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Abstract. The entropic upper bound for Bayes risk in a general quan-
tum case is presented. We obtained generalization of the entropic lower
bound for probability of detection. Our result indicates upper bound for
Bayes risk (in a particular case of loss function – for probability of detec-
tion) in a pretty general setting of an arbitrary finite von Neumann algebra. It
is also shown under which condition the indicated upper bound is achieved.
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1. INTRODUCTION

One of the branches of quantum information is the theory of statistics deci-
sions and optimal measurement. It motivates to study the Bayes risk and proba-
bility of detection of states of the physical system. Many results in the mentioned
field were obtained for the quantum dynamical system represented by algebra of
all bounded operators with canonical trace (sometimes even on a finite-dimensional
Hilbert space) by [1]–[3], [11], and [12].

In this paper we present more general results received for an arbitrary von
Neumann algebra with finite faithful normal trace τ. We employ the definition of
the Segal entropy of states from a predual of algebra.

2. BASIC NOTIONS

2.1. Concept of entropy. Let M be a semi-finite von Neumann algebra of
operators acting on a Hilbert space H with a normal semi-finite faithful trace τ ,
identity 1, and predual M∗. By M+

∗ we shall denote the set of positive functionals
in M∗. These functionals will sometimes be referred to as (non-normalized) states.
The set of normalized states, i.e. the elements ρ ∈M+

∗ such that ρ(1) = ∥ρ∥ = 1,
will be denoted by S.
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The algebra of measurable operators M̃ is defined as a topological *-algebra
of densely defined closed operators on H affiliated with M with strong addition
and strong multiplication.

For each ρ ∈M∗ there is a measurable operator h such that

ρ(x) = τ(xh) = τ(hx), x ∈M.

The space of all such operators is denoted by L1(M, τ) and the correspondence
above is one-to-one and isometric, where the norm of L1(M, τ), denoted by ∥ · ∥1,
is defined as

∥h∥1 = τ(|h|), h ∈ L1(M, τ).

Moreover, self-adjoint operators in L1(M, τ) correspond to Hermitian functionals
in M∗, and positive operators in L1(M, τ) to the states in M∗.

For a state ρ the corresponding element in L1(M, τ) will be denoted by ρ̂ and
called the density matrix of ρ, thus

ρ(x) = τ(xρ̂) = τ(ρ̂x), x ∈M.

In particular,
τ(ρ̂) = ρ(1).

Observe that for a finite τ , we have M ⊂ L1(M, τ).
In the case of the full algebra B(H), a well-established concept of entropy

goes back to J. von Neumann who defined the entropy of a state ρ as

S(ρ) = − tr ρ̂ log ρ̂,

where ρ̂ is a positive trace operator of the trace one.
Unfortunately, when we deal with an arbitrary von Neumann algebra, a satis-

factory general definition of entropy is lacking. Thus we employ the Segal entropy
(up to the minus sign) of ρ ∈M∗, denoted by H(ρ) and defined as

H(ρ) = τ(ρ̂ log ρ̂),

i.e. for the spectral representation of ρ̂,

ρ̂ =
∞∫
0

λe(dλ),

we have

H(ρ) =
∞∫
0

λ log λτ
(
e(dλ)

)
.

Although for a semi-finite algebra M this definition is a straightforward gener-
alization of the von Neumann idea, the reasoning which substantiates Segal entropy
properties needs a different setup from the one used in the case of M = B(H).



Entropic upper bound for Bayes risk 431

REMARK 2.1. Despite being a seemingly straightforward generalization of
von Neumann entropy, the Segal definition exhibits fundamental differences in
many respects from that of von Neumann. For example, while the density oper-
ator in the von Neumann definition is a trace-class operator, and thus has a discrete
spectrum with the eigenvalues summing up to one, this is not the case in the Segal
definition. Furthermore, the von Neumann entropy of a state is nonnegative (which
is a consequence of the above property of the density operator), while the Segal
entropy of a state need not be such. In addition, there are also some technical prob-
lems while dealing with a semi-finite trace. For these reasons, we shall consider
the case of a finite von Neumann algebra and adopt a definition of entropy more in
the spirit of the classical Boltzmann–Gibbs notion, where for a density function f
on a probability space (Ω,F, µ), its entropy is defined as

H(f) =
∫
Ω

f(log f)dµ.

