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LIMIT IDISTRIBeTTIONS 
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Abstmet. In this paper we prove theorems on the accompanying 
laws and convergence of infinitely decomposable measures in a 
generalized convolution algebra, introduced by K. Urbanik [4]. 
These results are used to investigate the classes of s-stable and s- 
semi-stable measures introduced in paper [2], Chapter 111. 

I. Jntrodlucdors. Let B be the class of all probability measures defined on 
Bore1 subsets of non-negative half-line. By E, (a 2 0) we shalI denote the 
probability measure concentrated at the point a. For any positive number rr 
we define a transformation T, from -9' onto itself by means of the formula 
(T,P)(B) = P(a - 'B) ,whereP~P ,  BisaBorelsetanda- 'B = {a-'x: XEB). 
Further, the transformation T, is defined by assuming T, P = E, for all 
P E  9. 

We say that a sequence P I ,  P,, . . . of probability measures is weakly 
convergent to a probability measure P, in symbols P,+ P, if for every 
bounded continuous function f the equation 

m m 

lim Sf (x) Pn(d4 = Sf (4 Pldx) 
a4aJ 0 0 

holds. 
A commutative and associative 9-valued binary operation o defined on 

9' is called a generalized convolution if it satisfies the following conditions: 
(i) E,oP = P for all P C P ;  
(ii) (aP+bQ)oA.= a(PoR)+b(Q OR), whenever P, Q,  RE^ and a 2 0, 

b 2 0 ,  a + b  = 1; 
(iii) (T, Pjo(T,Q) = T, (PoQ);  
(iv) if P, -, Y,  then P,oQ + P o Q  for all Q E  9; 
(v) there exists a sequence el, c2, .. . of positive numbers such that the 

sequence T,, Eyn weakly converges to a measure Q different from E,. 

g - Probability Math Statistics S/l 
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The power E:" is taken in the sense of the operation o, i.e. E,"l = E,, 
~ i l ~ + ~ )  = Ein o E, (n = 1, 2, . . .). 

The concept of generalized convolution has been introduced and ex- 
amined by Professor K. Urbanik. For the terminology and notation used 
here, see [4]. 

One of the most important example of generalized convolution is given in 
Kingman's work [3] (see also 141, p, 218). His example is closely connected 
with spherically symmetric random walks in Euclidean space. 

The class B with a generalized convolution o will be called a generalized 
convolution olgebra and denoted by (8, 0). Algebras admitting a non-trivial 
homomorphism into the real field are called regular. We say that an algebra 
(9, o) admits a chlaraeteristic function if there exists one-to-one correspond- 
ence P +  @, between probability measures P from 9 and real-valued 
functions @, defined on the non-negative half-line such that @ap+bQ 

= a@, + bQQ (a 2 0, b 2 0, a + b = I), QPoQ = 45,. GQ, ( t )  = !PP (at) 
(a 2 0, t . 2  O), and the uniform convergence in every finite interval of aPn is 
equivalent to the weak convergence of P,. The function Gp is called the 
characteristic jknction of the probability measure P in algebra (9, 0). It is 
proved in [4], Theorem 6,' that an algebra admits a characteristic function if 
and only if it is regular. Moreover, each characteristic function is an integral 
transform 

where the kernel SZ satisfies the inequality Q ( x )  < 1 in a neighbourhood of 
the origin and 

1 -8(tx) 
lim = 1% 
,-0 l-Q(x), 

uniformly in every finite interval. The positive constant x does not depend 
upon a ,choice of characteristic function and is called a characteristic expo- 
mnr of the algebra in question. Moreover, there exists a probability measure 
M called a characteristic measure of the algebra for which 

(3) BM(t)  = exp (- t") 

(see [4), Theorem 7). - 
Troughout this paper we assume that the algebra (9, o) is regular, and 

6, is a fixed characteristic function in (9, o). 

