such random vectors via the compo-
nentwise ordering of their covariance matrices. For this, we apply Möbius
inversion techniques on partially ordered trees, which allow us to connect
the Lévy measures of Poisson random vectors on the discrete d-dimensional
hypercube to their covariance matrices.
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1. INTRODUCTION

A d-dimensional random vector X = (X1, . . . , Xd) is said to be dominated
by another random vector Y = (Y1, . . . , Yd) in the supermodular order, and one
writes X ¬sm Y , if

E[Φ(X)] ¬ E[Φ(Y )]

for all integrable supermodular functions, i.e., for all functions Φ : Rd → R such
that

Φ(x) + Φ(y) ¬ Φ(x ∧ y) + Φ(x ∨ y), x, y ∈ Rd,

where the maximum ∨ and the minimum ∧ are defined with respect to the com-
ponentwise order of x, y ∈ Rd. The supermodular stochastic ordering is used in
particular to capture a preference for greater interdependence in economic vari-
ables. In other words, we have X ¬sm Y if the (positive) dependence among the
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components of Y is greater than the (positive) dependence among the components
of X . See, for example, [2] and [3] for applications of supermodular ordering in
insurance, and [9] for applications to portfolio risk management, cf. also [8] and
references therein for applications in economics.

In the case where X and Y are multivariate Gaussian vectors, the supermodu-
lar ordering of X and Y has been characterized by the componentwise ordering of
their covariance matrices in [10]. Sufficient conditions for the supermodular order-
ing of general random vectors have been given in [4] for general random vectors,
including Poisson and gamma vectors, cf. Section 4.2 therein. We note that our
recursive update of Bernoulli random vectors in (5.8) below consists in an imple-
mentation on binary trees of the formulas in Section 4.2 of [4] for Poisson and
gamma vectors.

In this paper, we construct a tree-based covariance structure for binomial and
Poisson random vectors, under which the supermodular ordering can be charac-
terized by the ordering of covariance matrices, cf. Theorems 4.1 and 5.1. This
approach uses Möbius inversion techniques which allow us to connect partially or-
dered binary trees on the discrete unit hypercube {0, 1}d to supermodular ordering.
We also show the necessity of dependence structure of this type in Counterexam-
ple 4.1. Other types of tree-based dependence structures in the setting of Bernoulli
random vectors have been developed in [5] and references therein.

We proceed as follows. In Section 2 we construct a general dependence struc-
ture based on independent variables arranged according to a binary tree on the
vertices of the d-dimensional hypercube. In Section 3 we describe the Möbius in-
version that allows one to recover the parameters of individual random variables
from the covariance matrix of the considered random vector. In Section 4 we deal
with the case of Poisson random vectors via the use of Lévy measures on the ver-
tices of the discrete unit hypercube {0, 1}d, cf. Theorem 4.1. In Section 5 we apply
this dependence structure to the characterization of the binomial supermodular or-
dering via the componentwise ordering of covariances, cf. Theorem 5.1. This result
naturally extends to the supermodular ordering of sums of binomial, multivariate
Gaussian and Poisson random vectors.

2. TREE-BASED CORRELATION STRUCTURES

In this section we introduce the general dependence structure used in this pa-
per. Let (e1, . . . , ed) denote the canonical basis of Rd, and let

Cd := {0, 1}d =
{
x = (x1, . . . , xd) : xi ∈ {0, 1}, i = 1, . . . , d

}
denote the discrete set of vertices of the d-dimensional unit hypercube.

Every x = (x1, . . . , xd) ∈ {0, 1}d is identified with its index set

Sx :=
{
i ∈ {1, . . . , d} : xi = 1

}
,
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and we endow Cd = {0, 1}d with the partial inclusion ordering of index sets, i.e.,
we write

x ≼ y when 0 ¬ xi ¬ yi ¬ 1, i = 1, . . . , d,

and x ≺ y when x ≼ y and x ̸= y; we also let x \ {a} denote (xi1{i ̸=a})i=1,...,d

for x ∈ Cd.

2.1. Random vectors. Given (Xi,j)1¬i¬j¬d a family of independent random
variables and (ek,l)1¬k¬l¬d ⊂ Cd with ek,k = ek, k = 1, . . . , d, we define the ran-
dom vector X = (X1, . . . , Xd) by

Xi :=
∑

1¬k¬l¬d
ei≼ek,l

Xk,l, i = 1, . . . , d.

In other words, we have

X =
d∑

i=1

eiXi =
d∑

i=1

ei
∑

1¬k¬l¬d
ei≼ek,l

Xk,l(2.1)

=
∑

1¬k¬l¬d
Xk,l

∑
1¬i¬d
ei≼ek,l

ei =
∑

1¬k¬l¬d
Xk,lek,l,

which implies
E[Xi] =

∑
1¬k¬l¬d
ei≼ek,l

E[Xk,l], i = 1, . . . , d,

and

(2.2) Cov(Xi, Xj) =
∑

1¬k¬l¬d
ei≼ek,l,ej≼ek,l

σ2
k,l, 1 ¬ i ¬ j ¬ d,

where σ2
k,l := Var[Xk,l], 1 ¬ k ¬ l ¬ d.

EXAMPLE 2.1. If we take d = 5, the subset (ek,l)1¬k¬l¬5 of C5 given by

e1,2 = (1, 1, 0, 0, 1),
e1,3 = (1, 1, 1, 0, 1),
e1,4 = (1, 0, 0, 1, 0),
e1,5 = (1, 0, 0, 0, 1),
e2,3 = (0, 1, 1, 0, 0),
e2,4 = (0, 1, 0, 1, 0),
e2,5 = (0, 1, 0, 0, 1),
e3,4 = (0, 1, 1, 1, 0),
e3,5 = (0, 1, 1, 0, 1),
e4,5 = (1, 0, 0, 1, 1)
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corresponds, under (2.1), to the random vector

(2.3)


X1 = X1,1 +X1,2 +X1,3 +X1,4 +X1,5 +X4,5

X2 = X2,2 +X1,2 +X1,3 +X2,3 +X2,4 +X2,5 +X3,4 +X3,5

X3 = X3,3 +X1,3 +X2,3 +X3,4 +X3,5

X4 = X4,4 +X1,4 +X2,4 +X3,4 +X4,5

X5 = X5,5 +X1,2 +X1,3 +X1,5 +X2,5 +X3,5 +X4,5.

