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ON RECURRENT DIFFERENTIAL REPRESENTATIONS
FOR STATIONARY STOCHASTIC PROCESSES

BY

LESEAW BIELAK (WrOCLAW)

Abstract. In this paper differential representations for stationary
stochastic processes with quotients of analytic functions of minimal
type as spectral characteristics are given. Such a process is a limit (in
the mean square sense) of stationary stochastic processes y,(f) (n-
=1, 2,..) which are solutions of an infinite-dimensional system of
stochastic differential equations. There are some recurrent connec-
tions between y,(f) and for that reason we call the differential
representations considered in this paper recurrent. The represen-
tations are applied to find a necessary and sufficient condition for
absolute continuity of measures generated by Gaussian stationary
processes with spectral characteristics mentioned above. This con-
dition takes the form '

gy(4)
m ——
A—*n.o Ix (A‘)

=1.

Thereby the Feldman theorem is generalized.

1. Imtroduction. On the probability space (2, F, P) solutions of many
problems of statistics of stochastic processes (for instance filtration, predic-
tion, interpolation, testing of hypothesis) are effective for processes of
the form

1) y(®) =y(O)+ [F(s)ds+ [B(s)dW(s), te[0, T],
4] . L] :

where F(s), B(s) are stochastic processes on (2, F, P) and W (s) is the Wiener
process. The last integral in (1) is understood as Ito’s stochastic integral (see
[1], V). ' .

We may rewrite (1) in the form

dy(t) = F()dt+B(t)dW (1)

and call it stochastic differential representation for y(t).
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The partlcular form of stochastic differential representations are stochas-
tic differential equations (see [1], IV)

.(2) y() = y(0)+ ja(s, yyds+ jb(s, »dw(s), te[0, T].

This explains, why it is important to obtain.theorems presenting a given
stationary process as a solution of stochastic differential equation. The
theorem like that for stationary processes with rational spectral densities can
be find in [1] (see Theorem 15.4). The purpose of this paper is to find
differential representations for more general stationary processes. The re-
presentations will be applied to investigate absolute continuity of measures
generated by these processes.

2 Recurrent differential representatlom We consider the class of functions
g(A) = |h(iD)? where

P(i) AV AN oA
®) hd) = 5o 2 P(zl)—k];[l(l bk) and Q(M)—kl;ll (1 a,,)

The products P(il) and Q(il) are absolutely convergent.

The function g(4) will play a role of spectral density of a stationary
stochastic process, for the reason some assumptions will be imposed on {a,}
and {b;}. These assumptions will turn out necessary (sec Remark 1) for
existence of recurrent differential representatlon for stationary process.

-We assume’

@) o 3 V Reaq<5d

>0 k=1,2,...

and the series
) [+ o]
(8] : Z 1811 — byl
» k=1"
is convergent.

Define {h,(id)} as

n—l( l/l)
1 ‘ =%
h(i2)=—— and h,()=1—%*. for n>1.

il : n il
1—-2 1-2
a kI;Il ( ak>

Therefore, for n > 1,

7!

n—1 I_F

h,(id) = h, (i4) H l ;
. S
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or

l_bi,l
hy(id) = h,— 1 (i2) ;;1‘ .
1-—

ay

Now we prove a technical lemma:

LemMa. If (4) and (5) hold, then

(@)  h(id) = Lim. h,(i4);

(b) there exist constants ¢ and o, such that
iAh(il)—o = lim. iih,(id)—-0,;

where “Liim” stands for “limit in mean in the L* sense”.
Proof. (a) From assumption (4) and

IT A +Ix)) <exp Y 1%
k=1 k=1
we obtain
il
) n—1 1_'1;; n—1 “1 1 1
(6) - ‘Sexp . - ( —'—)
' k=14 _ Z - k§1 1— A \&+y by
4y » A+ 1
< _ "t gy
<expC ) |1— , CeR.
k=1 by
But A '
. n—1 Gysq n—1 .
(M . Y- < Y lte1—bil,
. k=1 k k=1

therefore, applying (5), we conclude ‘
| ' iAo '

N 1—_—
-1
' , U b .
VY |, (i) = |hy (i2)] . < Cylh (4, CyeR.
neN k=1 1_ .'ll
O+t
Hence Lim h,(id) = h(id).
(b) Let
: ' i "layy,
6,=—a, and o6;=—a HT for n>1.
k=1 Dx
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By (5) the product

= Oy
kl:II bk
is absolutely convergent, hence
. ke MY
c=limo,=—a, []
_ k=1 by
is well defined.
- Write
n—1
d, (iA)
P 2
h,(id) = 0. = .
" Z ¢, (iA)*
k=0
Since
lim iAh, (i) = by _ .
A= a0 cn
we have ‘
' d,_ O (7) Ll
iAh, (i) —c, = 2Ly ,f_('l) +. 70 hy (i) —a,
Cn il :
m(i-22)
k=1 gy
- il"_1+...-};r _-
e i L N )
1—
kl;[1< ak+1)
where