2. Infimitely decomposable measures. This section is devoted to the study 
of the accompanying laws and convergence of infinitely decomposable 
measures. Let us recall that a measure PE 9 is said to be infinitely decompos- 
able if for every positive integer n there exists a measure P,E 9 such that P 
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= Pin. The class of infinitely decomposable measures coincides with the class 
of limit distributions for sequences of the form 

Pal 0 Pn2 0. . . o Pnk, 

where P,, (k = 1 ,  2, . . ., k,;  n = 1, 2, . ..) are uniformly infinitesimal, i.e., for 
any positive number E, 

lim max P,,(x: x 2 E )  = 0 
n-*m l < k < k , ,  

(see [4], Theorem 12). Moreover, one can prove an analogue of the Levy- I 

Khintchine representation for the characteristic functions of infinitely dccom- 
I posable measures. Namely, the following theorem holds: a function @ is a 

I 

characteristic function of an infinitely decomposable measure if and only if it 
I 

is of the form I 

@ ( t )  = exp m(dx),  

where m is finite Bore1 measure on the non-negative half-line, 

and xo is a positive fixed number such that Q(x)  < 1 whenever 0 < x < x,. 
Always there exists such a number xo (see [4], Theorem 5). Further, represen- 
tation (5) is unique, i.e. the function @ determines the measure m (see [5] ,  
Theorem 1 ) .  

For any finite measure m on the non-negative half-line R' we define the 
compound Poisson measure elm) in the algebra (9, o) by the formula 

where the power wok is taken in the sense of the operation o, and the 
measure rn in the zero-power is equal E,. It is easy to verify that 

Of course, the compound Poisson measures are infinitely decomposable. 

THEOREM 1 (Accompanying laws). Let P, ( k  = 1, 2, . . ., k,; n = 1, 2, . . .) 
be uniformly i~finitesirnal probability measures and 

Then P, -, P if and only if Q, + P. 
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, Proof.  Let 

Then T,, E 9' and 
kn kn 

Bp,(t) = exp k n  (aTn ( t )  - 1) = exp [ (ap, ( l )  - I)], 4bn (0 = n @P,,JO. 
k= 1 k =  1 

From the elementary inequality Jlog (1 + x) - xl 6 1x1 * for x -, 0, we have 

Further, given a positive number E > 0 and a positive number t,, there 
exists a positive number S such that 1 - 8 (tx) < E whenever 0 < x < S and 
0 f r < t,,. Hence, for any number r satisfying the inequality 0 < e f t ,  and 
for any integer k satisfying the inequality 1 < k < k,, we get 

a m 

0 4 1 - @,,,,k (t) = (1 - ~2 (rx)) P* (dx) + [ (I - (tx)) P., ( d x )  
b ;s 

< ~ + 2  max P,(x: x 2 6) 
1 < k $ k "  

which, by (4), implies 

max (1 - @,, ( t ) )  -+ 0 
1 < k C k ,  

uniformly in every finite interval. Hence and from (7) it follows that in order 
that log GPn(t) -+log @,(t) uniformly in every finite inte~val it is necessary 
and sufficient that log Qq, ( t )  -+ log @, (t) uniformly in every finite interval. 
Thus the Theorem is proved. 

THEOREM 2. For the convergence of a sequence {P , )  of inJinitely decompos- 
able measures to a limit P it is necessary and suf5cient that, as n -r co, m, 
+ m, where the measures m,, and m are defined by formula (5)  for P, and P, 
respectively. 

Proof.  Necessity.  At first, let us remark that the class of infinitely 
decomposable measures in (9, o) is closed under weak limit (see [43, 
Theorem 11). Thus P is also inhitelv decomposable. Further, let us intro- 
duce an auxiliary finite measure p, defined on R+ by 
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where E es a Borel subset of R+ and 

and x is the characteristic exponent of the algebra in question. The function 
g is positive for x > 0 and bounded, which implies the finiteness of the 
measures p, (see [5], the .proof of Theorem 1). 

