PROBABILITY AND MATHEMATICAL STATISTICS Vol. 39, Fasc. 2 (2019), pp. 259–277

EMBEDDED MARKOV CHAIN APPROXIMATIONS IN SKOROKHOD TOPOLOGIES

Björn Böttcher

Abstract: We prove a J_1 -tightness condition for embedded Markov chains and discuss four Skorokhod topologies in a unified manner.

To approximate a continuous time stochastic process by discrete time Markov chains, one has several options to embed the Markov chains into continuous time processes. On the one hand, there is a Markov embedding which uses exponential waiting times. On the other hand, each Skorokhod topology naturally suggests a certain embedding. These are the step function embedding for J_1 , the linear interpolation embedding for M_1 , the multistep embedding for J_2 and a more general embedding for M_2 . We show that the convergence of the step function embedding in J_1 implies the convergence of the other embeddings in the corresponding topologies. For the converse statement, a J_1 -tightness condition for embedded time-homogeneous Markov chains is given.

Additionally, it is shown that J_1 convergence is equivalent to the joint convergence in M_1 and J_2 .

2000 AMS Mathematics Subject Classification: Primary: 60B10; Secondary: 60J75, 60J05.

Keywords and phrases: Markov chain embedding, tightness, Skorokhod space, Skorokhod topologies, jump processes, Markov chain approximation.

THE FULL TEXT IS AVAILABLE HERE