PROBABILITY

ROBUST TESTS AGAINST DEPENDENCE

BY

LUDGER RUSCHENDORF (Freiburg)

Abstract

When testing simple hypotheses $\underset{i=1}{\otimes} P_{i}, \otimes_{i=1}^{n} Q_{i}$ in a robust framework one usually considers neighbourhoods of P_{i} and Q_{i} in terms of ε-contamination or total variation, which are describable in terms of capacities. In the present paper we consider neighbourhoods which allow any departure from independence, but retain the marginals P_{i}, Q_{i} of the test problem, ie. we consider the extreme case, where exact measurement of the components is possible but no assumptions can be made about the independence.

1. Introduction. Let (X_{i}, \mathfrak{A}_{i}) be measure spaces, let $M^{1}\left(X_{i}, \mathfrak{H}_{i}\right)$ denote the set of all probability measures on $\left(X_{i}, \mathfrak{H}_{i}\right), 1 \leqslant i \leqslant n$, and define

$$
(X, \mathfrak{Z})={\underset{i=1}{n}}_{\otimes_{i}}\left(X_{i}, \mathfrak{A}_{i}\right)
$$

Furthermore, for $P_{i}, Q_{i} \in M^{1}\left(X_{i}, \mathfrak{A}_{i}\right), 1 \leqslant i \leqslant n$, define

$$
M_{i}=M\left(P_{1}, \ldots, P_{n}\right)=\left\{P \in M^{1}(X, \mathfrak{M}) ; \pi_{i}(P)=P_{i}, 1 \leqslant i \leqslant n\right\}
$$

and

$$
M_{2}=M\left(Q_{1}, \ldots, Q_{n}\right)=\left\{P \in M^{1}(X, \mathfrak{2}) ; \pi_{i}(P)=Q_{i}, 1 \leqslant i \leqslant n_{\}},\right.
$$

where π_{i} denotes the i-th projection on X and $\pi_{i}(P)$ denotes the image
 probability measures with i-th marginals P_{i}, Q_{i} and arbitrary dependence structure.

The robust test-model M_{1}, M_{2} cannot be described in terms of
capacities as the usual ε-contamination or total variation models and there do not exist least favourable pairs in the sensȩ of Huber and Strassen [5]. We shall instead determine least favourable pairs as introduced by Baumann [1] which depend on the level α and on n. It turns out that there is a large number of least favourable pairs and that for the determination of a robust test it is helpful to choose a suitable pair. To do this we develop in Section 2 some tools which seem to be of some independent interest.

It seems possible that similar methods as presented for our model will also be applicable to robust test models which are caused by dependence and which are less extreme as M_{1}, M_{2} are (f.i. considering only positive (negative) dependence or intersections with total variation neighbourhoods, but the author did not succeed in this point so far).
2. Measures with given marginals. Let $M(X, \mathfrak{g})$ be the set of finite measures on $(X, \mathfrak{1})$. For $P \in M(X, \mathfrak{1})$ define $|P|=P(X)$ and for $R_{i} \in M\left(X_{i}, \mathfrak{M}_{i}\right), 1 \leqslant i \leqslant n$, with $\left|R_{1}\right|=\ldots=\left|R_{n}\right|$ define $M\left(R_{1}, \ldots, R_{n}\right)$ as in Section 1. Clearly, $M\left(R_{1}, \ldots, R_{n}\right) \neq \varnothing$.

Let for measures $P, Q \in M(X, \mathfrak{2}), P \leqslant Q$, be defined as $P(A) \leqslant Q(A)$, $A \in \mathfrak{H}$. Then the following lemma is trivial:

Lemma 1. If $R_{i} \in M\left(X_{i}, \mathfrak{9}_{i}\right), 1 \leqslant i \leqslant n$, and

$$
\left|R_{1}\right|=\min _{i}\left|R_{i}\right|
$$

then there exists an $R \in M(X, \mathfrak{9})$ with $\pi_{1}(R)=R_{1}$ and $\pi_{i}(R) \leqslant R_{i}(2 \leqslant i \leqslant n)$.
For $P, Q \in M(X, \mathfrak{2})$ define $P \wedge Q \in M(X, \mathfrak{g})$ by

$$
P \wedge Q(A)=\inf \left\{P(A B)+Q\left(A B^{c}\right) ; B \in \mathfrak{A}\right\}
$$

(B^{c} denoting the complement of B) and

$$
d_{v}(P, Q)=\sup \{P(B)-Q(B) ; B \in \mathfrak{A}\}
$$

By a simple calculation $d_{v}(P, Q)=|P|-|P \wedge Q|$.
Define for $\mathscr{P}_{i} \subset M(X, \mathfrak{2 l}), i=1,2$,

$$
d_{v}\left(\mathscr{P}_{1}, \mathscr{P}_{2}\right)=\inf \left\{d_{v}\left(P_{1}, P_{2}\right) ; P_{i} \in \mathscr{P}_{i}, i=1,2\right\}
$$

The following proposition will be important for finding least favourable pairs for the testproblem M_{1}, M_{2}.