Further, in the same way as in the proof of Theorem 1 in [ 5 ] ,  we get 

where 

Hence it follows that the modified Laplace transforms of the measures pn 
tend to the modified Laplace transform of the measure p such that 

Hence we have p,, -, p. 
Since the function g is positive for x > 0, continuous, bounded and 

lim g (x) = 0 as x -t 0 from (8), we get 

on every Borel subset of R+ separated from the origin. Further, let 0 < a 
< x, be fixed. Of course 

Hence and from (6) there exists constant c > 0 such that 

but this implies that the sequence (m,) is compact on [0, a]. Together with 
(9) we see that the sequence {m,) is compact on KO, a). Since, for every 
t € R + ,  GPn(t) + GP(t )  and the spectral measure m in Levy-Khintchine re- 

t presentation (5) is unique, the sequence (m,} is weakly convergent to the 
measure m, and the necessity is proved: 
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Sufficiency. Since for any t the function (D;l(tx) - l) /w (x) is bounded 
and continuous on the 'half line 0 < x < m, we get 

The proof will be complete if it be shown that the above conv.ergence is 
uniformly in every finite interval. Let us remark that for every S > 0 the 
measures v, defined by 

are weakly convergent to the measure v ,  where 

and B is a Borel subset of R',  Thus their characteristic functions are 
uniformly convergent in every finite interval. Hence 

52 ( tx)  - 1 sz(tx) - 1 S ~ ( 4  
m (dx)  + 1 (d m Cdx) 

uniformly in every finite interval. 
Further, let E > 0 be fixed. By (2) and (6) there exist q = q(&) > 0 such 

that 

for all 0 < x < q and all a < t < b, where 0 6 a < b < a. We may assume 
that the interval [0, q ]  is a continuity set of the measure m. Then m,[O, q j  
+ mCO, q ]  as n e KI and there exists an N = N ( E )  such that Im,[O, Q]- 
-m[O, ?]I < E for n 2 N. Thus the two preceding inequalities show that 
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for n 2 N and all t ~ [ a ,  b ] .  Hence, as n +  a, 

0 0 

uniformly in every finite interval and the sufficiency is proved. 
In the sequel we assume that the convolution algebra (9, o) satisfies the 

following additional condition: 

I This limit always exists and is finite. Moreover, 
m 

D # 0 if and only if f x" M(dx)  < a, 
0 

where x and M is the characteristic exponent of the characteristic measure 
of the convolution algebra in question (see [7] and [ S ] ,  Lemma). In'this case 

m 

D-I = [ x X M ( d x ) .  
b 

I Further, it is interesting that all known examples of generalized algebras 
satisfy condition ( *). 

3. S-stable measures. Let r be a non-negative real number and U, be a 
shrinking operation,> (shortly, s-operation) from non-negative half-line R+ 
onto itself by meansfof the formula 

U, (x) = max (0, x - r) .  

Of course, U, are continuous non-linear maps, the family (Up: v 2 0) 
forms a semi-group under composition and U, U ,  = U,+, (r, s 2 0). Further, 
if P E P ,  then by U ,  P we mean the measure from 9 such that 

I for all Borel subsets 3 of R'. 
A measure QE 9 wiII be called an s-stable measure in generalized con- 

volution algebra (9, o) if there exists an increasing sequence (r,) of positive 
numbers tending to infinity and a measure P E  P such that 

In [2], Chapter 111, was introduced a notion of s-stability of Borel 
probability measures on real separable Hilbeft space with ordinary con- 
volution. In this section we give a description of the class of s-stable 
measures in algebras ( 9 ,  o) satisfying the condition ( *). 
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Of course, for each positive E 

lim U,, P ( x :  x 2 E) = 0, 
n-+m 

thus every s-stable measure is infinitely decomposable (see [4], Theorem 12). 
The following lemma will be used repeatedly and is stated here for further 

.reference. 

LEMMA 1 .  Let {P,)  and P be probability measures on positive half-line, and 
{a,}, a, be positive real numbers. Then P ,  4 P and a, -+ a implies Uam P, 
+ u, P, 

Proof. From the inequality 

JU,x-U,xl < IT-sl for all XER', 

we get that if x,, + x and 4+ a, then U,"xn Uax. Thus, taking into 
account Theorem 5.5 in [I], p. 34, we get that U,"P,+ U,P,  which 

I 
completes the proof of the Lemma. 

I The sequence {r , )  in formula (10) we will call norming sequence 
i 

1 corresponding to the s-stable measure Q. We shall give some property of 
norrning sequence if the measure Q is not concentrated at zero, 

LEMMA 2. Let Q # E, be an s-stable measure. Then 
1 
I rn+l -r,, 40. 

