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o

Abstraet. In this paper we prove theorems on the accompanying
laws and convergence of infinitely decomposable measures in a
generalized convolution algebra, introduced by K. Urbanik [4].
These results are used to investigate the classes of s-stable and s-
semi-stable measures introduced in paper [2], Chapter III.

1. Introduction. Let 2 be the class of all probability measures defined on
Borel subsets of -non-negative half-line. By E, (a > 0) we shall denote the
probability measure concentrated at the point a. For any positive number «
we define a transformation T, from £ onto itself by means of the formula
(T, P)(B) = P(a™ ' B), where Pe #, Bis a Borelsetand a ' B = {a~ ' x: xeB}.
Further, the transformation 7T, is defined by assuming T, P = E, for all
Pe . ,

We say that a sequence P,, P,,... of probability measures is weakly
convergent to a probability measure P, in symbols P,— P, if for every
bounded continuous function f the equatlon

lim (I) J (%) P,(dx) = I f (x) P(dx)
n-*a ¢]

holds. ‘

A commutative and associative #-valued binary operation o defined on
2 is called a generalized convolution if it satisfies the following conditions:

(i) EqoP =P for all Pe2,

(ii) (aP+bQ)oR.=a(PoR)+b(QoR), whenever P, Q, Re? and a > 0,
b>20 a+b=1; :

(i) (7, P)O(T Q)=T,(PoQ);

(iv) if P,— P, then P,0Q — Po(Q for all Qe?

(v) there exists a sequence c,, c,, ... of positive numbers such that the
sequence T, E7" weakly converges to a measure Q different from E,.
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The power E2" is taken in the sense of the operation o, ie. E' = E,,
ESt*D = E"0FE, (n=1,2,..).

The concept of generalized convolution has been introduced and ex-
amined by Professor K. Urbanik. For the terminology and notation used
here, see [4]. :

One of the most important example of generalized convolution is given in
Kingman’s work [3] (see also [4], p. 218). His example is closely connected
with spherically symmetric random walks in Euclidean space.

The class 2 with a generalized convolution o will be called a generalized
convolution algebra and denoted by (2, o). Algebras admitting a non-trivial
homomorphism into the real field are called regular. We say that an algebra
(2, o) admits a characteristic function if there exists one-to-one correspond-
ence P @, between probability measures P from £ and real-valued
functions @, defined on the non-negative half-line such that @,pip9
=adp+b®Py (a>0,b>0,a+b=1), @PQQ =0p P, Pr, p() = dbp(at)
(a= 0, t->0), and the uniform convergence in every finite interval of ®p is
equivalent to the weak convergence of P,. The function ®p is called the
characteristic function of the probability measure P in algebra (2, o). It is
proved in [4], Theorem 6, that an algebra admits a characteristic function if
and only if it is regular. Moreover, each characteristic function is an mtegra]

transform
o) | Bp(t) = [ 2(1%) P(d)
(4]

where the kernel © satisfies the inequality Q(x) <1 in a neighbourhood of
the origin and '

' 1—Q(tx
2 lim ~——(—2 r*

x—»o 1 .Q(JC)

uniformly in every finite interval. The positive constant » does not depend
upon. a choice of characteristic function and is called a characteristic expo-
nent of the algebra in question. Moreover, there exists a probability measure
M called a characteristic measure of the algebra for which

G P (1) = exp (—1%)

(see [4], Theorem 7).
Troughout this paper we assume that the algebra (2, o) is regular, and
&p is a fixed characteristic function in (£, o).

2. Infinitely decomposable measures. This section is devoted to the study
of the accompanying laws and convergence of infinitely decomposable
measures. Let us recall that a measure Pe 2 is said to be infinitely decompos-
able if for every positive integer n there exists a measure P,e 2 such that P
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= P;". The class of infinitely decomposable measures commdes with the class
of limit distributions for sequences of the form

P,oPyo0...0P,

where P, (k=1,2,...,k,;n=1,2,..) are uniformly infinitesimal, ie., for
any positive number ¢,
) lim max P,(x: x=>g=0

n—w 1<k<k, ,
(see [4], Theorem 12). Moreover, one can prove an analogue of the Lévy-
Khintchine representation for the characteristic functions of infinitely decom-
posable measures. Namely, the following theorem holds: a function & is a
characteristic function of an mﬁmtely decomposable measure if and only if it
is of the form

Q(tx)—1
w(x) .

0

e & (1) = exp m(dx),

where m is finite Borel measure on the non-negative half-line,

(x) = {I—Q(x) if 0<x< x,
X) = 1-Q(xq) if x> xq,

and x, is a positive fixed number such that Q(x) <1 whenever 0 < x < x
Always there exists such a number x, (see [4], Theorem 5). Further, represen-
tation (5) is unique, i.e. the function @ determines the measure m (see [3],
Theorem 1).