2.2. Binary tree structure. From now on, we work under the following Hy-
pothesis (H) that builds a tree on the set (ek,l)1¬k<l¬d. Note that not all random
vectors admit a tree-based representation according to Hypothesis (H), see Exam-
ples 3.4, 3.5 and Counterexample 4.1 below.

(H) The family (ek,l)1¬k¬l¬d ⊂ {0, 1}d forms an ordered binary tree for the
partial order ≼, in which every node ek,l, k < l, has exactly two children ek,l\{k}
and ek,l\{l}.

We note that the tree (ek,l)1¬k¬l¬d has size d(d+ 1)/2 and height at most d.
The random vector (2.3) of Example 2.1 satisfies Hypothesis (H) with the

following tree structure:

e1,3

11101

e4,5

10011

e1,2

11001

e3,4

01110

e3,5

01101

e1,4

10010

e1,5

10001

e2,3

01100

e2,4

01010

e2,5

01001

e1

10000

e2

01000

e3

00100

e4

00010

e5

00001

e1,3

11101

e4,5

10011

e1,2

11001

e3,4

01110

e3,5

01101

e1,4

10010

e1,5

10001

e2,3

01100

e2,4

01010

e2,5

01001

e1

10000

e2

01000

e3

00100

e4

00010

e5

00001

LEMMA 2.1. Under Hypothesis (H) we have the equivalence

ei,j ≼ ek,l ⇐⇒ (ei ≼ ek,l and ej ≼ ek,l)

for all 1 ¬ i ¬ j ¬ d and 1 ¬ k ¬ l ¬ d.

P r o o f. (i) Assume that ei,j ≼ ek,l. Since both children ei,j\{i} and ei,j\{j}
of ei,j satisfy ei,j\{i} ≺ ei,j and ei,j\{j} ≺ ei,j , we have ei ≼ ei,j and ej ≼ ei,j ,
which implies ei ≼ ek,l and ej ≼ ek,l since ei,j ≼ ek,l.

(ii) Assume that ei ≼ ek,l and ej ≼ ek,l. We work by decreasing induction on
the height of nodes in the tree. If ek,l = ek is a leaf, i.e. k = l, then (ei ≼ ek,l and
ej ≼ ek,l) implies i = j = k = l, hence ei,j = ei = ek = ek,l. Next, assuming that
the conclusion holds for all nodes of height at least h  2, consider a node ek,l of
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height h− 1, with k ̸= l. If (ei ≼ ek,l and ej ≼ ek,l) and {i, j} ̸= {k, l}, we must
have either i ̸= l and j ̸= l, or i ̸= k and j ̸= k. In the first case, (ei ≼ ek,l and
ej ≼ ek,l) implies ei ≼ ek,l\{l} and ej ≼ ek,l\{l}, where ek,l\{l} has height h,
hence ei ≼ ek,l\{l} ≼ ek,l and ej ≼ ek,l\{l} ≼ ek,l by the induction hypothesis.
The conclusion is similar in the second case, by replacing l with k. �

Based on Lemma 2.1, for all 1 ¬ i ¬ j ¬ d we can now rewrite (2.2) as the
sum

(2.4) Cov(Xi, Xj) =
∑

1¬k¬l¬d
ei,j≼ek,l

σ2
k,l, 1 ¬ i ¬ j ¬ d,

over all couples (k, l) with ei,j≼ek,l. In other words,
(
Cov(Xi, Xj)

)
1¬i¬j¬d is the

Möbius transform of (σ2
k,l)1¬k¬l¬d on the partially ordered set

(
(ek,l)1¬k¬l¬d,≼

)
,

cf. [13] or Section 2.5 of [12] for details.

3. MÖBIUS INVERSION

By Möbius inversion (cf. Proposition 2.6.3 of [12]), we can recover the coef-
ficients (σ2

k,l)1¬k¬l¬d in (2.2) using the covariances
(
Cov(Xi, Xj)

)
1¬i¬j¬d as the

sum

(3.1) σ2
k,l =

∑
1¬i¬j¬d
ek,l≼ei,j

µ(ei,j , ek,l)Cov(Xi, Xj), 1 ¬ k ¬ l ¬ d,

over all couples (i, j) such that ek,l ≼ ei,j , 1 ¬ i ¬ j ¬ d, where µ(x, y) is the
Möbius function defined recursively by µ(x, x) := 1 and

(3.2) µ(x, y) := −
∑

y≺z≼x
µ(x, z), x, y ∈ {0, 1}d,

cf. Proposition 2.6.1 of [12].

PROPOSITION 3.1.The Möbius function µ(x, y) on the tree
(
(ek,l)1¬k¬l¬d,≼

)
is given by

(3.3a)

(3.3b)


µ(ek,l, ek,l) = 1,

µ(ek,l, ek,l\{k}) = −1,
µ(ek,l, ek,l\{l}) = −1,
µ(ek,l, ek,l\{k, l}) = 1, 1 ¬ k ¬ l ¬ d,

with µ(ek,l, ei,j) = 0 in all other cases.
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P r o o f. Given ek,l ∈ {0, 1}d, we clearly have

µ(ek,l, ek,l) = 1, µ(ek,l, ek,l\{k}) = −1, and µ(ek,l, ek,l\{l}) = −1.

Next, since the two children ek,l\{k} and ek,l\{l} of ek,l have themselves a unique
common child ek,l\{k, l}, (3.2) yields µ(ek,l, ek,l\{k, l}) = 1. �

The next graph, in which y /∈ {k, l}, summarizes the result of Proposition 3.1.