As will be seen, our definition, which is just that of Segal up to a minus sign,
assigns a finite nonnegative entropy to a state, and more generally, for each non-
normalized state in M+

∗ with bounded density, its entropy is finite.
It should be noted that some fundamental investigations concerning entropy

and related notions in the above setup were carried out in [9].

REMARK 2.2 (see [6]). For a finite algebra M (this is the case of our interest)
with faithful finite normal trace τ, τ(1) = 1, for each ρ ∈ S, H(ρ)  0, and for
ρ̂ ∈M, H(ρ) is also bounded from above.

Indeed, since λ log λ > λ− 1, we have

H(ρ) = τ
(∞∫

0

λ log λ e(dλ)
)
=
∞∫
0

λ log λ τ
(
e(dλ)

)
>
∞∫
0

(λ− 1) τ
(
e(dλ)

)
(2.1)

=
∞∫
0

λ τ
(
e(dλ)

)
−
∞∫
0

τ
(
e(dλ)

)
= τ(ρ̂)− τ(1) = ρ(1)− 1,

showing that the entropy is bounded from below, and in particular, it is nonnegative
for states. Moreover, since ρ̂ is bounded, its spectrum is a bounded set; thus, the
function λ 7→ λ log λ is bounded on the spectrum, which implies that the entropy
is bounded from above.

REMARK 2.3. In the classical quantum case, that is, for M = B(H), the
practical Klein’s inequality holds (see [7] and [10]). The analogue of this inequal-
ity is given by the formula
(2.2)
τ(a log a− a log b) > 0 for a, b ∈M+, τ(a) = τ(b) = 1 and supp a 6 supp b,

and it was proved by Umegaki [9] in the case of an arbitrary von Neumann algebra
M with finite faithful normal trace τ. In addition, it was proved (see [4], Theo-
rem 2.1.2(i)) that the equality in (2.2) holds if and only if a = b for M = B(Cd).
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REMARK 2.4. Moreover, apart from the very practical Klein’s inequality,
which holds for the Segal entropy, we have also the following inequality (see [6],
Proposition 1). Let a, b ∈M be such that 0 6 a 6 b. Then

(2.3) τ(a log b− a log a) > 0,

with equality if and only if ab = ba = a2. Moreover, a log a and a log b are bounded
(belong to M), and the numbers τ(a log b) and τ(a log a) are finite.

(This remark is presented and proved with details in [6], but we remind its
main idea to make our reasoning clearer.)

P r o o f. Since
0 6 a 6 b,

we have
0 6 (log b)a(log b) 6 (log b)b(log b) = b log2 b.

The operator on the right-hand side of the inequality above is bounded (belongs to
M), hence (log b)a(log b) is also bounded (belongs to M). Moreover,

(log b)a(log b) = (a1/2 log b)∗a1/2 log b,

thus a1/2 log b is bounded (belongs to M). Consequently, a1/2(log b − log a) and
a1/2 belong to M, so from the properties of trace we obtain
(2.4)
τ
(
a(log b− log a)

)
=τ

(
a1/2

(
a1/2(log b− log a)

))
=τ

(
a1/2(log b− log a)a1/2

)
.

Since the logarithm is an operator monotone function, we have

log b− log a > 0,

yielding
a1/2(log b− log a)a1/2 > 0,

and finally, by equation (2.4),

0 6 τ
(
a1/2(log b− log a)a1/2

)
= τ

(
a(log b− log a)

)
.

The assumption

(2.5) τ(a log b− a log a) = 0

gives
a1/2(log b− log a)1/2 = 0,
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yielding
a(log a− log b) = 0,

i.e.,
a log a = a log b.

Taking adjoints, we get
a log a = (log b)a.

In particular, log b commutes with a, leaves the range of a invariant and coincides
with log a on the range of a. Thus, on the range of a we have

a|Range a = elog a|Range a = elog b|Range a = b|Range a,

which is equivalent to the equalities

ab = ba = a2.