[ 5

(A
r’l—l - cll dn_

- C" -1 > g ne )
Consider the sequence

_Mimt (-2 Ca-y
A"— Cp _a"(dn—l Cp )

[

From Vieta’s formulz; we obtain

d_ . ) .
) dn 2 = _(bl +b2+ +b,,_1) and C:: L= —(a1 +a,+ ... +a,,),
n—1 . n
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therefore

n—1
A, =0y [(11 + Z (ak+1 _bk)]
k=1

and {A,} is by (5) absolutely convergent, which implies in the similar way as
in the first part of the proof

®) Y |idh, (i) -0, < C,lhy 3], C,eR.

neN
Hence
Li.m. iAh,(il)—ao, = iAh(il)—o0.
COROLLARY. Considering the limits

lim Lim |idh,(id)— 0

. " A= wm oo
and applying (8) we obtain
9 lim iAh(id) = 0.

A—- o

Now we can define processes y(f) and y,(t) as

(10) y(O) = [€*hG) D@D, yu(0) = € h,(id) D(dA),
R ' . R '

where @(d1) denotes an ortﬁogonal spectral measure:
| di .
E®diy=0, E|®dI?= =5 tef0, T]. .

THEOREM 1. Under assumptions (4) andw(S) the process y(t) is a limit, in the
norm .

-1l = (E[-1H)12,

of processes y,(t) which are solunons of the followmg system of stochastlc
differential equations:

o dy,(t) = a, y,()dt—a, dW(r)
. { D) =5 D+ O~ s OV, 7> 1,

where

W) = f ei';'l"l &(dd).

Remark. It can be proved that W(t) is a Wiener process in wide sense

(see [1], ‘XV).

4 — Probability Math.. Statistics 5/1



50 . L. Bielak

Proof of Theorem 1. We w1ll use the following relations (see Lemma
15.3 in [1]): 2

If h(iA) is spectral characteristic,
[lhGR)2di <o and (1) = | h(i2) B(dA),
R R
then, with probability 1,

fly(s)ids < o0, t<oo0,
1] .

and -
t

(12) o fy(s)ds=jehz;lh(il)di(di).

L] . R

(a). The first equation of system (11) we may rewrite in the form:
0] y1(®)=y1() = ay I v () du—ay (W ()= W (5)).

Applylng (12) we obtam

t

(i) | | f yi(W)du = f Jei“‘hl(il)¢(d1) du

0

= f eM"l hy (i2) &(d).

il
R
From (i) we obtain"
ezti. 1 it}._l
a, f = hl(zl)di(d,l) a, J“’ ()
R R

- fe-'ﬂ 1)~UL1(LAL1_) (i) = f(e'ﬂ-l)h1 (i1) @ (dA)
R E .
=y1()-n (0)
hence y, (t) satisfies equation (i).

(b) The n-th equation of system (11) we may rewrlte in the followmg
form:



Recurrent diﬁ"eremial representations

t

1 1 |
(lll) ;(yn(t)_yh(s))_g—::(yu—l (t)"'yn— 1 (S)) = 'J‘yn(u)—yn—l (u) du.

For the sake of simplicity we put s = 0.

yn(t)_y,_l(t)_[y,(O)_yi_l(O)]= jem )[h (i) h,-l(m)]q,(dl)

a, b,_, a, b1 ay n—1

| 1 I_b_m—

= ~[(ff"“i—l)h..—:(1'11)[“——————- ]‘P(di)

“ R " 1";‘;

: ui il

1‘ ”e‘“'—l . n 1 J y) n 1 »
= {—h,_ l(ul) &o(di) = fulp I(M) & (dA)du

iA -

_:. -2 > -2

=. j"“ [ha(i2)—h,- 1(11)]4’(611)(3“ = Jy..(u) Yn-1(u)du,
oR S
therefore y,(?) satisfies equation (iii).

(c) Since |

Iy (O -y @l

=E j 't (h, (iA)— h(id)) @ (dA) j'e"“ (ha(iR)— h(lA))d’(d,l)

= [Ih, (i)~ h(iA)* dA,
-

we conclude (see Lemma) that y,(t) tends to y(t) in the mean square norm.

In order to take into account applications we describe system (11) in
another form. The recurrence with reference to stochastic differential of the
n-th equation will be replaced by a recurrence with reference to coefficients of the
n-th equation of the system.