µ(ek,l, ek,l) = 1

µ(ek,l, ek,l\{ k}) = − 1 µ(ek,l, ek,l\{ l}) = − 1

µ(ek,l, ek,y) = 0 µ(ek,l, ek,l\{ k, l}) = 1 µ(ek,l, ey,l) = 0

Using formula (3.1), we can now solve (2.2) for (σ2
k,l)1¬k¬l¬d starting from(

Cov(Xi, Xj)
)
1¬i¬j¬d. However, not all these covariance matrices may lead to

a positive solution (σ2
k,l)1¬k¬l¬d, meaning that not all random vectors admit a

representation of the form (2.1), see Example 3.4 below.

EXAMPLE 3.1 (Comonotonic vectors). The comonotonic vector (Xk,l, Xk,l,
. . . , Xk,l) can be represented by using a binary tree with a single node ek,l =
111 . . . 111 and letting σ2

i,j = 0 for (i, j) ̸= (k, l), since Cov(Xi, Xj) = σ2
k,l for

all (i, j).

EXAMPLE 3.2 (Pairwise dependence). The binary tree is reduced to the d
leaves e1, . . . , ed, and to their parents (d− 1)d/2,

ek,l = (0, . . . , 0, 1,
↑
k

0, . . . , 0, 1
↑
l

, 0, . . . , 0), 1 ¬ k ¬ l ¬ d,

as in the following example with d = 4:

e1,2

1100

e1,3

1010

e1,4

1001

e2,3

0110

e2,4

0101

e3,4

0011

e1

1000

e2

0100

e3

0010

e4

0001
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Here, the vector (Xi)i=1,...,d is given by

(3.4)


X1 = X1,1 +X1,2 +X1,3 +X1,4

X2 = X2,2 +X1,2 +X2,3 +X2,4

X3 = X3,3 +X1,3 +X2,3 +X3,4

X4 = X4,4 +X1,4 +X2,4 +X3,4,

and for any d  1, by (2.2) we have

Cov(Xi, Xj) = σ2
i,j , 1 ¬ i < j ¬ d,

and

(3.5) Var[Xi] =
i−1∑
j=1

σ2
j,i +

d∑
j=i

σ2
i,j , i = 1, . . . , d.

Here, the inversion of (3.5) by the Möbius transform (3.1) reads

σ2
k,k = Var[Xk]−

d∑
l=1, l ̸=k

Cov(Xk, Xl), k = 1, . . . , d.

EXAMPLE 3.3 (Recombining trees). In dimension d = 3, the only available
tree structure in addition to the pairwise dependence of Example 3.2 is the recom-
bining (or binomial) full tree

e1,2

111

e1,3

101

e2,3

011

e1

100

e2

010

e3

001

which is associated with the random vectorX1 = X1,1+X1,3 +X1,2

X2 = X2,2 +X2,3 +X1,2

X3 = X3,3+X1,3+X2,3+X1,2,

with the inversion formula (3.1) written as

(3.6)



σ2
1,1 = Cov(X1, X1)− Cov(X1, X3),

σ2
2,2 = Cov(X2, X2)− Cov(X1, X3)− Cov(X2, X3) + Cov(X1, X2),

σ2
3,3 = Cov(X3, X3)− Cov(X2, X3),

σ2
1,3 = Cov(X1, X3)− Cov(X1, X2),

σ2
2,3 = Cov(X2, X3)− Cov(X1, X2),

σ2
1,2 = Cov(X1, X2).
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EXAMPLE 3.4 (Multivariate Gaussian vectors). If (Xi,j)1¬i¬j¬d is a family
of independent Gaussian random variables, then X = (X1, . . . , Xd) in (2.1) is a
multivariate Gaussian vector with matrix

(
Cov(Ui, Uj)

)
1¬i¬j¬d of nonnegative

covariances given by (2.4). However, not all Gaussian vectors can fit into a tree-
based structure under Hypothesis (H) above. For example, when d = 3, consider
the multivariate Gaussian vector

(3.7)

X1 = X1,1+X1,3 +X1,2 +Z
X2 = X2,2 +X2,3 +X1,2 +Z
X3 = X3,3+X1,3+X2,3+X1,2,

where (Xk,l)1¬k¬l¬d are standard normal random variables and Z is an indepen-
dent Gaussian random variable with variance four. Here, (X1, X2, X3) has the
(positive definite) covariance matrix Cov(X1, X1) Cov(X1, X2) Cov(X1, X3)

Cov(X1, X2) Cov(X2, X2) Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) Cov(X3, X3)

 =

 7 5 2
5 7 2
2 2 4

,
in which case (3.6) cannot yield a nonnegative solution (σ2

k,l)1¬k¬l¬3, e.g. when
(k, l) = (1, 3). In this case, the multivariate Gaussian vector (X1, X2, X3) given
by (3.7) admits no binary tree-based representation as the inversion formula (3.6)
is based on a full tree.

EXAMPLE 3.5. As in Example 3.4 above, binomial, Poisson and gamma ran-
dom vectors having a given matrix of nonnegative covariances can be constructed
on a binary tree, provided that (3.1) admits a nonnegative solution (σ2

k,l)1¬k¬l¬3
since their marginals are characterized by their variance parameters and they are
stable by summation. However, in this case the construction may not be unique,
depending on the chosen binary tree structure, as their joint distribution is not char-
acterized by their covariance matrices.

EXAMPLE 3.6. The particular dependence structure considered in [7] for
Poisson random vectors corresponds to the binary tree built on the d(d − 1)/2
nodes

ei,j = (1, . . . , 1, 1
↑
i

, 0, . . . , 0, 1
↑
j

, 0, . . . , 0), 1 ¬ i < j ¬ d,

and on the d leaves e1, . . . , ed.