For any finite measure m on the non-negative half-line R* we define the
compound Poisson measure e(m) in the algebra (2, o) by the formula

ok

(6)

e(m=e"

where the power m° is taken in the sense of the operatibn o, and the
measure m in the zero-power is equal E,. It is easy to verify that

Doom (1) = €xp [m(R*)(D,, o+ (0~ 1)]
Of course, the compound Poisson measures are infinitely decomposable.
TueoreM 1 (Accompanying laws). Let Py (k=1,2,...,k,; n=1,2,..)
be uniformly infinitesimal probability measures and
kn
P,,=“P,,10P,,20...OP,,,‘R, Q"=e(z P"k).
k=1

Then P,— P if and only if Q,— P.
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. Proof. Let -
. k

b
L=p L Pu

Then T,e % and ‘
ky L

@y, (1) = exp k,(®r, (1) —1) = exp [kzl (@p, (-1)], &p ()= ,,Ul Py (1)

From the elementary inequality [log (1+ x)— x| < 3|x|? for x — 0, we have

7 ,Z log ®p k(t)/ Z (qu,,k(t) 1) l 3 I<n ( _¢P”k(t))-

X
<k,

Further, given a positive number ¢ > 0 and a positive number t,, there
exists a positive number & such that 1—Q(tx) < & whenever 0 < x <6 and
0 <t < ty. Hence, for any number t satisfying the inequality 0 <t <t, and
for any integer k satisfying the inequality 1 <k < k,, we get

5
0< 1=, (1) = [(1 —Q(tx)) Py (dx) + | (1 —Q(tx)) P (dx)
: 0

a0
é
<e+2 max Py(x: x=6)
1<k<ky,

which, by (4), implies
| max (1—®, (1))—0

15k<ky,

uniformly in every finite interval. Hence and from (7) it follows that in order
that log @, (f) - log @,(t) uniformly in every finite interval it is necessary
and sufficient that log @, (1) —log ®p(1) uniformly in every finite interval.
Thus the Theorem is proved. '

THEOREM 2. For the convergence of a sequence {P,} of infinitely decompos-
able measures to a limit P it is necessary and sufficient that, as n — o0, m,
— m, where the measures m, and m are defined by formula (5) for P, and P,
respectively.

Proof. Necessity. At first, let us remark that the class of infinitely
decomposable measures in (£, o) is closed under weak Ilimit (see [4],
Theorem 11). Thus P is also infinitely decomposable. Further, let us intro-
duce an auxiliary finite measure u, defined on R* by

®) Ha(E) = ,{ g()m,(dx),
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“ where E es a Borel subset of Rt and

009 = 31 —exp (=) {1 - 2(w)d

and x is the characteristic exponent of the algebra in question. The function
g is positive for x >0 and bounded, which implies the finiteness of the
measures u, (see [5], the .proof of Theorem 1).

Further in the same way as in the proof of Theorem 1 in [5], we get

;! XD (=2 (@) = I+ 1 y) M)~ | 1(ey) M),
) o 0 :

where

1 o

I,(t) = —log ®p (1)~ flog ®p (u)du+ j' jlog ®p, (x)(E,OE,)(dx) du.

Hence it follows that the modified Laplace transforms of the measures y,
tend to the modified Laplace transform of the measure x such that

u(E) = [g(x)m(dx).

Hence we have u,— pu.
Since the function g is positive for x > 0, continuous, bounded and
lim g(x) =0 as x— 0 from (8), we get

©) m, > m

on every Borel subset of R* separated from the origin. Further, let 0 <a
< xqo be fixed. Of course ,

1- Q(x)
f ,.(d ) - j
CU

0 ]

m(dx) as n— 0.

Hence and from (6) there exists constant ¢ > 0 such that

( 1-@Q
m,,([O, al) = J w(x()x)

0

m, (dx) < c,

but this implies that the sequence {m,} is compact on [0, a]. Together with
(9) we see that the sequence {m,} is compact on [0, o0). Since, for every
teR”, ®p (t) > Pp(t) and the spectral measure m in Levy-Khintchine re-
presentation (5) is unique, the sequence {m,} is weakly convergent to the
measure m, and the necessity is proved. .




1-118 Z. J. Jurek

Sufficiency. Since for any t.the function (Q(tx)—1)/w(x) is bounded
and continuous on the half line 0 < x < 00, we get

wQ(:x)—_L'
jT(x)—m"(dx)—J

0 0

.Q(tx) 1

() m(dx).