Proof.  Let (Urn P)On -) Q and 

m (dx) . 
0 

Then, by Theorems 1 and 2, we have 

! 
where 

for all Bore1 subsets B of R'. Further, let us introduce the measures p,, p by 
the formulae 
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Since the function l/w(x) is continuous and bounded on subsets sep- 
arated from the origin, thus by (11) we get 

! Pn * P ,  

on Borel subsets of Rf separated from the origin. 
Hence we obtain 

Suppose that s is a limit point of the sequence ( r , , ,  - r , )  with 0 
< s d cc, and an interval I in R+ \ {O) is a continuity set of the measure y. 

. .. . i From equality 

and from Lemma 1 we obtain 

PW,= ~ s p ~ ~ ~  = PU+~I. 
Consequently, by induction, 

p(Z)=p(l+ks) ( k = 1 , 2 ,  ...) 

which yields p (I) = 0. Thus the measure m vanishes identically on positive 
half-line, i.e. on (0, x). 

In view of condition ( * )  in section 2, we can introduce the finite Borel 
measures v, and v by the formulae 

where B is Borel neighbourhood of the origin in R', and the integrand is 
m 

assumed 1 tx M(dt)  if x = 0. Of course, by (11) we get v,, -+ v in every finite 
0 

neighbourhood of the origin. Further, if we take the definition of the 
measures m,, we get 

6 

(13) lirn lim n 1 x" Urn P (dx) = v ({O}), 
e-rOa-rm 0 

if the intervals 10, E ]  are continuity sets of the measure v. 
In the sequel we assume that s is a limit point of the sequence {r,, , - r , )  

and 0 c s < x, . Let us denote 

i (14) Pn ( t )  = nurn P {x: x > t )  for t > 0, 
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and 

Since the measure rn (and p) vanishes on (0, m), thus, by (12h we get 

for all positive t. Taking into account the formula (13) for subsequence 
(k,+ 11 and monotonicity of the functions F,, by simple computation we 
obtain 

v(jO))=lim lim - E ~ F ~ , , + ~ ( E ) + X  ~ * - ~ F ~ , , + ~ ( x ) d x  
e-O n - - a  j 

0 1 
k n + l  f x X - l q n ( x + r k n t 1 - r k ~ d x  = x lim lim --- 

e - 0  n - m  k n  

Moreover, m {O) = 0, too. 
Thus the assumption that the sequence fr,,, - r n )  has a positive limit 

point implies that the measure m vanishes identically on [0, m). Hence Q 
= E,, which contradicts the assumption in Lemma. 

LEMMA 3. I f  Q # ED is an s-stable probability measure and its representing 
measure rn in formula ( 5 )  does not vanishes identically on (0, co), &en m (0) 
= 0. 

Proof .  In the proof we keep on the notations used in the proof of 
Lemma 2. Thus 

for all positive continuity points of F, and 
E 

lirn lim n j x x  Urn P(dx) = v ({O)), 
e-0 n+m 0 

if the intervals [0, E] are continuity sets of the measure v (of course they are 
continuity sets also of the measure m). 

Since the measure rn does not vanish identically on (0, a), thus the 
function F ( r )  is positive in some neighbourhood of a positive real number s. 
By Lemma 2 for s there exists a subsequence [k,) such that 
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as n + a. Further, if the closed interval I contained in (0, x) is a continity 
set of the measure p, then from equality 

and from formula (12) we get that there exists a limit of the sequence k,,/n, 
say c, because m (and p) does not vanish identically on (0, a). On the 
other hand, taking into account (131, (14) and Lemma 1 we obtain 

J 
0 

8 

But lim f xx-' F ( x  +s) dx = 0 and hence 
E + O  b 

which implies that m((0)) = 0. Thus the Lemma is proved. 

LEMMA 4. Zf Q # E,, is s-stable probability measure and its representing 
measure m in formula ( 5 )  vanishes at zero, then there exist positive constants 
c and p such that 

for all Borel subsets B of R f .  
Proof. We have 

m,, -, m and m, (B)  = n ( x )  Urn P (dx) . 
B 

Moreover, on Borel subsets B of R+ separated from the origin we get 
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whenever the boundary of B is m-measure zero, i.e. B is a continuity set of 
the measure m. 