4. POISSON RANDOM VECTORS

In this section we provide a characterization of the supermodular ordering of
Poisson random vectors, based on their covariance matrices in Theorem 4.1. This
extends the results of [7] (cf. Example 3.6 above) to more general dependence
structures.
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Recall that any d-dimensional infinitely divisible Poisson random vector X =
(X1, . . . , Xd) is defined by its characteristic function

E[ei⟨t̄,X⟩] = exp
( ∫
Rd

(ei⟨t̄,x⟩ − 1)µ(dx)
)
,

where t̄ = (t1, . . . , td) ∈ Rd, ⟨·, ·⟩ denotes the scalar product in Rd, and the Lévy
measure

µ(dx) :=
∑

y∈{0,1}d
ayδy(dx)

is supported on Cd = {0, 1}d. Here δy denotes the Dirac measure at the point
y ∈ {0, 1}d, and (ay)y∈Cd

is a family of nonnegative coefficients with a(0,...,0) = 0.
Equivalently, X = (X1, . . . , Xd) can be represented as

(4.1) Xi =
∑

y∈{0,1}d
1{i∈y}Zy =

∑
y∈Cd, ei≼y

Zy, i = 1, . . . , d,

where (Zy)y∈Cd\{0} is a family of 2d − 1 independent Poisson random variables
with respective intensities (ay)y∈Cd\{0}, cf. also Example 4.3 of [4] and Theorem 3
of [6].

To characterize the ordering of Poisson random vectors based on the data of
their covariance matrices which contain only d(d+ 1)/2 components, we consider
Lévy measures of the form

(4.2) µ(dx) =
∑

1¬k¬l¬d
ak,lδek,l(dx),

on {0, 1}d, where ak,l ∈ R+, 1 ¬ k ¬ l ¬ d. In this case, (4.1) rewrites as

(4.3) Xi =
∑

1¬k¬l¬d
ei≼ek,l

Xk,l,

where (Xk,l)1¬k¬l¬d is a family of independent Poisson random variables whose
respective intensities (ai,j)1¬i¬j¬d satisfy Var[Xk,l] = E[Xk,l] = ak,l, 1 ¬ k ¬
l ¬ d.

In the remaining of this section we assume that the family (ek,l)1¬k¬l¬d ⊂
{0, 1}d forms a binary tree according to Hypothesis (H). In this case, the Möbius
inversion formula (3.1) shows that

(4.4) ak,l =
∑

1¬i¬j¬d
ek,l≼ei,j

µ(ei,j , ek,l)Cov(Xi, Xj), 1 ¬ k ¬ l ¬ d.



394 B. Kızı ldemir and N. Privaul t

4.1. Supermodular ordering of Poisson random vectors. Theorem 4.1 below
is a direct consequence of the following Lemma 4.1 which yields the decomposi-
tion

µ(dx) =
d∑

i=1

Var[Xi]δei(dx)

+
∑

1¬i<j¬d
Cov(Xi, Xj)(δei,j + δei,j\{i,j} − δei,j\{i} − δei,j\{j})(dx)

of a Lévy measure µ(dx) of the form (4.2) under Hypothesis (H).

LEMMA 4.1. Let (X1, . . . , Xd) be an infinitely divisible Poisson random vec-
tor written as in (4.3) under Hypothesis (H), with Lévy measure µ(dx) on Cd. Then
we have

(4.5)
∫
Rd

ϕ(x)µ(dx) =
d∑

i=1

E[Xi]ϕ(ei)

+
∑

1¬i<j¬d
Cov(Xi, Xj)

(
ϕ(ei,j)+ϕ(ei,j\{i, j})−ϕ(ei,j\{i})−ϕ(ei,j\{j})

)
for any function ϕ : {0, 1}d → R such that ϕ(0) = 0.

P r o o f. By the Möbius inversion formula (3.1) we have∫
Rd

ϕ(x)µ(dx) =
∑

1¬k¬l¬d
ak,lϕ(ek,l)

=
∑

1¬k¬l¬d
ϕ(ek,l)

∑
1¬i¬j¬d
ek,l≼ei,j

µ(ei,j , ek,l)Cov(Xi, Xj)

=
d∑

i=1

Cov(Xi, Xi)
∑

1¬k¬d
ek≼ei

µ(ei, ek)ϕ(ek)

+
∑

1¬i<j¬d
Cov(Xi, Xj)

∑
1¬k<l¬d
ek,l≼ei,j

µ(ei,j , ek,l)ϕ(ek,l)

=
d∑

i=1

E[Xi]ϕ(ei)

+
∑

1¬i<j¬d
Cov(Xi, Xj)

(
ϕ(ei,j)+ϕ(ei,j\{i, j})−ϕ(ei,j\{i})−ϕ(ei,j\{j})

)
,

where we used (3.3a), (3.3b) and the fact that ek ≼ ei if and only if k = i. �
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EXAMPLE 4.1. For d = 4, the tree structure

e1,4

1111

e1,3

1110

e2,4

0111

e1,2

1100

e2,3

0110

e3,4

0011

e1

1000

e2

0100

e3

0010

e4

0001

is satisfied by the random vector
X1 = X1,1 +X1,2 +X1,3 +X1,4

X2 = X2,2 +X1,2 +X1,3 +X1,4 +X2,3 +X2,4

X3 = X3,3 +X1,3 +X1,4 +X2,3 +X2,4 +X3,4

X4 = X4,4 +X1,4 +X2,4 +X3,4,

and relation (4.5) reads∫
Rd

ϕ(x)µ(dx) = a1,4ϕ(1, 1, 1, 1) + a1,3ϕ(1, 1, 1, 0) + a2,4ϕ(0, 1, 1, 1)

+ a1,2ϕ(1, 1, 0, 0) + a2,3ϕ(0, 1, 1, 0) + a3,4ϕ(0, 0, 1, 1)

+ a1,1ϕ(1, 0, 0, 0) + a2,2ϕ(0, 1, 0, 0) + a3,3ϕ(0, 0, 1, 0) + a4,4ϕ(0, 0, 0, 1)

= E[X1]ϕ(1, 0, 0, 0) + E[X2]ϕ(0, 1, 0, 0)