Conversely, assume that the equality above holds true. Then, a and b commute,
so after taking logarithms of both sides, we get

2 log a = log a+ log b,

that is
log a = log b,

which implies the equality
a log a = a log b,

and thus equation (2.5). �

2.2. Bayes risk in the quantum case. We are given a von Neumann algebra
M describing the (bounded) observables of a physical system. Let ρ1, ρ2, . . . be
normal states from M∗. We assume that the physical system can be in state ρi
with a priori probability πi, i = 1, 2, . . . , where π = (π1, π2, . . . ) is a probability
distribution. On the system we perform a measurement (called also a strategy) M
by which we mean a sequence (M1,M2, . . . ) of positive operators from M such
that

∞∑
i=1

Mi = 1,

where the series is convergent in the weak operator topology on M.
We want to find, in an optimal way, the state in which the system really is.
If we receive an outcome Mi, we choose the state ρi. The probability that the

true state is ρi when the measurement gives the resultMj is determined by ρi(Mj).
Thus ρi(Mj) is the probability of guessing the state ρi correctly. If our guess is ρj
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while the true one is ρi, then we pay a penaltyL(i, j). The functionL : N×N→ R
is called a loss function. The risk function is defined by the formula

RM (i) =
∞∑
j=1

L(i, j)ρi(Mj).

The expectation of the risk function is called the Bayes risk and denoted by
r(M,π), i.e.

r(M,π) =
∞∑
i=1

∞∑
j=1

πiL(i, j)ρi(Mj).

Consider the concrete loss function of the form

L(i, j) = 1− δij .

Then we have

r(M,π) =
∞∑
i=1

∞∑
j=1

πi(1− δij)ρi(Mj) = 1−
∞∑
i=1

πiρi(Mj).

In this case, minimizing the Bayes risk is equivalent to maximizing the expression

∞∑
i=1

πiρi(Mj)

which is the probability of the correct guess while performing the measurement
M , and is called the probability of detection. We shall denote this probability by
PD(M).

3. ENTROPIC BOUND

For an arbitrary loss function we have no guarantee of the existence of an
optimal measurement, e.g. the one which minimizes the Bayes risk. However. un-
der the assumptions presented in the following theorem, we can consider such an
optimal measurement.

THEOREM 3.1 ([5], Theorem 8). Let L be a loss function that satisfies the
following conditions:

(i) there are ai > 0 such that for each i we have |L(i, j)| 6 ai, j = 1, 2, . . . ,
and

∑∞
i=1 πiai <∞;

(ii) for each i there exists limj→∞ L(i, j) = bi such that for some j0 we have
L(i, j0) 6 bi for all i = 1, 2, . . .

Then, there exists an optimal measurement.
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In [3] we can find more information on the existence of an optimal measure-
ment. From now on, we will assume that the loss function satisfies the conditions
(i) and (ii) of Theorem 3.1. The following theorem will be very helpful for further
consideration.

THEOREM 3.2 ([2], Theorem II.2.2). We have the relation

(3.1) min
M

r(M,π) = max{ψ(1) : ψ ∈M∗, ψ 6 φj , j = 1, 2, . . .},

whereφj =
∑∞

i=1 πiL(i, j)ρi, j = 1, 2, . . . Then the following assertions are equi-
valent:

(i) The measurementM = (Mi) is optimal for r, and ψ ∈M∗ maximizes the
right-hand side of (3.1).

(ii) ψ 6 φj , j = 1, 2, . . . , and ψ =
∑∞

j=1 φjMj =
∑∞

j=1Mjφj .

Let c = (ci) be a sequence such that L(i, j) 6 ci for all i, j and the sum∑∞
i=1 πici is convergent. Define the functional

rc(M,π) :=
∞∑
j=1

φc
j(Mj) =

∞∑
i=1

πici − r(M,π),

where φc
j =

∑∞
i=1 πi

(
ci − L(i, j)

)
ρi, j = 1, 2, . . . Minimizing the Bayes risk is

equivalent to maximizing the functional rc with positive functionals φc
j .

The next result is a simple consequence of Theorem 3.2.

THEOREM 3.3. We have the relation

(3.2) max
M

rc(M,π) = min{φ(1) : φ ∈M∗, φ > φc
j , j = 1, 2, . . .}.

Then the following assertions are equivalent:
(i) The measurement M = (Mi) is optimal for rc, and φ ∈M∗ minimizes

the right-hand side of (3.2).
(ii) φ > φc

j , j = 1, 2, . . . , and φ =
∑∞

j=1 φ
c
jMj =

∑∞
j=1Mjφ

c
j .

P r o o f. From (3.1) we obtain

(3.3) min
M

r(M,π) = max
{
ψ(1) : ψ 6

∑
i

πiL(i, j)ρi, j = 1, 2, . . .
}
.