By Lemma 2, for every positive r we can find a subsequence {k,) such 
that 

as n -t co. Further, by Lemma 1 and formulae (I@, (la), (19), we get the 
existence of the limit lim (kdn) = g ( t )  and the equation 

n+m 

because the measure m does not vanish identically. Moreover, the last 
equation holds for a11 Bore1 subsets B of (0, a) and all positive t. The right - 
hand side of (20) is finite, thus the measure p is finite on (0, a). Therefore if 
we introduce the notation 

then equation (20), for B = E M ,  v ) ,  can be rewritten in the form 

where u, v and t are positive real numbers, u < a, and f' is bounded non- 
increasing right -continuous function. 

Let us remark that g(t) > 1 for every positive number t. In fact, in the 
oppositive case g(to) < 1 we would have, by induction according to (21), the 
inequality 

But the right-hand side of this inequality tends to zero when k oo. 
Thus f would be a constant function which would contradict the assumption 
that rn (and also the measure p) does not vanish identically. 

Given 0 < u, < v, with f (uo)- f (vo) > 0, we have, by (21), for every pair 
t,, t2  of positive numbers 

On the other hand, 

Consequently, 

and, by (20) and Lemma 1, the function g is continuous. It is well-known 
that the only solution of the last equation satisfying the condition g ( t )  > 1 is 
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of the form g( t )  = en, where p is a positive constant. Furthermore, the 
function f being continuous outside a countable set is, by (21), continuous 
everywhere. Setting v = u i- t into (211, we get the inequality 

Thus the function f is convex. Consequently, it is absolutely continuous. 
Setting 

into formula (21), we have 

Hence we get the equation h(t )  = ce-Pt almost everywhere, c being a 
positive constant. Thus 

u 

p ( [ u ,  0)) = f (u)-f (v) = ~ J e - ~ ' d x  
II 

for all Borel subsets B of R + ,  which completes the proof. 

LEMMA 5 .  Each infinjtely decomposable probability measure Q in (8, o) 
with representing measure m (in forpula (5) )  of the form 

where c and p are positive constant, is s-stable probability measure. 
P r o  of. Of course, by Theorems I and 2 it suffices to define an increasing 

sequence of positive numbers (r ,)  and a probability measure P on R+ such 
that the measures m, defined by 

converge to rn. 
;. Put a = m(R+) ,  P = a -  ' m and the sequence {r,) be such that exp (pr,) 

= a-'(1 -SZ(x,,))n for sufficiently large n (see (6)). Then it is easy to verify 
that 

C 
n Urn P (B) = w ( ~ + r , J e - ~ ~ d x .  

1 - ( ~ 0 )  J 
B 
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Thus, by (6), we get 

C 
lim m,(B) = lim J o ( ~ ) o ( x + r J e - ~ ~ d x  = m(B), 
n+m n+w 1 -Q(xo) 

which completes the proof. 

LEMMA 6. The characteristic measure M of the algebra (9, o) satisfying ( * )  
is an s-stable measure. 

P r o o f .  Let us define . 

m 

1- ' = ( x' M (dx) ,  P (B)  = (lr/2)'" I e-"12 dx 
0 B 

for Bore1 subsets B of R'; let r,, for sufficiently large n, be solutions of the 
equations 

(22) 3" exp (x2/2) = (n/2)'12uT(x + 1)n. 

Then ( for  every positive e )  taking into account (22) and the inequality 

i 1 
exp ( - x2/2) dx  < -exp ( -.a2/2) for a: > 0, 

a 

we get 

nurn P ( x :  x 2 E )  = (n/2)'12 n exp ( - x2/2)  dx 
~ + r , ,  

< [ r r ( ~ + l ) ] - l r ; + ~  exp ( - ~ r , ) ( ~ + r , , ) - l ,  

and hence 

outside every neighbourhood of the zero. Further, since for every c > 0 
E + %  

nUrnp(x :  o < x < E )  = (n/2)'I2 n J e-x212 dx ,  
0 

thus, by (22), 

i w ( x )  nu, ,  P ( x )  = ( ~ / 2 ) ' / ~  n w (x) exp ( - ( c  +rn)'/2)dx 

O i a 
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Consequently, by condition [ * )  and Lebesgue Theorem, we get 
E 