+ E[X3]ϕ(0, 0, 1, 0) + E[X4]ϕ(0, 0, 0, 1)

+ Cov(X1, X2)
(
ϕ(1, 1, 0, 0) + ϕ(0, 0, 0, 0)− ϕ(1, 0, 0, 0)− ϕ(0, 1, 0, 0)

)
+ Cov(X1, X3)

(
ϕ(1, 1, 1, 0) + ϕ(0, 1, 0, 0)− ϕ(1, 1, 0, 0)− ϕ(0, 1, 1, 0)

)
+ Cov(X1, X4)

(
ϕ(1, 1, 1, 1) + ϕ(0, 1, 1, 0)− ϕ(1, 1, 1, 0)− ϕ(0, 1, 1, 1)

)
+ Cov(X2, X3)

(
ϕ(0, 1, 1, 0) + ϕ(0, 0, 0, 0)− ϕ(0, 1, 0, 0)− ϕ(0, 0, 1, 0)

)
+ Cov(X2, X4)

(
ϕ(0, 1, 1, 1) + ϕ(0, 0, 1, 0)− ϕ(0, 1, 1, 0)− ϕ(0, 0, 1, 1)

)
+ Cov(X3, X4)

(
ϕ(0, 0, 1, 1) + ϕ(0, 0, 0, 0)− ϕ(0, 0, 1, 0)− ϕ(0, 0, 0, 1)

)
.

Consider now two Poisson random vectors X and Y whose respective Lévy mea-
sures µ and ν are represented as in (4.2), i.e.,

µ(dx) =
∑

1¬i¬j¬d
ai,jδei,j (dx) and ν(dx) =

∑
1¬i¬j¬d

bi,jδei,j (dx).
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If Xi has the same distribution as Yi for all i = 1, . . . , d, then E[Xi] = E[Yi],
i = 1, . . . , d, and Lemma 4.1 shows that

(4.6)
∫
Rd

ϕ(y)ν(dy)−
∫
Rd

ϕ(x)µ(dx)

=
∑

1¬i<j¬d

(
Cov(Yi, Yj)− Cov(Xi, Xj)

)(
ϕ(ei,j) + ϕ(ei,j\{i, j})

− ϕ(ei,j\{i})− ϕ(ei,j\{j})
)

under Hypothesis (H). Relation (4.6) implies in particular that the nonnegativity of
the coefficients

(4.7) Cov(Yi, Yj)− Cov(Xi, Xj)  0, 1 ¬ i < j ¬ d,

becomes a necessary and sufficient condition for the supermodular ordering of the
Lévy measures µ and ν.

The following Theorem 4.1 reformulates (4.7) as a necessary and sufficient
condition for supermodular ordering of infinitely divisible Poisson random vectors,
based on Theorem 4.5 of [1], which allows one to carry over the notion of super-
modularity from the setting of Lévy measures on the discrete cube Cd = {0, 1}d
to the setting of Poisson random variables.

THEOREM 4.1. Consider two Poisson random vectors X and Y both repre-
sented as in (4.3) under Hypothesis (H). Then the conditions

(4.8) E[Xi] = E[Yi], 1 ¬ i ¬ d,

and

(4.9) Cov(Xi, Xj) ¬ Cov(Yi, Yj), 1 ¬ i < j ¬ d,

are necessary and sufficient for the supermodular ordering X ¬sm Y .

P r o o f. It is well known (cf. e.g. Theorem 3.9.5 of [11]) that for any couple
(X,Y ) of d-dimensional random vectors, the condition X ¬sm Y implies (4.8)
and (4.9), therefore it suffices to show sufficiency. For this, by Theorem 4.5 in [1]
it suffices to show that we have

(4.10)
∫
Rd

ϕ(x)µ(dx) ¬
∫
Rd

ϕ(y)ν(dy)

for all supermodular functions ϕ : Rd → R, where µ(dx) and ν(dy) denote the
Lévy measures of X and Y , respectively. By Lemma 4.1 we have the identity
(4.6) under condition (4.9), which allows us to conclude that (4.10) holds for all
supermodular functions ϕ. �
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Next, we consider a situation where Hypothesis (H) is not satisfied and the
equivalence of Theorem 4.1 does not hold.

COUNTEREXAMPLE 4.1. If we take d = 4, the tree

e2,3

1110

e3,4

0111

e1,2

1100

e1,3

1010

e1,4

1001

e2,4

0101

e1

1000

e2

0100

e4

0001

does not satisfy Hypothesis (H), and for its corresponding random vector

(4.11)


X1 = X1,1 +X1,2 +X1,3 +X1,4 +X2,3

X2 = X2,2 +X1,2 +X2,3 +X2,4 +X3,4

X3 = +X1,3 +X2,3 +X3,4

X4 = X4,4 +X1,4 +X2,4 +X3,4,

relation (4.1) reads∫
Rd

ϕ(x)µ(dx) = a2,3ϕ(1, 1, 1, 0) + a3,4ϕ(0, 1, 1, 1)

+ a1,2ϕ(1, 1, 0, 0) + a1,3ϕ(1, 0, 1, 0) + a2,4ϕ(0, 1, 0, 1) + a1,4ϕ(1, 0, 0, 1)

+ a1,1ϕ(1, 0, 0, 0) + a2,2ϕ(0, 1, 0, 0) + a4,4ϕ(0, 0, 0, 1)

= E[X1]ϕ(1, 0, 0, 0) + E[X2]ϕ(0, 1, 0, 0)

+ E[X3]ϕ(0, 0, 1, 0) + E[X4]ϕ(0, 0, 0, 1)

+ Cov(X1, X2)
(
ϕ(1, 1, 0, 0) + ϕ(0, 0, 0, 0)− ϕ(1, 0, 0, 0)− ϕ(0, 1, 0, 0)

)
+ Cov(X1, X3)

(
ϕ(1, 0, 1, 0) + ϕ(0, 0, 0, 0)− ϕ(1, 0, 0, 0)− ϕ(0, 0, 1, 0)