.lim

n— o0

The proof will be complete if it be shown that the above convergence is
uniformly in every finite interval. Let us remark that for every é > 0 the
measures v, defined by '

vo(B) = J wiCoy

w(x)
Bn(d, o)

are weakly convergent to the measure v, where

V(B) = J m(dx)

w(x)
_ B Bn(é, o0) »
and B is a Borel subset of R*. Thus their characteristic functions are
uniformly convergent in every finite interval. Hence

Qx)—1 Qx)—1
— my,(d ————— m(dx).
J 0 ﬁl..( X)*j e m{dx)
é ) é
uniformly in every finite interval.

Further, let ¢ >0 be fixed. By (2) and (6) there exist # = 5(¢) > 0 such

1-Q(rx)
w(x) !

for all 0< x<n and all a <t < b, where 0 <a<b <. We may assume
that the interval [0, #] is a continuity set of the measure m. Then m,[0, n]
- m[0, n] as n— oo and there exists an N = N(g) such that |m,[0, n]—
—m{0, ]l <& for n> N. Thus the two preceding inequalities show that

" that

<e

fl acy m, (dx) — fl—_ﬂ@m(dﬂlﬂrws)im{o, n1=m0, n
5

w(x w(x)

0
<(t"+e)e
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for n> N and all te[a, b]. Hence, as n— oo,

Q(tx)—1 Qx)—-1 . -
= m(dx)—- | ——— m(d
[ 2L )~ | FE
0 )
uniformly in every finite interval, and the sufficiency is proved.

In the sequel we assume that the convolution algebra (2, o) satisfies the
following additional condition:
(%) D= lim—m—(i) > 0.

x—0

This limit always exists ‘and is finite. Moreover,
D#0 ifandonlyif x*M(dx)< oo,
: Q

where » and M is the characteristic exponent of the characteristic measure
of the convolution algebra in question (see [7] and [5], Lemma). In this case

oo

fx M (dx).

Further, it is interesting that all known examples of generahzed algebras
satisfy condition (x).

3. 5- stable measures. Let r be a non-negative real number and U, be a
shrinking operation, (shortly, s-operation) from non-negative half- lme R*
onto itself by means-of the formula

U,(x) = max (0, x—7).

Of course, U, are continuous non-linear maps, the family {U,: r > 0}
forms a semi-group under composition and U, U, = U, ,, (r, s = 0). Further,
if Pe#, then by U, P we mean the measure from # such that

(U, P)(B) = P(U; ' B)

for all Borel subsets B of R*. _

A measure Qe 2 will be called an s-stable measure in generalized con-
volution algebra (2, o) if there exists an increasing sequence {r,} of positive
numbers tending to infinity and a measure Pe 2 such that

(10) _ U, P —Q.

In [2], Chapter III, was introduced a notion of s-stability of Borel
probability measures on real separable Hilbert space with ordinary con-
volution. In this section we give a description of the class of s-stable
measures in algebras (2, o) satisfying the condition (*).
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Of course, for each. positive & ,
lim U, P(x: x >¢) =0,
n—+am

thus every s-stable measure is infinitely decomposable (see [4], Theorem 12).
The following lemma will be used repeatedly and is stated here for further

-reference.

Lemma 1. Let {P,} and P be probability measures on positive half-line, and
{a,}, a, be positive real numbers. Then P,— P and a,— a implies U, P,
-U,P.

Proof. From the inequality

U, x—U,x <lr—s| forall xeR*,

we get that if x,—x and a,—a, then U, x,- U,x. Thus, taking into
account Theorem 5.5 in [1], p. 34, we get that U, P,— U P, which
completes the proof of the Lemma.

The sequence {r,} in formula (10) we will call norming sequence
corresponding to the s-stable measure Q. We shall give some property of
norming sequence if the measure Q is not concentrated at zero.

Lemma 2. Let Q # E, be an s-stable measure. Then
Fag 1 =Fn = 0.

Proof. Let (U, PY"—Q and

o0

Q(tx)—1

o) m(dx).

Dy (1) = exp
0

Then, by Theorems 1 and 2, we have

(11)  m,om,

* where

m,(B) = n o (x) U, P(dx)
: B

for all Borel subsets B of R*. Further, let us introduce the measures y,, u by
the formulae ' :

u;.(B)—f ()m,(dx), u(B) = f m (dx).
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Since the function 1/w(x) is continuous and bounded on subsets sep-
arated from the origin, thus by (11) we get

Hn = 1,

on Borel subsets of R* separated from the origin.
Hence we obtain

(12) ‘ nU, P - p.