Proposition 2. Let $P_{i}, Q_{i} \in M\left(X_{i}, \mathscr{M}_{i}\right), 1 \leqslant i \leqslant n$, with $\left|P_{1}\right|=\ldots=\left|P_{n}\right|$, $\left|Q_{1}\right|=\ldots=\left|Q_{n}\right|$. Then

$$
d_{v}\left(M\left(P_{1}, \ldots, P_{n}\right), M\left(Q_{1}, \ldots, Q_{n}\right)\right)=\max _{1 \leqslant i \leqslant n} d_{v}\left(P_{i}, Q_{i}\right)
$$

Proof. The statement of Proposition 2 is equivalent to

$$
\sup \left\{|P \wedge Q| ; P \in M\left(P_{1}, \ldots, P_{n}\right), Q \in M\left(Q_{1}, \ldots, Q_{n}\right)\right\}=\min _{1 \leqslant i \leqslant n}\left|P_{i} \wedge Q_{i}\right|
$$

Define $S_{i}=P_{i} \wedge Q_{i}, 1 \leqslant i \leqslant n$, and assume that

$$
\left|S_{1}\right|=\min _{1 \leqslant i \leqslant n}\left|S_{i}\right|
$$

By Lemma 1 there exists an $R \in M(X, \mathfrak{Q})$ with $\pi_{1}(R)=S_{1}$ and $\pi_{i}(R) \leqslant S_{i}, \quad 2 \leqslant i \leqslant n . \quad$ Now \quad defining $\quad P_{i}^{\prime}=P_{i}-\pi_{i}(R), \quad Q_{i}^{\prime}=Q_{i}-\pi_{i}(R)$, $1 \leqslant i \leqslant n$, we obtain

$$
\begin{aligned}
\left|P_{i}^{\prime}\right| & =P_{i}\left(X_{i}\right)-\left(\pi_{i}(R)\right)\left(X_{i}\right)=P_{1}\left(X_{1}\right)-R(X) \\
& =\left|P_{1}\right|-\left(\pi_{1}(R)\right)\left(X_{1}\right)=|P|-\left|P_{1} \wedge Q_{1}\right|
\end{aligned}
$$

and, similarly,

$$
\left|Q_{i}^{\prime}\right|=\left|Q_{1}\right|-\left|P_{1} \wedge Q_{1}\right|, \quad 1 \leqslant i \leqslant n .
$$

Let $R_{1}^{\prime} \in M\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right), R_{2}^{\prime} \in M\left(Q_{1}^{\prime}, \ldots, Q_{n}^{\prime}\right)$ and define $R_{1}=R+R_{1}^{\prime}, R_{2}$ $=R+R_{2}^{\prime}$. Clearly, $R \leqslant R_{i}(i=1,2), R_{1} \in M\left(P_{1}, \ldots, P_{n}\right), R_{2} \in M\left(Q_{1}, \ldots, Q_{n}\right)$ and

$$
\left|R_{1} \wedge R_{2}\right| \geqslant|R|=\min _{1 \leqslant i \leqslant n}\left|P_{i} \wedge Q_{i}\right|
$$

On the other hand, for $P \in M\left(P_{1}, \ldots, P_{n}\right), Q \in M\left(Q_{1}, \ldots, Q_{n}\right)$ the bound

$$
|P \wedge Q| \leqslant \min _{1 \leqslant i \leqslant n}\left|P_{i} \wedge Q_{i}\right|
$$

is obvious by definition. Therefore

$$
\left|R_{1} \wedge R_{2}\right|=|R|=\min _{1 \leqslant i \leqslant n}\left|P_{i} \wedge Q_{i}\right|
$$