)
+ Cov(X1, X4)

(
ϕ(1, 0, 0, 1) + ϕ(0, 0, 0, 0)− ϕ(1, 0, 0, 0)− ϕ(0, 0, 0, 1)

)
+ Cov(X2, X3)

(
ϕ(1, 1, 1, 0) + ϕ(1, 0, 0, 0)− ϕ(1, 1, 0, 0)− ϕ(1, 0, 1, 0)

)
+ Cov(X2, X4)

(
ϕ(0, 1, 0, 1) + ϕ(0, 0, 0, 0)− ϕ(0, 1, 0, 0)− ϕ(0, 0, 0, 1)

)
+ Cov(X3, X4)

(
ϕ(0, 1, 1, 1) + ϕ(0, 0, 0, 0)− ϕ(0, 1, 0, 1)− ϕ(0, 0, 1, 0)

)
− Cov(X3, X4)

(
ϕ(1, 1, 1, 0) + ϕ(1, 0, 0, 0)− ϕ(1, 0, 1, 0)− ϕ(1, 1, 0, 0)

)
.

In this case, the conclusion of Theorem 4.1 cannot hold for vectors of the form
(4.11) as the sum of the above two terms in factor of Cov(X3, X4) can become
negative, e.g. for the supermodular function ϕ(x1, x2, x3, x4) = x1x2x3 on the unit
cube.
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The next proposition replaces the equality of means in (4.8) with an inequal-
ity, and is obtained as in Proposition 4.3 of [7] by extending Theorem 4.5 of [1]
to nondecreasing supermodular functions ϕ on Rd satisfying ϕ(0) = 0, using the
same approximation as in Lemma 4.4 therein.

PROPOSITION 4.1. Consider two Poisson random vectors X and Y both rep-
resented as in (4.3) under Hypothesis (H), and assume that

E[Xi] ¬ E[Yi], 1 ¬ i ¬ d,

and
Cov(Xi, Xj) ¬ Cov(Yi, Yj), 1 ¬ i < j ¬ d.

Then we have
E[Φ(X)] ¬ E[Φ(Y )]

for all nondecreasing supermodular functions Φ : Rd → R.

4.2. Convex ordering. The next result is a remark on the convex ordering of
Poisson random vectors represented as in (4.3).

PROPOSITION 4.2. Consider two Poisson random vectors X and Y both rep-
resented as in (4.3) under Hypothesis (H). Then we have X ¬cx Y if and only if
X and Y have the same distribution.

P r o o f. We assume that X ¬cx Y , i.e., we have E[Φ(X)] ¬ E[Φ(Y )] for all
convex functions Φ : Rd → R. Clearly, this implies E[Xk] = E[Yk], k = 1, . . . , d,
and by the same argument as in part (b) of the proof of Theorem 4.5 in [1] we also
have µ ¬cx ν. Assume now that Cov(Yk, Yl) > Cov(Xk, Xl) for some 1 ¬ k <
l ¬ d. The function

(x1, . . . , xd) 7→ ϕk,l(x1, . . . , xd) := max
(
0, xl − xk −

∑
a/∈ek,l

xa
)

is convex on Rd and satisfies ϕk,l(ei,j) = 1 when ei,j is a (non-strict) descendant
of ek,l\{k} that contains l, and ϕk,l(ei,j) = 0 in all other cases. This shows that

ϕk,l(ek,l) + ϕk,l(ek,l\{k, l})− ϕk,l(ek,l\{k})− ϕk,l(ek,l\{l}) = −1,

and

ϕk,l(ei,j) + ϕk,l(ei,j\{i, j})− ϕk,l(ei,j\{i})− ϕk,l(ei,j\{j}) = 0

when (i, j) ̸= (k, l). Therefore, since Cov(Yk, Yl) > Cov(Xk, Xl), Lemma 4.1
shows that
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Rd

ϕ(y)ν(dy)−
∫
Rd

ϕ(x)µ(dx)

=
∑

1¬i<j¬d

(
Cov(Yi, Yj)− Cov(Xi, Xj)

)(
ϕ(ei,j) + ϕ(ei,j\{i, j})

− ϕ(ei,j\{i})− ϕ(ei,j\{j})
)

=
(
Cov(Yk, Yl)− Cov(Xk, Xl)

)(
ϕ(ek,l) + ϕ(ek,l\{k, l})

− ϕ(ek,l\{k})− ϕ(ek,l\{l})
)

< 0,

which contradicts the fact that µ ¬cx ν, hence Cov(Yk, Yl) ¬ Cov(Xk, Xl). If
Cov(Yk, Yl) < Cov(Xk, Xl), we can proceed similarly with the convex function

(x1, . . . , xd) 7→ −ϕk,l(x1, . . . , xd),

and conclude that Cov(Yk, Yl) = Cov(Xk, Xl) for all 1 ¬ k ¬ l ¬ d, hence by
(4.4) the vectors X and Y have the same distribution. �

5. BINOMIAL RANDOM VECTORS

In this section we provide a characterization of the supermodular ordering of
binomial random vectors, based on their covariance matrices, cf. Theorem 5.1.

Consider (Z1, . . . , Zn) independent Bernoulli random variables with parame-
ter p ∈ [0, 1] and

(
A(ek,l)

)
1¬k¬l¬d a partition of {1, . . . , n}. Let (Xk,l)1¬k¬l¬d =

(XA(ek,l))1¬k¬l¬d denote the family of independent binomial random variables
given by

Xk,l = XA(ek,l) :=
∑

i∈A(ek,l)

Zi, 1 ¬ k ¬ l ¬ d,

with
E[XA(ek,l)] = p|A(ek,l)|, 1 ¬ k ¬ l ¬ d,

where |A(ek,l)| denotes the cardinality of A(ek,l), and

σ2
k,l = Var[XA(ek,l)] = pq|A(ek,l)|, 1 ¬ k ¬ l ¬ d, q := 1− p.