Suppose that s is a limit point of the sequence {r,.,—r,} with 0
<5< o0, and an interval I in R*\ {0} is a continuity set of the measure p.
From equality

n+1

(40U, P() =+ YP( 47, ) =—— U, [nU, P(D]

*nt1 nt17"n

and from Lemma 1 we obtain o
- u)=U,p) = u(I+53).
Consequently, by induction,
pN=pu(l+ks) (k=1,2,..)

which yields u(I) = 0. Thus the measure m vanishes identically on positive
half-line, i.e. on (0, ).

In view of condition (*) in section 2, we can mtroduce the finite Borel
measures v, and v by the formulae

X

x* S :
va(B) = fg(;)amn(dx), v(B) = fw(x) m(dx),
B B

where B is Borel neighbourhood of the origin in R*, and the integrand is
assumed [ t* M(dr) if x = 0. Of course, by (11) we get v, —» v in every finite

nelghbourhood of the origin. Further if we take the definition of the
measures m,, we get

(13) lim lim n [x" U, P(dx) = v({0}),

£-+0n—>w

if the intervals [0, &] are continuity sets of the measure v
In the sequel we assume that s is a limit point of the sequence {r,,,—7,}
and 0 <s < 0. Let us denote

(14) F,(t)=nU, P{x: x>t} fort>0
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and

(15) ' Tigt1— i, = S-

Since the measure m (and p) vanishes on (0, o), thus, by (12), we get
‘ ‘F,.(r) -0

for all positive . Taking into account the formula (13) for subsequence
{k,+1} and monotonicity of the functions F,, by simple computation we
obtain

&

v(10})=lim lim [—s" Fy,+1(€)+x Jx"' 1 Fi 41(x) dx]

e—+0 n—w
0

k,+1( . _ :
Jx" YFy (X411 -1 ) dx
0

= lim lim
-0 n-m k

&

F (39 fx""‘ dx% =0.

0

k,+1

< x lim lim {

=0 n—-o0 n

Moreover, m {0} = 0, too. _ :

Thus the assumption that the sequence {r,.,—r,} has a positive limit
point implies that the measure m vanishes identically on [0, c0). Hence Q
= E,, which contradicts the assumption in Lemma.

LEMMA 3. If Q # E, is an s-stable probability measure and its representing
measure m in formula (5) does not vanishes identically on (0, co), then m {0}
=0. '

Proof. In the proof we keep on the notations used in the proof of
Lemma 2. Thus

F,() > F® < p(x: x>1)
for all positive continuity points of F, and
lim lim # [x*U, P(dx)=v({0}),
e=>0 n—w (@ :

if the intervals [0, ¢] are continuity sets of the measure v (of course they are
continuity sets also of the measure m).

Since the measure m does not vanish identically on (0, c0), thus the
function F () is positive in some neighbourhood of a positive real number s.
By Lemma 2 for s there exists a subsequence {k,] such that

rk"—-r,, _'s,
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as n — oo. Further, if the closed interval I contained in (0, xc) is a continuity
set of the measure y, then from equality

(16 kU, P(D =k, P +1,) =" U, _, (U], P(D)

and from formula (12) we get that there exists a limit of the sequence k,/n,
say ¢, because m (and u) does not vanish identically on (0, 00). On the
other hand, taking into account (13), (14) and Lemma 1 we obtain

4

v([0, ¢]) = lim [——a"Fk"(s)+x jx"‘l Fy,(x) dx}
. 0

n—>w
&

. k )
= —&*F(g)+x lim ijx—an(x"‘rk,,—r,,)dx
J

= —g“F(e)+xc Jx""‘F(x+s)dx.
J .

But lim [x*~ ! F(x+s)dx =0 and hence
e—=00

v({0}) < lim (—&*F(2)) < 0,

e—0

which implies that m({0}) = 0. Thus the Lemma is proved.

LemMma 4. If Q # E4 is s-stable probability measure and its representing
measure m in formula (5) vanishes at zero, then there exist positive constants
¢ and p such that ‘

a7n m(B) = ¢ fo(x)e” P dx
B

Jor all Borel subsets B of R™.
vProof. We have

m,—-m and m,(B) =n feo()U, P(dx).
- B .

Moreover, on Borel subsets B of R* separated from the origin we get

(18) nU, P(B)— Jﬁ m(dx) £ u(B)

B
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whenever the boundary of B is m-measure zero, i.. B is a continuity set of
the measure m.