(24) Iim n ( w (x) Urn P ( d x )  = 1 
n-a, O 

for every positive E. In view of (23) and (24) we infer that the measures 

m. IB) = a J 0-l I4 Urn P (dxl 
3 

are weakly convergent to the measure E ,  and, by Theorems 1 and 2, we get 
that 

(Urn p)On M ,  

which completes the proof. 
Taking into account the equality 

and the axiom (iii) in the definition of generalized convolution, we infer 
that if 

then 

Hence we get 
COROLLARY 1. The measures T ,M,  where M is the characteristic measure 

and a is a positive constant, are s-stable measures. 
As a simple consequence of Lemmas 3-5 and Corollary 1 we obtain the 

following characterization of the class of all s-stable probability measures in 
algebra (9, 0). 

THEOREM 3. A probability measure Q in the algebra (9, o) with condition 
( + )  is s-stable measure if a d  only if either Q = T, M ,  where a is a positive 
constant and M is the characteristic measure o f  the algebra (9, o), or Q is the 
compound Poisson measure, i.e. 

where c is a non-negative and p is a positive constant. 

4. S-semi-stable measures. In this section we shall investigate limit 
distributions of (Urn P)"" for some subsequence of natural numbers. Let us 
assume that (1,) is an increasing subsequence of natural numbers such that 

I.+ 1 
- q for a certain finite q. lim - - 

n-tm 1" 
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A measure QE 9' will be called an s-semi-stable measure in algebra (9, o) 
if there exist an increasing sequence {r,,) of positive numbers tending to 
infinity, a subsequence (I,) of natural numbers satisfying (25) and a measure 
P E 9 such that 

Of course s-semi-stable measures are infinitely decomposable and s- 
stable measures are s-semi-stable. As before the sequences (r,) in (26) we 
call the norming sequences and at k s t  we prove some properties of them. 

In this section is also assumed that the convolution algebra (P, o) 
satisfies condition ( *) (see section 2). 

LEMMA 7. Let Q # E ,  be an s-semi-stahle memurk?. Then 
(a) r , ,  , - r ,  - 0 if either q = 1 or q > 1 and the representing measure m of 

@Q, in formula (5), is concentrated at zero; 
(b) r,, , -r ,  -+ d and 0 < d < cc if if > 1 and the representing measure m of 

QQ is not concenrrated at zero. 
P r o  of. Let us introduce the notations 

B B 

where B is an arbitrary Borel subset of R'. 
From (6) we get that mn, m are finite Borel measures outside every 

neighbourhood of the zero and by condition ( * )  we have that v,, and v are 
finite Borel measures on every finite neighbourhood (i.e. finite open interval) 
of the zero. In view ,of Theorems 1 and 2 we have rnn + rn and hence 

outside every neighbourhood of the zero and 

(3 1) V, - V 

on every finite interval which contain zero. 
Moreover, if F,(t) = p,(x: x > t), t > 0, and F ( t )  = p(x:  x > t), then 

for all positive continuity point t of F ( t ) .  
(a) If q = 1 then the proof is similar to the proof of Lemma 2 and we 



omit it. If q > 1 and the measure m is concentrated at zero, then by (27), (29), 
(31) and (32) we get 

E 

(33) v ( { o ) )  6 lim lim I ,  j x" Urn P (dx) 
E-0  n-m 0 

because F,( t )  -, 0. In cpntrary, let us assume that 0 < s < m is a limit point 
of the sequence ( r , ,  , - r,} ,  .i.e. rRn+ - rkA -, S .  Then, by (33), 

0 

and rn ( {O) )  = 0, which contradicts the assumption. 
It is easy to see that s = co is not limit point of the sequence {r,+ , - r , ) ,  

too. 
(b) Taking into account the equality 

Lemma 1, formula (30) and the fact that q > 1 and the measure m does not 
vanish identically on' (0, a), we obtain that the point s = 0 and s =. co are 
not Emit points of the sequence (r, + , - rn) . 