Let now
Ai :=

∪
1¬k¬l¬d
ei≼ek,l

A(ek,l), i = 1, . . . , d,

and consider the vector (X1, . . . , Xd) = (XA1 , . . . , XAd
) of binomial random vari-

ables defined by

(5.1) Xi = XAi :=
∑
k∈Ai

Zk =
∑

1¬k¬l¬d
ei≼ek,l

XA(ek,l), i = 1, . . . , d.
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In general, we have

E[XAi ] = p
∑

1¬k¬l¬d
ei≼ek,l

|A(ek,l)|, i = 1, . . . , d,

and
Cov(XAi , XAj ) = pq

∑
1¬k¬l¬d
ei,j≼ek,l

|A(ek,l)|, 1 ¬ i ¬ j ¬ d.

Assuming that the family (ek,l)1¬k¬l¬d ⊂ Cd forms a binary tree according to
Hypothesis (H), the Möbius inversion formula (3.1) shows that we have

(5.2) pq|A(ek,l)| =
∑

1¬k¬d
ek,l≼ei,j

µ(ei,j , ek,l)Cov(XAi , XAj ), 1 ¬ k ¬ l ¬ d.

The following is the main result of this section.

THEOREM 5.1. Consider (XA1 , . . . , XAd
) and (XB1 , . . . , XBd

) two bino-
mial random vectors represented as in (5.1) under Hypothesis (H). Then the con-
ditions

(5.3) E[XAi ] = E[XBi ], 1 ¬ i ¬ d,

and

(5.4) Cov(XAi , XAj ) ¬ Cov(XBi , XBj ), 1 ¬ i < j ¬ d,

are necessary and sufficient for the supermodular ordering

(XA1 , . . . , XAd
) ¬sm (XB1 , . . . , XBd

).

P r o o f. By Theorem 3.9.5 of [11], it suffices to show sufficiency. Using in-
duction, it is also sufficient to consider the case where

(5.5) Cov(XBk
, XBl

) = Cov(XAk
, XAl

) + pq

for some given 1 ¬ k < l ¬ d, and

(5.6) Cov(XBi , XBj ) = Cov(XAi , XAj ), 1 ¬ i ¬ j ¬ d, (i, j) ̸= (k, l).

By the Möbius inversion formula (5.2), there is a unique way (up to a permutation
of {1, . . . , n}) to choose

(
A(ei,j)

)
1¬i¬j¬d and

(
B(ei,j)

)
1¬i¬j¬d satisfying (5.5)

and (5.6), respectively. In this case, (3.1) shows that

pq|B(ei,j)| =
∑

1¬x¬y¬d
ei,j≼ex,y

µ(ex,y, ei,j)Cov(XBx , XBy)
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= pq1{ei,j≼ek,l}µ(ek,l, ei,j) +
∑

1¬x¬y¬d
ei,j≼ex,y

µ(ex,y, ei,j)Cov(XAx , XAy)

= pq1{ei,j≼ek,l}µ(ek,l, ei,j) + pq|A(ei,j)|, 1 ¬ i ¬ j ¬ d,

i.e.,

(5.7) |B(ei,j)| = 1{ei,j≼ek,l}µ(ek,l, ei,j) + |A(ei,j)|, 1 ¬ i ¬ j ¬ d.

Given the children ek,l\{k}, ek,l\{l} ∈ {0, 1}d and grandchild ek,l\{k, l} of ek,l ∈
{0, 1}d, by (3.3a), (3.3b) and (5.7), we have

(5.8)



|B(ek,l)| = |A(ek,l)|+ 1,

|B(ek,l\{k})| = |A(ek,l\{k})| − 1,

|B(ek,l\{l})| = |A(ek,l\{l})| − 1,

|B(ek,l\{k, l})| = |A(ek,l\{k, l})|+ 1,

with |B(ei,j)| = |A(ei,j)|, since µ(ek,l, ei,j) = 0, in all other cases. We choose to
realize the above as

(5.9)



A(ek,l) = B(ek,l) \ {k},

B(ek,l\{k}) = A(ek,l\{k}) \ {k},

B(ek,l\{l}) = A(ek,l\{l}) \ {l},

A(ek,l\{k, l}) = B(ek,l\{k, l}) \ {l}

for some given 1 ¬ k < l ¬ d, with k, l /∈ B(ei,j) = A(ei,j) in all other cases.
Noting that

l ∈ B(ek,l\{k, l}), k ∈ A(ek,l\{k}), l ∈ A(ek,l\{l}),

and
B(ek,l\{k, l}) ∩Bk = ∅, B(ek,l\{k, l}) ∩Bl = ∅,

A(ek,l\{k}) ∩Ak = ∅, A(ek,l\{l}) ∩Al = ∅,

we find that
l /∈ Bk, l /∈ Bl, k /∈ Ak, l /∈ Al.
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Hence, using the symmetric difference operator A \B := A∩Bc, for i = 1, . . . , d
we have
(5.10)

Ai =



(
Bk \B(ek,l) \B(ek,l\{k, l})

)
∪A(ek,l) ∪ {l}, i = k,(

Bi \B(ek,l) \B(ek,l\{k, l})
)
∪A(ek,l) ∪ {k} ∪A(ek,l\{k, l}) ∪ {l},

i /∈ {k, l},(
Bl \B(ek,l) \B(ek,l\{k, l})

)
∪A(ek,l) ∪ {k}, i = l,

and
(5.11)

Bi =


(
Bk \B(ek,l) \B(ek,l\{k, l})

)
∪B(ek,l), i = k,(

Bi \B(ek,l) \B(ek,l\{k, l})
)
∪B(ek,l) ∪B(ek,l\{k, l}), i /∈ {k, l},(

Bl \B(ek,l) \B(ek,l\{k, l})
)
∪B(ek,l), i = l.