(and any pair $R_{1}^{\prime}, R_{2}^{\prime}$ is orthogonal!), which implies Proposition 2.
Remark 1. (a) The proof of Proposition 2 shows that there are many pairs $\left(R_{1}, R_{2}\right)$ minimizing the distance d_{v} between $M\left(P_{1}, \ldots, P_{n}\right)$ and $M\left(Q_{1}, \ldots, Q_{n}\right)$ and how to construct them.
(b) Assume that $\left|P_{i}\right|=\left|Q_{i}\right|=1,1 \leqslant i \leqslant n$. For the product measures we get the (probably well known) bounds:

$$
\begin{gather*}
d_{v}\left(\otimes P_{i}, \otimes Q_{i}\right) \leqslant 1-\prod_{i=1}^{n}\left(1-d_{v}\left(P_{i}, Q_{i}\right)\right), \tag{1}\\
d_{v}\left(\otimes P_{i}, \otimes Q_{i}\right) \geqslant \prod_{i=1}^{n} P_{i}\left(A_{i}\right)-\prod_{i=1}^{n} Q_{i}\left(A_{i}\right), \quad A_{i} \in \mathfrak{\Re}_{i} . \tag{2}
\end{gather*}
$$

For the proof of relation (1) observe that by Fubini's theorem and induction on n one obtains

$$
\left|\otimes P_{i} \wedge \otimes Q_{i}\right| \geqslant \prod_{i=1}^{n}\left|P_{i} \wedge Q_{i}\right|
$$

From relation (2) we see that the independent case does not typically correspond to a least favourable situation. To be more precise let

$$
d_{v}\left(P_{1}, \dot{Q}_{1}\right)=\max _{1 \leqslant j \leqslant n} d_{v}\left(P_{j}, Q_{j}\right)
$$

let $A_{1}=\left\{d P_{1} / d Q_{1} \geqslant 1\right\}$ be a Jordan-Hahn set and assume that $Q_{1}\left(A_{1}\right)>0$.
If there exists an $i, 2 \leqslant i \leqslant n$, such that $Q_{i}\left(A_{i}\right)>0$, where A_{i} $=\left\{d Q_{i} / d P_{i}>P_{1}\left(A_{1}\right) / Q_{1}\left(A_{1}\right)\right\}$, then

$$
d_{v}\left(\otimes P_{j}, \otimes Q_{j}\right)>\max d_{v}\left(P_{j}, Q_{j}\right)
$$

Proof. Since

$$
\frac{1-Q_{i}\left(A_{i}^{\mathrm{c}}\right)}{1-P_{i}\left(A_{i}^{c}\right)}=\frac{Q_{i}\left(A_{i}\right)}{P_{i}\left(A_{i}\right)}>\frac{P_{1}\left(A_{1}\right)}{Q_{1}\left(A_{1}\right)},
$$

we obtain

$$
\begin{aligned}
d_{v}\left(\otimes P_{j}, \otimes Q_{j}\right) & \geqslant P_{1}\left(A_{1}\right) P_{i}\left(A_{i}^{\mathrm{c}}\right)-Q_{1}\left(A_{1}\right) Q_{i}\left(A_{i}^{\mathrm{c}}\right) \\
& >P_{1}\left(A_{1}\right)-Q_{1}\left(A_{1}\right)=\max d_{v}\left(P_{j}, Q_{j}\right)
\end{aligned}
$$

(c) If $n=2, X_{i}(i=1,2)$ are Polish spaces, $\left|P_{i}\right|=\left|Q_{i}\right|=1,\left|P_{1} \wedge Q_{1}\right|$ $\leqslant\left|P_{2} \wedge Q_{2}\right|$ and $Q \in M\left(Q_{1}, Q_{2}\right)$ such that

$$
Q(A \times B) \geqslant P_{1} \wedge Q_{1}(A)+P_{2} \wedge Q_{2}(B)-\left|P_{2} \wedge Q_{2}\right|
$$

for all $A \in \mathfrak{H}_{1}, B \in \mathfrak{A}_{2}$, then

$$
d_{v}\left(M\left(P_{1}, P_{2}\right), Q\right)=d_{v}\left(M\left(P_{1}, P_{2}\right), M\left(Q_{1}, Q_{2}\right)\right)
$$

i.e. one can find a $P \in M\left(P_{1}, P_{2}\right)$ such that the pair P, Q is a "least favourable" pair in M_{1}, M_{2}.

Proof. By Theorem 4 of Hansel and Troallic [4] our assumption implies the existence of an $R \in M(X, \mathfrak{M})$ with $\pi_{1}(R)=P_{1} \wedge Q_{1}$, $\pi_{2}(R) \leqslant P_{2} \wedge Q_{2}$ and $R \leqslant Q$. Therefore, the proof of Proposition 2 implies our statement.

A similar but more complicated sufficient condition can be given for n $\geqslant 2$ using Theorem 1 of Gaffke and Rüschendorf [3].