Let us suppose that there exist two limit points of {r,,,  -r,f , say s, and 
s,. Let s, < s, and the intervals I, I +s, and I+sz  be continuity sets of the 
measure p. By (34) we get the formula 

Further, by a simple reasoning we infer that the last equation holds for 
all intervals 1 in (0, a) and the measure p is finite. In view of (35), we see 
that for all intervals I contained in the half-line (s,, m) the equality p(1) 
= p(I+(s,-sl)) holds. Consequently, by induction 

which yields p (I) = 0 for intervals I contained in (s, , co). Hence and from 
(35) we infer that the measure p vanishes in (0, a). But (28) implies that also 
rn vanishes on (0, a), and this contradicts the assumption. Thus the Lemma 
is proved. 

9 - Probability Math Statistics S j l  
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LEMMA 
measure m, 

Proof.  

8. If Q # Eo is an s-semi-smble measure and its representing 
in formula (5h does not vanish on (0, m), then m({O)) = 0. 
In the proof we keep on the notations used in the proof of 

Lemma 7. 
If q = I, then by Lemma 7, part (a), we have r n , ~  -rn 4 0. In the same 

way as in the proof of Lemma 3 we get n({OJ) = 0. 
Suppose that q > 1. By part (b) of Lemma 7 we have rn+ -rn -- d and 0 

< d < ca. Further, by (32) and Lemma 1 we get 

xXU,,,P(dx)= - ~ " F ( e ) + x  lim x ' - ' ~ ~ ( x + r , , + , - r J d x  
n+m 

0 0 

But 
E 

lim J t " + ' ~ ( x + ~ d x  = 0 
s-ro 0 

and it implies together with (33) that v({O]) = 0. Thus the measure rn is 
concentrated on (0, m) which completes the proof of the Lemma. 

LEMMA 9. If Q # E ,  is an s-semi-stable probability measure and its repre- 
senting measure m in formula (5) vanishes at zero, then the measure p defined 
by the formula 

is finite on (0, m) and there exist real numbers 0 < d < m and 0 < r < 1 such 
that 

Proof. Let Q be an s-semi-stable measure and q = I (see (25)). In virtue 
of Lemma 7, part (a), in similar way as in the proof of ~ & a  4 one can 
obtain that for all positive t 

- 
U , p = e  @p, 

where 0 < p < m is a constant. Thus p is finite on (0, m) and formula (36) 
holds. 

If Q # Eo is an s-semi-stable measure and q > I, then we have pn + p 
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outside every neighbourhood of zero (see (30)). Moreover, by part (b) of 
, Lemma 7 and by (34), we get equation 

P(B) = qudP(B)  

for all Borel subsets B of (0, m).  Hence formula (36) is fulfiled with t = l /q ,  
which completes the proof of Lemma. 

LEMMA 10. Each infinitely decomposable probability measure Q in (9, o) 
with representing measure m (in forrnuIa (5))  of the form , 

where p is jinite Borel meusire on (0, a), and rhere exist constants 0 < r 1 1 
and 0 < d < co such t h t  

U ,P(B)  = ~~(313 

for all Borel subsets B of (0, m), is an s-semi-stable probability measure. 
Proof. Of course. we may assume that the measure m does not vanish 

identically, because in ths  case the assertion is obvious. 
Let us put a-' = P = ap, r, = mi and a sequence { I , )  of natural 

numbers be such that 

as n + co (for instance put - I ,  = [ ~ - " a - l ]  for sufficiently large n, where [ 1 
- denotes th'e iniegral part of number). Then it is easy to verify that 

(37) 1, urn P(J)  + P ( 0  

for all closed intervals in (0, a). Thus 

for all m-continuity Borel sets B, and by Theorems 1 and 2 we get 

, which completes the proof. 
. LEMMA 1 1 .  The characteristic measure M of the algebra (9, o) satisfying 
the condition (*)  is an s-semi-stabk measure. 