THEOREM 2. System (11) is equwalent to the system of stochastic dﬂerentza!
" equations

(13)

dy,,(t) = F,,(t)dt+a,,dW(t), n=12,...,
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where

(a1 y: (1) Jor n=1,

W {Z(al ;)nﬁla’;,“yi(t)+any,,(t) for n>1,
k=i Yk

and

e

‘ —a Jor n=1
5 - ,= n1
(43 . .0 %—alna"ﬂ for n>1.
' k=1 bk

More_over,
"Ey,(OW@H=EyQW@E=0 forn=1,2,..
Proof. For n=1 (11) is equivalent to (13). For n=2

dy, (t) =%:‘dyr(t)+az (2 ())—y; (1) dt /
= (@ Odi=a, dW )+, (0~ 0)ds
[(01—171) Y1 (t)'f'azh(t)]dt a; b—dW(t)

=F,{t)dt+o,dW(t).

Assume that for the (n—1)-th equation systems (11) and (13) are equiva-
lent. Then from (11), (14) and (15) we obtain

dyrl(t) = bajl dyn~1(t)+an(yn(t)_yn—1 (t))dt

a, n? n_zak+1 |
=3 ) Y (a;—b) 11 by Yi()+ 8y 1 Ya-1(t) |dt—
n-11i=1 k=i :

S H “"“dW(t)+a,(y"(t) Yaur () dt

n—1 k=1 bk

= ["iz(ai l) H k+1 t)+an(b —l)yn—l(t)+anyn(t)]dt_
i=1 k=i n—1

n—1 :
—a ] “';,“ dw (t)
=1 k
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"o A p—1
= I:Z (ai_bi) 1_[ b yi(t)+an (b ] _l)yn—l(t)_l_anyn(t) dt—
i=1 k=i D n—

g laHldW
—ay [] (¥

k=1 bk

n—1 n—1
= [z (a;—b) H
k=1 k=i
=F,(t)dt+0,dW ().

Hence systems (1 1)" and (13) are equivalent.
Now for each n we may rewrite a part of system (13) in the form

dY,(1) = R, Y,(t)dt+S,dW (), n=1,2,...,

. n—1
et y.-(t)+a..y..(t)]dt—a1 I1 DL aw(r)
bk k=1 b

k

where

Yn(t) = (yl (t): .VZ(t)’ vy y,,(t))*, Sn = (01, T35 e Gn)*
and R, =(r;) where i, j=1,2,..., n, and -

i—1
(@—b) [T EL for j <i,
k=j by

a; for j =i,
0 for j > i.
. Since eigenvalues of the matrix R, lie in the left half-plane, the proof of
E y,(0)W(t) =0 is the same as in [1].
The equation E y(0) W(t) = 0 follows from inequality

eitl_l
V' |, (i2) ‘—le StCy by (@A),  CieR,

‘because
. eth 1 1 -
EyOW(@) = fh(il) ) di = flimh,,(iil) 7 dl
n i
R ) R
eitl -1
= lim Jh,,(ill) 7 di = lij Y. (O W(t) = 0.

R

CoroLLARY. There are the following comnections between the processes
F,(t) and the constants o,:

a y, (1) | for n=1,
Fn(t) = {

- Fa O+ 4 (n =3 (0)  for n> 1,

(16)
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: —-a Jor n=
(17) | an={ @ -

—— 0O,y for n>1.

These formulas follow from (14), (15) and the proof of Theorem 2.

THEOREM 3. The process y(t), defined by (10), has the differential
representation

(18) dy(t) = F(dt+cdW (D),
where
y@) =lim y, (9, F@)=limF,() and o=lima,

Moreover, for y,(t), F,(t) and o, formulas (11), (16), (17) respectively hold.

"~ Proof. From Theorem 2 we have y(t) = Li.m y,(f) and from (5) we get o
= lim o,. System (13) implies

Fult) = [ (i (i4) — 0,) B (dd),
R

_therefore the convergence of F(r) = lim F,(t) is a consequence of part (b) of
* Lemma.

Since iAh(il)—o e I*(R), we can apply (12). In view of

it _

y(O) -y (O —aW () = fe

(iAh(i2) — ) ®(dA)
and

[ e (iAh(id)— o) @ (dA) = F(s),

) ,
we obtain

y(t)—jz(O)_=’ £F(s)ds+aW(t).

Remark 1. If we assume that there exisfs a constant ¢ such that
(19) ' . ilh(i)—oceI2(R),

then instead of assumption (5) we can assume that

-]
Ay 1
(20) ‘
) k=1 bx

is absolutely convergent.
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Since

i-1 b

expression (20) is equivalent to the convergence of the sequence {o,}.
Under assumptions (4), (19) and (20) we obtain Theorems 1 and 2 and
also representation (18).
Note that instead of the convergence Lim F,(t) = F(t) we obtain in th1s
case the convergence of the integrals

Lim j F,(s)ds = j'F (s)ds.
n 0 V]

Indeed, since (20) is equivalent to the convergence of the series

a .
' “t+1
1-

b

inequality (6) holds. Therefore we obtain part (a) of Lemma and also
Theorems 1 and 2. Under assumption (19) we can apply (12) and, in the
similar way as in the proof of Theorem 3, we get

k=1

t

‘ eul. - 1 . .
f m (iAh(i2)— o) D (d3) = fF (s)ds.