Let now $\left(X_{1}, \mathfrak{A}_{1}\right)=\ldots=\left(X_{n}, \mathfrak{M}_{n}\right)$ and define, for $B \in \mathfrak{A}_{1}$,

$$
\Delta_{n}(B)=\{(x, \ldots, x) \in X ; x \in B\} .
$$

Assume that $\Delta_{n}(B)$ is measurable. In the following proposition we construct a measure with given marginals which is maximally concentrated on the diagonal Δ_{n}.

Proposition 3. Let $P_{i} \in M\left(X_{1}, \mathfrak{A}_{1}\right), \quad 1 \leqslant i \leqslant n$, with $\left|P_{1}\right|=\ldots=\left|P_{n}\right|$. Then:
(a) $\sup \left\{P\left(\Delta_{n}(B)\right) ; P \in M\left(P_{1}, \ldots, P_{n}\right)\right\}=P_{1} \wedge \ldots \wedge P_{n}(B)$, where $B \in \mathfrak{9}_{1}$.
(b) There exists an $R_{1} \in M\left(P_{1}, \ldots, P_{n}\right)$ such that

$$
R_{1}\left(\Delta_{n}(B)\right)=P_{1} \wedge \ldots \wedge P_{n}(B), \quad B \in \mathfrak{A}_{1}
$$

Proof. Let (M, \mathfrak{B}, μ) be a measure space, let $f:(M, \mathfrak{B}) \rightarrow\left(X_{1}, \mathfrak{A}_{1}\right)$ be such that $f(\mu)=P_{1} \wedge \ldots \wedge P_{n}$ and define $R \in M(X, \mathfrak{g})$ by $R=(f, \ldots, f)(\mu)$ - the image of μ under (f, \ldots, f). Then,

$$
R\left(\Delta_{n}(B)\right)=f(\mu)(B)=P_{1} \wedge \ldots \wedge P_{n}(B)
$$

for all $B \in \mathfrak{A}_{1}$. By Lemma 1 there exists an $R_{1} \in M\left(P_{1}, \ldots, P_{n}\right)$ with $R \leqslant R_{1}$ and, therefore, $R_{1}\left(\Lambda_{n}(B)\right) \geqslant P_{1} \wedge \ldots \wedge P_{n}(B)$. On the other hand, let

$$
B=\sum_{i=1}^{n} B_{i}
$$

be a measurable disjoint partition of B and let $P \in M\left(P_{1}, \ldots, P_{n}\right)$. Then

$$
P\left(\Delta_{n}(B)\right)=\sum_{i=1}^{n} P\left\{(x, \ldots, x) \in X ; x \in B_{i}\right\} \leqslant \sum_{i=1}^{n} P_{i}\left(B_{i}\right)
$$

which implies

$$
P\left(\Delta_{n}(B)\right) \leqslant \inf \left\{\sum_{i=1}^{n} P_{i}\left(B_{i}\right) ; B=\sum_{i=1}^{n} B_{i}\right\}=P_{1} \wedge \ldots \wedge P_{n}(B) .
$$

Remark 2. (a) If $n=2$ and $B=X_{1}$, Proposition 3 yields for $P_{i} \in M^{1}\left(X_{1}, \mathfrak{A}_{1}\right), i=1,2$,

$$
\tilde{d}\left(P_{1}, P_{2}\right)=\inf \left\{P\{(x, y) ; x \neq y\} ; P \in M\left(P_{1}, P_{2}\right)\right\}=d_{v}\left(P_{1}, P_{2}\right)
$$

This result on the Wasserstein-distance \boldsymbol{d} is due to Dobrushin [2].
(b) Some further optimization problems concerning $M\left(P_{1}, \ldots, P_{n}\right)$ are considered in Rüschendorf [6].

Lemma 4. If $P_{i} \in M\left(X_{1}, \mathfrak{I}_{i}\right), 1 \leqslant i \leqslant n$, and

$$
\left|P_{1}\right|=\min _{1 \leqslant i \leqslant n}\left|P_{i}\right|,
$$

then there exist $P_{i}^{\prime} \in M\left(X_{1}, \mathfrak{M}_{1}\right), 1 \leqslant i \leqslant n$, with $P_{i}^{\prime} \leqslant P_{i},\left|P_{i}^{\prime}\right|=\left|P_{1}\right|$ and $P_{i} \wedge P_{1}=P_{i}^{\prime} \wedge P_{1}, 2 \leqslant i \leqslant n$.