By Lemma 2, for every positive t we can find a subsequence {k,} such
that

(19) Tey—Tn 1

as n— oo. Further, by Lemma 1 and formulae (16), (18), (19), we get the
existence of the limit lim (k,/n) = g(f) and the equation

n—a

(20) #(B) =g U, u(B) = g(t) u(B+1),

because the measure m does not vanish identically. Moreover, the last
equation holds for all Borel subsets B of (0, o) and all positive t. The right- -
hand side of (20} is finite, thus the measure u is finite on (0 a0). Therefore if
we introduce the notation

f@) =p({xeR™: x>u})

then equation (20), for B = [u, v), can be rewritten in the form

(21) JW—f @) =gOLf u+)—f(w+1)]

where u, v and ¢ are positive real numbers, u < v, and f is bounded non-
increasing right-continuous function.

Let us remark that g(r) > 1 for every positive number t. In fact; in the
oppositive case g(ty) < 1 we would have, by 1nduct10n according to (21), the
inequality

F)=f @) <futte—fo+rk) (k=1,2,..).

But the right-hand side of this inequality tends to zero when k — 0.
Thus f would be a constant function which would contradict the assumption
that m (and also the measure u) does not vanish identically.

Given 0 < ugy < vy with f(ug)—f(ve) > 0, we have, by (21), for every pair
ty, t; of positive numbers.

S ug)=f (o) = g(t) [f (uo+1t1)—f (0o +1,)]
=g(t)g(ty) [f(uo"f ty+1t)=f (vo+1; +12)].
On the other hand,
S o) ~f (v0) = (61 + 1) [f (o + 13 +12)=f (vort 1y +13)].
Consequently, ' }
gty +12) = g(t)) g (ta),

and, by (20) and Lemma 1, the function g is continuous. It is well-known
that the only solution of the last equation satisfying the condition g(f) > 1 is
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of the form g(t) = ¢, where p is a positive constant. Furthermore, the
function f being continuous outside a countable set is, by (21), continuous
everywhere. Setting » = u4-t into (21), we get the inequality

fu+20)=2f (u+t)+f(u) = 0.

" Thus the function f is convex. Consequently, it is absolutely continuous.
Setting : :

f@ =] h(ods

into formula (21), we have

}h(s)ds =ewvfth(s)ds.

utt

Hence we get the equation h(tf) =ce™” almost everywhere, ¢ being a
positive constant. Thus '

u([u, v)) =f (W)—f(v) = ¢ fe"Pdx
and, by (18), _
m(B) =c[w(x)e” P dx

B

for all Borel subsets B of R*, which completes the proof.
LEMMA 5. Each infinitely decomposable probability measure Q in (2, o)
with representing measure m (in formula (5)) of the form :

m(B) = c [w(x)e” ?dx,
B

where ¢ and p are positive constant, is s-stable probability measure.
Proof. Of course, by Theorems 1 and 2 it suffices to define an increasing

sequence of positive numbers {r,} and a probability measure P on R* such .

that the measures m, defined by

m,(B) = njag(x) U, Pdx), (n=1,2,..),
B

converge to m.

sPut a=m(R*), P=a""m and the sequence {r,} be such that exp (pr,)
=a 1 (1-Q(xo))n for sufficiently large n (see (6)). Then it is easy to verify
that

nU, P(B) = %(xo) fw(x+r,,)e"’"dx.

1

B
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Thus, by (6), we get

31_)12’ m,(B) = = ,}Lﬂlm J‘a)(x)a)(;c+r,,)e"”‘dx = m(B),

which completes the proof.

LemMA 6. The characteristic measure M of the algebra (97’ o) satisfying (*)
is an s-stable measure.

_Proof. Let us define
a~!'= [x*M(dx), P(B)= (n/2)1/2 ,[e_"zlzdx
° B

for Borel subsets B of R*; let r,, for sufficiently large n, be solutions of the
equations :

(22) x**1 exp (x%/2) = (0/2)"*al (% + 1) n.

Then (for every positive ¢) taking into account (22) and the inequality
" 1
J exp (—x%/2)dx < _exp (—a?/2) for a>0,

a

we get
nU, P(x: x> &) =(1/2)"*n | exp(—x?2)dx
etry,
S[al (x+1D)]"1ret exp (—er)(e+r) Y,
and hence '
(23) nU, P—0

outside every neighbourhood of the zero. Further, since for every ¢ >0

e+r,

nU, P(x: 0< x <& =(n/2)'?n | e~ *12 gx,
: 0

thus, by (22),

4

fw(x) nU, P(x)=(n/2)"*n fw(x) exp (—(e+rn)?/2)dx
0

]
&ry

=[arx=+1)]"?! j * exp (—1) 7 5/');) exp (—t%/2r,) dt.