Denote by φ the functional
∑

i πiciρi − ψ. Then the above equality takes the form

min
M

r(M,π) =
∑
i

ciπi −min{φ(1) : φc
j 6 φ, j = 1, 2, . . .}.

Consequently,

(3.4) max
M

rc(M,π) = min{φ(1) : φc
j 6 φ, j = 1, 2, . . .}.
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(i)⇒(ii). Let φ be an optimal functional in (3.2). Then φ > φc
j , j = 1, 2, . . .

The functional ψ =
∑

i πiciρi − φ maximizes the right-hand side of (3.1). Then
from Theorem 3.2(ii) we have

ψ =
∑
j

φjMj ,

where φj =
∑

i πiL(i, j)ρi and (Mj) is an optimal measurement. Therefore, the
optimal functional φ in (3.4) is of the form

∑
i φ

c
iMi.

(ii)⇒(i). Let φ be such that φ > φc
j , j = 1, 2, . . ., and φ =

∑∞
j=1 φ

c
jMj =∑∞

j=1Mjφ
c
j . The functional ψ =

∑
i πiciρi − φ satisfies the conditions ψ 6 φj ,

j = 1, 2, . . ., and ψ =
∑∞

j=1 φjMj =
∑∞

j=1Mjφj . Then, by Theorem 3.2, the
measurement M = (Mi) is optimal for r (also for rc) and ψ ∈M∗ maximizes the
right-hand side of (3.1). Therefore, φ ∈M∗ and φ minimizes the right-hand side
of (3.2). �

In the rest of this article we assume that M is a finite von Neumann algebra
with faithful finite normal trace τ , τ(1) = 1, and ρ̂1, ρ̂2, . . . ∈M.Denote by ∥ · ∥∞
the operator norm in M.

THEOREM 3.4 (Main theorem). Let the series
∑

ij πi
(
ci − L(i, j)

)
∥ρ̂i∥∞ be

convergent and let us put ac =
∑

ij πi
(
ci − L(i, j)

)
. Then we have the estimate

(3.5) min
M

r(M,π) 6
∑
i

πici − 2
1
ac

(
∑

i H(φc
i ))−H

(
1
ac

(
∑

i φ
c
i )
)
.

P r o o f. Note that the convergence of the series
∑

ij πi
(
ci−L(i, j)

)
∥ρ̂i∥∞

implies that φ̂c
1, φ̂

c
2, . . . ∈M,

∑
i φ̂

c
i ∈M and also the convergence of the series∑

ij πi
(
ci − L(i, j)

)
. Let φ′ be an optimal functional from the right-hand side

of (3.2). Then
φ̂′ =

∑
i

φ̂c
iMi,

whereM=(Mi) is an optimal measurement. The series
∑

ijπi
(
ci−L(i, j)

)
∥ρ̂i∥∞

is convergent, so the series
∑

i φ̂
c
iMi is the Cauchy series for the norm ∥ · ∥∞.

φ̂c
iMi ∈M, therefore φ̂′ ∈M. Observe that ac = τ

(∑
i φ̂

c
i

)
. By Remark 2.4, the

operator φ̂c
i log φ̂

′ is bounded because φ̂′ > φ̂c
i . The operator

(∑
i φ̂

c
i

)
log φ̂′ is the

pointwise limit of the sequence of operators
(∑n

i=1 φ̂
c
i

)
log φ̂′, so it is bounded.

On the other hand, using the inequality (2.3), we obtain

τ(φ̂c
i log φ̂

′) > τ(φ̂c
i log φ̂

c
i ).

In summary, we have the convergence of the series
∑

i τ(φ̂
c
i log φ̂

′) and

(3.6)
∑
i

τ
(
φ̂c
i (log φ̂

′ − log φ̂c
i )
)
 0.
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Thus there are two cases. First, the series
∑

i τ
(
φ̂c
i (log φ̂

′ − log φ̂c
i )
)

is diver-
gent, so ∑

i

τ
(
φ̂c
i (log φ̂

′ − log φ̂c
i )
)
=∞.

Then
∑

i τ(φ̂
c
i log φ̂

c
i ) = −∞ and the inequality (3.5) is true because it takes the

form
min
M

r(M,π) 6
∑
i

πici.