In other words, by (5.9) we can write

(5.12)


XB(ek,l) = XA(ek,l) + U,

XA(ek,l\{k}) = XB(ek,l\{k}) + U,

XA(ek,l\{l}) = XB(ek,l\{l}) + V,

XB(ek,l\{k,l}) = XA(ek,l\{k,l}) + V,

where U, V ∈ {Z1, . . . , Zn} are two independent Bernoulli random variables, while
we have XB(ei,j) = XA(ei,j) in all other cases, and from (5.10) and (5.11) we get
(5.13)

XAi =


XBk\B(ek,l)\B(ek,l\{k,l}) +XA(ek,l) + V, i = k,

XBi\B(ek,l)\B(ek,l\{k,l})+XA(ek,l)+U +XA(ek,l\{k,l})+V, i /∈{k, l},
XBl\B(ek,l)\B(ek,l\{k,l}) +XA(ek,l) + U, i = l,

and
(5.14)

XBi =


XBk\B(ek,l)\B(ek,l\{k,l}) +XB(ek,l), i = k,

XBi\B(ek,l)\B(ek,l\{k,l}) +XB(ek,l) +XB(ek,l\{k,l}), i /∈ {k, l},
XBl\B(ek,l)\B(ek,l\{k,l}) +XB(ek,l), i = l.

Now, for any supermodular function ϕ : Rd → R we have, using formulas (5.14)
and (5.12),
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E
[
ϕ
(
(XBi)1¬i¬d

)]
= E

[
ϕ
(
(XBi\B(ek,l)\B(ek,l\{k,l}) +XB(ek,l) +XB(ek,l\{k,l})1{i/∈{k,l}})1¬i¬d

)]
= E

[
ϕ
((

XBi\B(ek,l)\B(ek,l\{k,l}) +XA(ek,l) + U

+ (XA(ek,l\{k,l}) + V )1{i/∈{k,l}}
)
1¬i¬d

)]
 E

[
ϕ
(
(XBi\B(ek,l)\B(ek,l\{k,l}) +XA(ek,l) + U1{i ̸=k}

+XA(ek,l\{k,l})1{i/∈{k,l}} + V 1{i ̸=l})1¬i¬d
)]

= E
[
ϕ
(
(XAi)1¬i¬d

)]
,

where we used (5.13) for the last equality. As for the inequality above, it follows
from

E[ϕ(U,U + V, . . . , U + V,U)]

= p2ϕ (1, 2, . . . , 2, 1) + q2ϕ (0, 0, . . . , 0, 0) + pqϕ (1, 1, . . . , 1, 1)

+ pqϕ (0, 1, . . . , 1, 0)

 p2ϕ (1, 2, . . . , 2, 1) + q2ϕ (0, 0, . . . , 0, 0) + pqϕ (1, 1, . . . , 1, 0)

+ pqϕ (0, 1, . . . , 1, 1)

= E [ϕ (U,U + V, . . . , U + V, V )]

for all supermodular functions ϕ : R|ek,l| → R, where |ek,l| denotes the cardinality
of ek,l whose indices are arranged as {k, . . . , l} for convenience of notation, and
we did not consider indices j /∈ ek,l, as U and V do not belong to Xj in this case. �

5.1. Multivariate Gaussian vectors. From the central limit theorem, Theo-
rem 5.1 can be used to deal with centered multivariate Gaussian random vectors
(X1, . . . , Xd) and (Y1, . . . , Yd) represented as in Example 3.4 as

(5.15) X =
∑

1¬k¬l¬d
Xk,lek,l, Y =

∑
1¬k¬l¬d

Yk,lek,l,

where (ek,l)1¬k¬l¬d ⊂ {0, 1}d satisfies Hypothesis (H). In this case we can apply
the Möbius inversion (3.1) to determine the variance coefficients

(σ2
k,l)1¬k¬l¬d=(Var[Xk,l])1¬k¬l¬d and (η2k,l)1¬k¬l¬d=(Var[Yk,l])1¬k¬l¬d

in the decomposition (5.15). Those coefficients can be obtained as the respective
limits of normalized variances (Var[Xn

k,l]/n)1¬k¬l¬d and (Var[Y n
k,l]/n)1¬k¬l¬d

of independent binomial random variables (Xn
k,l)1¬k¬l¬d and (Y n

k,l)1¬k¬l¬d. In
this case, the sequences (Xn

1 , . . . , X
n
d )n1 and (Y n

1 , . . . , Y n
d )n1 of independent
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random vectors defined by

Xn
i :=

1√
n

∑
1¬k¬l¬d
ei≼ek,l

(Xn
k,l − E[Xn

k,l])

and
Y n
i :=

1√
n

∑
1¬k¬l¬d
ei≼ek,l

(Y n
k,l − E[Y n

k,l]), i = 1, . . . , d,

converge in distribution to the multivariate Gaussian vectors (X1, . . . , Xd) and
(Y1, . . . , Yd), respectively. The condition Cov(Xi, Xj) ¬ Cov(Yi, Yj) shows that
Cov(Xn

i , X
n
j ) ¬ Cov(Y n

i , Y n
j ) for n sufficiently large, 1¬ i<j¬d, so by The-

orem 5.1 it becomes necessary and sufficient for (X1, . . . , Xd) ¬sm (Y1, . . . , Yd)
to hold. This is consistent with the general result proved for all multivariate Gaus-
sian random vectors in [10], Theorem 4.2, cf. also Theorem 3.13.5 of [11].

A similar limiting argument can be applied to recover Theorem 4.1 in the
Poisson case from Theorem 5.1 and the convergence in distribution of renormal-
ized binomial random variables to Poisson random variables.

5.2. Sums of binomial, Gaussian and Poisson vectors. By Theorem 4.2 of
[10] on Gaussian random vectors, Theorems 5.1 and 4.1 above, and the fact that
the supermodular ordering is closed under convolution, cf. Theorem 3.9.14-(C) of
[11], we deduce that the supermodular ordering of a sum of independent binomial,
Gaussian and Poisson vectors is implied by the componentwise ordering of their
respective covariances. Proposition 4.1 admits an analog extension to sums of bi-
nomial, Gaussian and Poisson random vectors.
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