[}
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Consequently, by condition (*) and Lebesgue Theorem, we get
24) lim n[w(x) U, P(dx) =1
n—x 0

for every positive &. In view of (23) and (24) we infer that the measures

m,(B) =n ja)(x) U, P(dx)

are weakly convergent to the measure E, and, by Theorems 1 and 2, we get
that

(U, pPr—-M,

which completes the proof. .
Taking into account the equality

L(U,(0) = Un(T,x) (xeR")

and the axiom (i) in the definition of generalized convolution, we infer
that if

(U, Pr"— M,
then
(Uarn(’Ta P))O" - T:z M '

Hence we get

CoROLLARY 1. The measures T, M, where M is the characteristic measure
and a is a positive constant, are s-stable measures.
~ As a simple consequence of Lemmas 3-5 and Corollary 1 we obtain the
following characterization of the class of all s-stable probability measures in
algebra (2, o).

THEOREM 3. A probabiliry measure Q in the algebra (2, o) with condition
(*) is s-stable measure if and only if either Q = T, M, where a is a positive
constant and M is the characteristic measure of the algebra (2, o), or Q is the
compound Poisson measure, i.e. '

Q=e(m) .and m(B)=cfe P*dx,

B

where ¢ is a non-negative and p is a positive constant.

4. S- semi-stable measures. In this section we shall investigate limit
distrjbutions of (U, P)°" for some subsequence of natural numbers. Let us
assume that {I,} is an increasing subsequence of natural numbers such that

l
(25) lim 2=t =¢ for a certain finite q.

n—o0 ln
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A measure Qe Z will be called an s-semi-stable measure in algebra (2, o)
if there exist an increasing sequence {r,} of positive numbers tending to
infinity, a subsequence {I,} of natural numbers satisfying (25) and a measure
Pe 2 such that

(26) U, P">Q.

Of course s-semi-stable measures are infinitely decomposable and s-
stable measures are s-semi-stable. As before the sequences {r,} in (26) we
call the norming sequences and at first we prove some .properties of them.

In this section is also assumed that the convolution algebra (9a o)

satisfies condition () (see section 2).

LemMA 7. Let Q # Eq4 be an s-semi- -stable measure. Then

(@) rys1—7,— 0 if either g =1 or q > 1 and the representing measure m of
@y, in formula (5), is concentrated at zero; '

(b) #,41—1a—d and 0 <d < o0 if ¢> 1 and the representing measure m of
@, is not concentrated at zero.

Proof. Let us introduce the notations

27) mm=umm%mm,
28) in(B) = f;}—) my(dx),  p(B) = f—m(dx)
B .
X" ) X
(29) mm=kﬁywm,wm=wm
B B

where B is an arbitrary Borel subset of R™. ~ -
From (6) we get that m,, m are finite Borel measures outside every
neighbourhood of the zero and by condition ( *) we have that v, and v are
finite Borel measures on every finite neighbourhood (i.e. finite open interval)
of the zero. In view ‘of Theorems 1 and 2 we have m,—» m and hence

G | Mo > I
outside every neighbourhood of the zero and
(C 1) B VoV

on every finite interval which contain zero.
Moreover, if F,(t) = u,(x: x> 1), t >0, and F(t) = u(x: x> t), then

(32) F,() =1,U, P(x: x>0 —F(5)

for all positive continuity point t of F(1).
(a) If g =1 then the proof is similar to the proof of Lemma 2 and we
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omit it. If g > 1 and the measure m is concentrated at zero, then by (27), (29),
(31) and (32) we get

(33) v({0}) < lim Lim I, jx U, P(dx)

e=+0 n—>w
=% lim lim jx” 1F (x)dx
£-0 n—o 0

because F,(t) — 0. In contrary, let us assume that 0 < s < co is a limit point
of the sequence {r,.;—7,}, ie. 1 +1—r, —s. Then, by (33),

&

| L
v({0}) <% ling 1_1»@ "k—fx" YF (X411 ) dX
0
k,+1
< » lim lim ;Fk(z jx"“ldx=0
e—+0 n— o0 n

' 0
and m({0}) = 0, which contradicts the assumption.
' It is easy to see that s = oo is not limit point of the sequence {r,, —r,},
too. , ‘
(b) Taking into account the equality

64 a0 ="u o,

Lemma 1, formula (30) and the fact that g > 1 and the measure m does not

vanish ldenncally on (0, o0), we obtain that the point s =0 and s = co are

not limit points of the sequence {r,.,—7,}. '
Let us suppose that there exist two limit points-of {r,.,—r,}, say s; and

s;. Let s; <s, and the intervals I, I+s, and I+s, be continuity sets of the

measure u. By (34) we get the formula

(35) u(D=quI+s;) = quI +s,).