Second, since the series
∑

i τ
(
φ̂c
i (log φ̂

′ − log φ̂c
i )
)

is convergent, so is the series∑
i τ(φ̂

c
i log φ̂

c
i ). Using the inequality (3.6), we have the estimate

logmax
M

rc(M,π) > log τ(φ̂′)− 1

ac

∑
i

τ
(
φ̂c
i (log φ̂

′ − log φ̂c
i )
)

(3.7)

= − 1

ac

∑
i

τ

(
φ̂c
i

(
log

φ̂′

τ(φ̂′)
− log φ̂c

i

))
= − 1

ac
τ

((∑
i

φ̂c
i

)
log

φ̂′

τ(φ̂′)

)
+

1

ac

∑
i

τ(φ̂c
i log φ̂

c
i ).

With our notation, it is obvious that the assumptions of Klein’s inequality (2.2)
hold and

(3.8) τ

(∑
i φ̂

c
i

ac
log

∑
i φ̂

c
i

ac

)
> τ

(∑
i φ̂

c
i

ac
log

φ̂′

τ(φ̂′)

)
,

therefore

logmax
M

rc(M,π) > −τ
(∑

i φ̂
c
i

ac
log

∑
i φ̂

c
i

ac

)
+

1

ac

∑
i

τ(φ̂c
i log φ̂

c
i ) =: A.

Consequently, we obtain the inequality

min
M

r(M,π) 6
∑
i

πici − 2A. �

In the proof of Theorem 3.4 we used the idea of the proof of Lemma 2 in [8].

COROLLARY 3.1. Assume that the series
∑∞

i=1 πi∥ρi∥∞ is convergent. Then
for the probability of detection we obtain

(3.9) max
M

PD(M) > 2
∑

i πi log πi−H(
∑

i πiρi)+
∑

i πiH(ρi).

P r o o f. In Theorem 3.4, let us consider the concrete loss function of the form
L(i, j) = 1 − δij and c = (1, 1, . . .). Then we have rc(M,π) =

∑
i πiρi(Mi).
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This expression is the probability of detection. From the inequality (3.5) we ob-
tain

max
M

PD(M) > 2
∑

i H(πiρi)−H(
∑

i πiρi).

We have
∑
i

H(πiρi) =
∑
i

τ(πiρi log πiρi) =
∑
i

[πiτ(ρi log ρi) + πi log πi].

By Remark 2.2, the inequality τ(ρi log ρi) > 0 holds. On the other hand, from the
inequality log x 6 x− 1 we obtain

τ(ρi log ρi) =
∥ρi∥∞∫

0

λ log λτ
(
ei(dλ)

)
6 log ∥ρi∥∞ 6 ∥ρi∥∞ − 1.

Therefore, 0 6 πiτ(ρi log ρi) 6 πi∥ρi∥∞ − πi. By the assumption, the series∑
i(πi∥ρi∥∞ − πi) is convergent, so the series

∑
i πiτ(ρi log ρi) is also conver-

gent. Consequently,
∑
i

[πiτ(ρi log ρi) + πi log πi] =
∑
i

πiτ(ρi log ρi) +
∑
i

πi log πi

and
∑
i

H(πiρi)−H
(∑

i

πiρi
)
=

∑
i

πiH(ρi) +
∑
i

πi log πi −H
(∑

i

πiρi
)
. �

In the case of a finite-dimensional Hilbert space and a finite number of states,
Corollary 3.1 is the main result in [12].

In the next theorem and corollary we assume that M = B(Cd) and consider a
finite number of states ρ1, ρ2, . . . , ρn.

THEOREM 3.5. Let φ̂c
i =

∑d
j=1 λ

j
i |v

j
i ⟩⟨v

j
i | be a spectral decomposition of the

operator φ̂c
i , i = 1, 2, . . . , n. Write E = {vji : j = 1, 2, . . . , d, i = 1, 2, . . . , n}.

Assume that LinE = Cd andE ̸= A∪B,whereA,B ̸= ∅ and ∀v∈A∀w∈B v ⊥ w.
We have the equality in (3.5) if and only if φ̂c

i = aPi, i = 1, 2, . . . , n, where a is
some positive number, Pi is a projection and

∑
i Pi =

ac
a 1.