R 0
Hence

dy(t) = F(t)dt+0dW(t), where 1.i.fn.ffF,,(s) ds = j'F(s)ds.»
-0 0

Remark 2. If y(¢) is a Gaussian process, then o, and ¢ are real positive
constants (see [2]). -

Remark 3. If spectral density of process y(t) is a rational function

nifl il 2

' = b

@y : g =5
: . \ ]'_"[ 1_1&
k=1 O

then the problem of the. differential representation for y(z) is reduced to
considering finite systems of stochastic differential equations. In this case
from Theorem 2 we obtain a theorem analogous to Theorem 15.4 from [1].
The difference is that our stochastic differentials for y,(1) (n=1, 2, ..., m),
the processes F,(¢) and the constants o, satlsfy some recurrent formulas

Therefore we obtain:
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THEOREM 4. Let y(t) and y,(t) be Stationary processes defined by (10). Let
g(4), defined by (21), be the spectral density of process y(t) = yu(t). Then y,(t)

.is a component of the m-dimensional stationary stochastic process Y,(t)

=(y1 (1), ..., Ym(t))*. The processes y,(t) satisfy the system of stochastic differ-
ential equations ' -

dy,(t) =F,(t)dt+o6,dW(t), n=1,2,...,m,

where F,(t) and o, are defined by (14) and (15). W(t) is defined in Theorem 1,
EnOW®=0, n=1,2,.
Moreover, for y,(t), F,(t) and o, recurrent relations (11), (16), and (17)
respectively hold.

3. Absolute continuity of Gaussian stationary processes. The purpose of
this section is to give a necessary and sufficient condition for absolute

. continuity of measures generated by Gaussian stationary processes with

spectral densities of the form f(4) = |h(i2)|%, where h(id) is the spectral

- characteristic given by (3).

. A well-known necessary and sufficient condition for absolute continuity
and singularity of measures for Gaussian stationary processes with rational
spectral densities is given below.

"~ Let g;(4) (i =1, 2) denote spectral densities for stochastic processes x;(t),
and p,, — measures generated by x;(r). Then

o ~ e, if and only if  fim 2% 1

1-wg2(2)

for Gaussian stationary processes X;(f) with rational spectral densities g;(4).
The necessity of

=1

: ' . 1 (A
22) Im @y

for absolute continuity of measures Px, and M, follows from Baxter’s
Theorem (see [6], [7]). The necessity .of cond:t:on (22) can be proved for a
class of spectral densities larger than the class of rational spectral densities
(see [3]-[6]). However, sufficiency of (22) was proved,.as far as we know,
only for the class of rational spectral densities.

Now we apply the results of previous section (the dlfferentlal represen-
tation for stationary process) to generalize in a simple way Feldman’s
Theorem (concerning sufficiency of (22)) for the ‘class of spectral densmes

_given by (3).
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THEOREM 5. Let y(t) and x(t) be Gaussian stationary processes with
spectral densities f(A) and g(1), respectively, such that

° (i) pP Y
(-5) | (-2)
f()v)=7.g—il1 s 9('1)=T“i7 .
1—— 1——
H( ) kljl( ck)

Assume that for. {a,} and {b,} as well as {c¢,} and {d,} expressions (4) and
(5) hold. Then

23 “u, ~u, if and only i im——=1,
(23) By~ by 0f y if Tm

where p, and p, are measures generated by the processes y(t) and x(t),
respectively.

Proof. From Theorem 3 we have‘

dy(t) = F (t)dt +0,dW (1),
dx(t) = G(t)dt+ o, dW (2).

Note, if @(d1) from (10) is Gaussian, then W (t) (from Theorem 1) is a
Wiener process (in usual sense).

From well-known theorems concerning the absolute continuity of
stochastic processes having differential representation (see [1], VII, or [6]),
we obtain

(24) uy ~ p, if and omly if o, =o0,.
But, on the other hand, (9) yields
 lim lidh, (iM) =|o,] and  lim [iAh,(i2)] = |0,

A A—w

where h,(iA) and h,(id) are spectral characteristics for y(t) and x(t), respecti-
vely, so

lim A2f(4) =62 and lim A*g(d) = o2

CA— o C A-w

Since o, and ¢, are positive constants (see [2]),

. . A
6,=o0, if and only if }_ﬂlzg(,l) =

This fact and (24) imply (23).
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