Further, by a simple reasoning we infer that the last equation holds for
all intervals 1 in (0, o) and the measure u is finite. In view of (35), we see
that for all intervals I contained in the half-line (s,, o) the equality u(l)
= u(l+(s2—-sl)) holds. Consequently, by lnductlon

p)=p(l+k(s;—sy), k=1,2,...,

which yields u(I) =0 for intervals I contained in (s,, c0). Hence and from
(35) we infer that the measure u vanishes in (0, c0). But (28) implies that also
m vanishes on (0, oo) and this contradicts the assumption. Thus the Lemma
is proved.

9 — Probability Math. Statistics 5/1
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LemMma 8. If Q # E, is an s-semi-stable measure and its representing
measure m, in formula (5), does not vanish on (0, o), then m({0}) =

Proof. In the proof we keep on the notations used in the proof of
Lemma 7.

If ¢ =1, then by Lemma 7, part (a), we have r,,,—r, —0. In the same
way as in the proof of Lemma 3 we get m({0})=0.

Suppose that g > 1. By part (b) of Lemma 7 we have r,,;—r,—>d and 0
< d < . Further, by (32) and Lemma 1 we get

& &€

n— a0 n

0

n—aw

lim I, jx U, P(dx) = —&*F(e)+3 lim ll .[x"“F"(x+rn+1—rde

0

= —¢“F(g)+xq Jx""‘F(x}d)dx.

But
lim _[t" 1F(x+d)dx =
e—=0 0

and it implies together with (33) that v({0}) =0. Thus the measure m is
concentrated on (0, c0) which completes the proof of the Lemma.

LemMma 9. If Q # EO is an s-semi-stable probability measure and its repre-
senting measure m in formula [6)] vamshes at zero, then the measure p defined

by the formula
u(B) = f— m(dx)

is finite on (0, «o) and there exist real numbers O<d<w and 0 <1t <1 such
that
36 Ui =1
Proof. Let Q be an s-semi-stable measure and g = 1 (see (25)). In virtue
~of Lemma 7, part (a), in similar way as in the proof of Lemma 4, one can
obtain that for all positive ¢
Ur ”’ = e—m”a

where O<p<owisa constant Thus u is finite on (0, oo) and formula (36)

holds.
If Q #E, is an s-semi- stable measure and g > 1, then we have Uy = U
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outside every neighbourhood of zero (see (30)). Moreover, by part (b) of
Lemma 7 and by (34), we get equation

u(B) = qU, u(B)

for all Borel subsets B of (0, o). Hence formula (36) is fulfiled w1th T = 1/q,
which completes the proof of Lemma.

Lemma 10. Each infinitely decomposable probability measure Q in (2, 6)
with representing measure m (in formula (5)) of the form

m(B) = jm w(dx),

where  is finite Borel measure on (0, o), and there exist constants 0 <1 < 1

- and 0-<d < o0 such that

| Uyn(B) = tu(B),
Jor all Borel subsets B of (0, o), is an s- -semi-stable prabab:hty measure.

Proof. Of course, we may assume that the measure m does not vanish
identically, because in this case the assertion is obvious.

Let us put a~' = u(R*), P =ap, r, = nd and a sequence {I,} of natural
numbers be such that ~ '

at"l, -1

as n— oo (for instance put -, = [t""a"'] for sufficiently large n, where [ ]
denotes the integral part of numbcr) Then it is easy to verify that

(37) LU, P()— p(D)

for all closed intervals in (0, o). Thus .
my(B)= I, [ 0(x) U, P(dx) - [o(x) u(dx) = m(B)
B B

for all m-continuity Borel sets B, and by Theorems 1 and 2 we get

U, P) =Q,

which completes the proof.

Lemma 11. The chamctenstzc measure M of the algebra (ga o) satisfying
the condition (*) is an s-semi-stable measure.

Proof. Let {I,} be an increasing subsequence of natural numbers such
that lim l,,+1/l =1 Let a sequence {r.} of positive real numbers be such

Riiad ]

that

ritlexp (r2/2) = (m/2)Y2al (x+ 1)1,
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1 M (dx), and let the measure P be defined as follows:

where ™' =

Ote 8§
=
X

.P(B) = (m/2)*? | exp (—x?/2) dx.
B

By the same computation as in the proof of Lemma 6 we get
U, P’">M

and the Lemma is proved.

Using the same arguments as in the proof of Corollary 1, we obtain

COROLLARY 2. The measures of the form T,M, where a is a positive
constant and M is the characteristic measure, are s-semi-stable measures.