Proof. Let ( I , )  be an increasing subsequence of natural numbers such 
that lim 1 ,+ , / 1 ,  = 1. Let a sequence {r,) of positive real numbers be such 

n-rm 
that 

r;'l exp ( r 3 2 )  = (.n/2)lt2 a r ( x  + 1) I,, 
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m 

where crA' = j x" M ( d 4 ,  and let the measure P be defined as follows: 
0 

P(B) = (1~/2)"1~ J exp ( - x2/2) d x .  
B 

By the same computation' as in the proof of Lemma 6 we get 

and the Lemma is proved. 
Using the same arguments as in the proof of Corollary 1, we obtain 
COROLLARY 2. The measures of the form '&My where a is a positive 

constant and M is the characteristic measure, me s-semi-stable measures. 
Now we are in position to give a full characterization of the class of all s- 

semi-stable measures. Namely, in view of Lemmas 8-10 and Corollary 2 we 
have the following 

THEOREM 4. Let the algebra (p, o) satisfies the condition (*) .  A probability 
measure Q in the algebra (9, o) is an s-semi-stable measure $ and only if' 
either Q = T,  M ,  where a is a positive constant und M is the characteristic 
measure of the algebra (.P, D), or Q is the compound Poisson measure, i.e. Q 
= e(rn), and there exist constants 0 r d a, 0 T < 1 such that 

for all Borel subsets B of (0, a). 

5. Examples. In this section we give characterizations of the class of s- 
stable measures in some special cases. 

At first let us assume that in the set .9 of all probability measures on 
non-negative half-line we have the ordinary convolution, and the character- 
istic function @,(t) is the Laplace transform of a measure P. Then, by 
Theorem 3, we have 

COROLLARY 3. A function @ is Laplace transform of an s-stable measure 
on [O, co] if and only if either 

@ ( t )  = exp ( - at), 

a being a non-negative constant, or 

where c is a non-negative and p is a positive constant. 
As a second example of a generalized convolution we quote the (1, r)- 

convolutions (1 6 r < co) considered by Kingman ,in [3]. 
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! Let us recall that the (1, 1)-conucriution is defined by means of the 
formula 

I 

cO m m 

if (x)CPoQ)Idx) =& S Cf ( x + Y ) + ~  t l x - ~ l l l P ( ~ x ~ Q ( d x ) ,  
b 0 0 

where f runs over all bounded continuous functions on [0, co). 
The (1, r)-conuolution for r > 1 is defined as 

and f is arbitrary continuous, bounded function on [0, a). 
All (1, r)-convolution algebras are regular. As a characteristic function in 

these algebras one can take the integral transformation 

where J ,  is. the Bessel function (see 161, p. 40). 

The (1, r)-convolution is closely connected with a random walk problem 
in Euclidean r-space. Namely, conside; a random walk in r-space given by 

where XI,  X,, . . . are independent random vectors with spherical symmetry, 
that is, if A is a measurable subset of r-space and A' is obtained from A by 
rotation about the origin, then 

I 

! 
P r o b ( x , ~ A ) = P r o b ( X , ~ A 3  ( k = l , 2  ,... 1 .  

The probability distribution of the length.lS,( is determined by that of the 
length IX,(, IX,l, . . ., IX,( (see [3]). More precisely, the probability distribu- 
tion of IS,J is the (1, r)-convolution of the probability distributions of IXIJ, 
lXzl, . . . , IX,). Further, the characteristic exponent of the (1, r)-convolution 
is equal to 2, and the measure on [0, m) with probability density 
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correspondin% to the Rayleigh distribqtion, plays the role of the characteris- 
tic measure, because by the Weber Theorem (see [dl, p. 394, formula (4)) we 
get m - 

~ - 2 ( r -  11 1 (iJ"' J.,,-, ( tx )  Y-' exp ( -  x2/4) dx = exp ( -  t2 ) .  

0 

Now we can get the characterisation of s-stable measures in the (I, r)- 
convolution algebra. 

COROLLARY 4. A function @ is a characteristic function of an s-stable 
measure in the (1, r)-convolution algebra if and only i f  either 

(39) @(t)  = exp ( - a 2  t2 ) ,  

a being a non-negative constant, or 

where c is a non-negative and p is a positive constant. 
Proof.  In view of Theorem 3 and the arguments preceding Corollary 4 it 

suffices to show that the non-characteristic s-stable measure has a character- 
istic function of the form (40). But if the measure Q = e (m) is s-stable, then, 
by Theorem 3, we have 

m(B) = c je-""dx. 
B 

Further, by (38) and the Hankel's formula (see 163, p. 385), we get 

. . 
where for any a we assume (or)* = 1 and (a), = or (a + 1) (a + 2). . .(a + n - 1). 
B y  a simple computation, from the last formula we obtain formula (40). 
Tqus the Corollary is proved. 
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