P r o o f. S u f f i c i e n c y. If the equality holds in (3.5), then it must hold also
in (3.7). Thus, we have

∑
i

τ
(
φ̂c
i (log φ̂

′ − log φ̂c
i )
)
= 0

and, by Remark 2.4,
φ̂′φ̂c

i = φ̂c
i φ̂
′ = (φ̂c

i )
2.
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The commutation φ̂′φ̂c
i = φ̂c

i φ̂
′ means that all eigenvectors from the set E are

eigenvectors of φ̂′. By the assumption on the set E the operator φ̂′ has only one
eigenvalue. Denote it by a. Applying Theorem 3.3, we have the inequalities φ̂′ >
φ̂c
j , j = 1, 2, . . ., so the operator φ̂′ is invertible, therefore it is equal to a1. From

the equality φ̂c
i φ̂
′ = (φ̂c

i )
2 we have aφ̂c

i = (φ̂c
i )

2, so all eigenvalues of the operator
φ̂c
i are equal to a. Therefore,

φ̂c
i = aPi for some projection Pi.

The equality must also be in formula (3.8), that is,

τ

(∑
i φ̂

c
i

ac
log

∑
i φ̂

c
i

ac

)
= τ

(∑
i φ̂

c
i

ac
log

φ̂′

τ(φ̂′)

)
.

So, by Remark 2.3, 1
τ(φ̂′) φ̂

′ = 1
ac

∑
i φ̂

c
i . This gives the condition

∑
i Pi =

ac
a 1.

N e c e s s i t y. Let M = (M1,M2, . . . ,Mn),Mi =
a
ac
Pi. We have

∑
i

φ̂c
iMi =

∑
i

a2

ac
Pi = a1 > aPi = φ̂c

i ,

so Theorem 3.3 implies that M is an optimal measurement and maxM rc(M,π) =
τ(a1) = a. On the other hand,

1

ac

(∑
i

H(φc
i )
)
−H

(
1

ac

(∑
i

φc
i

))
=

1

ac

(∑
i

H(aPi)
)
−H (1)

=
a

ac

∑
i

τ
(
Pi log(aPi)

)
=

a

ac

∑
i

τ(Pi) log a = log a,

therefore
max
M

rc(M,π) = 2
1
ac

(
∑

i H(φc
i ))−H

(
1
ac

(
∑

i φ
c
i )
)
. �

For the probability of detection we obtain

COROLLARY 3.2. Let ρ̂i =
∑d

j=1 λ
j
i |v

j
i ⟩⟨v

j
i | be a spectral decomposition of

the operator ρ̂i, i = 1, 2, . . . , n.WriteE = {vji : j = 1, 2, . . . , d, i = 1, 2, . . . , n}.
Assume that LinE = Cd andE ̸= A∪B,whereA,B ̸= ∅ and ∀v∈A∀w∈B v ⊥ w.
We have the equality in (3.9) if and only if ρ̂i = 1

mi
Pi, i = 1, 2, . . . , n, wheremi =

τ(Pi), Pi is a projection,
∑

i Pi = m1,m =
∑

imi and πi = mi/m.

P r o o f. In Theorem 3.5 consider the loss function of the formL(i, j)=1−δij
and c = (1, 1, . . .). Then we have πiρ̂i = aPi for some a > 0 and the projection Pi.
Therefore, πi = ami and a = 1

m . Consequently, πi = mi/m and
∑

i Pi = m1. �
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[6] H. Pods ędkowska, Entropy of quantum measurement, Entropy 17 (3) (2015), pp. 1181–
1196.

[7] D. Ruel le, Statistical Mechanics: Rigorous Results, W. A. Benjamin, Inc., New York–
Amsterdam 1969.

[8] M. Tomamichel , R. Colbeck, and R. Renner, A fully quantum asymptotic equiparti-
tion property, IEEE Trans. Inform. Theory 55 (12) (2009), pp. 5840–5847.

[9] H. Umegaki, Conditional expectation in an operator algebra. IV. Entropy and information,
Kodai Math. Sem. Rep. 14 (1962), pp. 59–85.

[10] A. Wehrl, General properties of entropy, Rev. Modern Phys. 50 (2) (1978), pp. 221–260.
[11] R. Wieczorek, On the form of the optimal measurement for the probability of detection,

Internat. J. Theoret. Phys. 54 (12) (2015), pp. 4506–4511.
[12] S. Yang, J . Lee, and H. Jeong, Entropic lower bound for distinguishability of quantum

states, Adv. Math. Phys. (2015), article ID 683658.

Rafał Wieczorek
Faculty of Mathematics and Computer Science
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