Now we are in position to give a full characterization of the class of all s-
semi-stable measures. Namely, in v1ew of Lemmas 8-10 and Corollary 2 we
have the following :

THEOREM 4. Let the algebra (2, o) sansﬁes the condition ( *). A probability
measure Q in the algebra (2, o) is an s-semi-stable measure if and only if
either Q = T, M, where a is a positive constant and M is the characteristic
measure of the algebra (2, o), or Q is the compound Poisson measure, i.e. Q
= e(m), and there exist constants 0 < d < 0o, 0 <7 <1 such that

U,m(B) = tm(B)

for all Borel subsets B of (0, «©).

5. Examples. In this section we give characterizations of the class of s-

stable measures in some special cases.
At first let us assume that in the set # of all probability measures on

‘non-negative half-line we have the ordinary convolution, and the character-
istic function ®p(¢) is the Laplace transform of a measure P. Then, by

Theorem 3, we have
CoroOLLARY 3. A4 function @ is Laplace transform of an s- stab!e measure

on [0 oo] if and only if elther
D (1) = exp (—at),

a being a non-negative constant, or

D(t) = exp (—-; t—-lt——p)

where ¢ is a non-negative and p is a positive constant.
As a second example of a generalized convolution we quote the (1 r)
- convolutions (1 €£r < oo) conmdered by Kingman in [3].
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Let us recall that the (1, 1)-convolution is defined by means of‘ the
formula '

Tf (x)(PoQ)(dx) = } T :Jf[f (e )+ (%= 3] P(dx) Q (d),

- where f runs over all bounded continuous functions on [0, o).
The (1, r)-convolution for r > 1 is defined as

Jf (x)(P 0 Q)(dx)

F(E) o o 1. .
=—;_2—1—f J‘ Jf(x2+y2+2xyz)(1 — 2232 47 P(dx) Q (dx)
r ( '2 )0. 0 -1 ' :
and f is arbitrary continuous bounded function on [0, o). |

All (1, r)-convolution algebras are regular. As a characteristic function in
these algebras one can take the integral transformation

w0

) 2 rf2—1
N XOE r(g) f (};) Jyja-1 (%) P(d),
0 .

where J, is' the Bessel function (see [6], p. 40).

The (1, r)-convolution is closely connected with a random walk problem
in Euclidean r-space. Namely, consider a random walk in r-space given by

Se=X+Xs+...+X, (n=1,2,..),

where X, X,, ... are independent random vectors with spherical symmetry,
that is, if 4 is a measurable subset of r-space and A’ is obtained from A4 by
rotation about the origin, then

Prob (XkeA) Prob (X, ed) (k=1,2,..).

The probability distribution of the length.|S,| is determined by that of the
length |Xy|, | X5, ..., |X,| (see [3]). More precisely, the probability distribu-
tion of |S,] is the (1 r)-convolution of the probability distributions of |X,|,
| X3, ..., |X,]. Further, the characteristic exponent .of the (1, r)-convolution
is equal to 2, and the measure on [0, co) with probability density

gr(x) = 2_2(r;1) (F (%))—1 x'_l CXP ("x2/4):
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corresponding to the Rayleigh distribution, plays the role of the characteris-
tic measure, because by the Weber Theorem (see [6], p. 394, formula (4)) we
get C ) :

o2}

2 ri2—1 ‘
2721 j <§) Jya—1 () x ™ exp (—x?/4)dx = exp (—t?).

0
Now we can get the characterisation of s-stable measures in the (1, r)-
convolution algebra.. '
CorOLLARY 4. A function ® is a characteristic . function-of an s-stable
measure in the (1, r)-convolution algebra if and only if either

39) _ ®(t) = exp (—a*t?),
a being a non-negative constant, or ‘
(40)

' ) n—1nr N
20 ey [mﬁ(”(’ 2L ) )L

where c is a non-negative and p is a positive constant.

Proof. In view of Theorem 3 and the arguments preceding Corollary 4 it
suffices to show that the non-characteristic s-stable measure has a character-
istic function of the form (40). But if the measure Q = e(m) is s-stable, then,

- by Theorem 3, we have

m(B) =c fe P dx.
B

Further, by (38) and the Hankel's formula (see [6], p. 385), we get

' s 2 ri2—=1 . '
C Dy (1) —-exp{ [pl"(z)f(t—x—) J,.,z_l(tx)e_”"dx_—l]} _
0 . _
<ol £ R A ) ]
= exp {p[(pz_”z)uz "Z:O | ,,) ‘ p2+t2 s

I —
n.zn

where for any a we assume (@)o=1 and (a), =a(@+1)(@+2)...(a+n—1).
By a simple computation, from the last formula we obtain formula (40).
Thus the Corollary is proved.
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