Proof. Define $\lambda_{i}=P_{i}-P_{1} \wedge P_{i}$ and $\mu_{i}=P_{1}-P_{1} \wedge P_{i}, 2 \leqslant i \leqslant n$. Then λ_{i}, μ_{i} are orthogonal and $\left|\mu_{i}\right| \leqslant\left|\lambda_{i}\right|$. With

$$
P_{i}^{\prime}=P_{1} \wedge P_{i}+\frac{\left|\mu_{i}\right|}{\left|\lambda_{i}\right|} \lambda_{i}, \quad 2 \leqslant i \leqslant n
$$

the assertion of Lemma 4 holds.

Corollary 5. Let $P_{i}, Q_{i} \in M^{1}\left(X_{1}, \mathfrak{H}_{1}\right), 1 \leqslant i \leqslant n$,

$$
\left|P_{1} \wedge Q_{1}\right|=\min _{1 \leqslant i \leqslant n}\left|P_{i} \wedge Q_{i}\right|
$$

and assume that $P_{1} \wedge \ldots \wedge P_{n} \leqslant Q_{1} \wedge \ldots \wedge Q_{n}$.
Then there exists an $R \in M(X, \mathfrak{Q})$ with $\pi_{1}(R)=P_{1} \wedge Q_{1}$, $\pi_{i}(R) \leqslant P_{i} \wedge Q_{i}, 2 \leqslant i \leqslant n$, and

$$
R\left(\Delta_{n}(A)\right)=\sup \left\{P\left(\Delta_{n}(A)\right) ; P \in M\left(P_{1}, \ldots, P_{n}\right)\right\}
$$

for all $A \in \mathfrak{H}_{1}$.
Proof. Let $P_{i}^{\prime} \leqslant P_{i} \wedge Q_{i}$ be measures with $\left|P_{i}^{\prime}\right|=\left|P_{1} \wedge Q_{1}\right|$ and

$$
P_{i}^{\prime} \wedge P_{1} \wedge Q_{1}=P_{i} \wedge Q_{i} \wedge P_{1} \wedge Q_{1}, \quad 2 \leqslant i \leqslant n
$$

as in Lemma 4.
Then by Proposition 3 there exists an $R \in M\left(P_{1} \wedge Q_{1}, P_{2}^{\prime}, \ldots, P_{n}^{\prime}\right)$ with

$$
\begin{aligned}
R\left(\Delta_{n}(A)\right) & =\sup \left\{P\left(\Delta_{n}(A)\right) ; P \in M\left(P_{1} \wedge Q_{1}, P_{2}^{\prime}, \ldots, P_{n}^{\prime}\right)\right\} \\
& =P_{1} \wedge Q_{1} \wedge P_{2}^{\prime} \wedge \ldots \wedge P_{n}^{\prime}(A)=\bigwedge_{i=1}^{n} P_{i} \wedge \bigwedge_{i=1}^{n} Q_{i}(A) \\
& =\bigwedge_{i=1}^{n} P_{i}(A)=\sup \left\{P\left(\Delta_{n}(A)\right) ; P \in M\left(P_{1}, \ldots, P_{n}\right)\right\},
\end{aligned}
$$

where

$$
\bigwedge_{i=1}^{n} P_{i}=P_{1} \wedge \ldots \wedge P_{n}
$$

3. Determination of roldust tests. Consider now the test problem M_{1}, M_{2} from Section 1. For subsets $\mathscr{P}_{i} \subset M^{1}(X, \mathfrak{n}), i=1,2$, and $\alpha \in[0,1]$ let

$$
\beta\left(\alpha, \mathscr{P}_{1}, \mathscr{P}_{2}\right)=\sup _{\varphi \in \Phi_{\alpha}\left(\mathscr{P}_{1}\right)} \inf _{Q \in \mathscr{F}_{2}} E_{Q} \varphi
$$

denote the maximin-power at level α, where $\Phi_{\alpha}\left(\mathscr{P}_{1}\right)$ are the tests of level α. Let $R_{i} \in M_{i}, i=1,2$; then $\left(R_{1}, R_{2}\right)$ is called least favourable of level α if

$$
\beta\left(\alpha, M_{1}, M_{2}\right)=\beta\left(\alpha, R_{1}, R_{2}\right)
$$

(cf. Baumann [1]).
Define, for $k \geqslant 0$,

$$
L\left(M_{2}, k M_{1}\right)=\left\{\left(R_{1}, R_{2}\right) ; R_{i} \in M_{i}, i=1,2, d_{v}\left(M_{2}, k M_{1}\right)=d_{v}\left(R_{2}, k R_{1}\right)\right\}
$$

The proof of Proposition 2 shows that $L\left(M_{2}, k M_{1}\right) \neq \Phi$ and how to find elements of $L\left(M_{2}, k M_{1}\right)$. Finally, for $k \geqslant 0, \alpha \in[0,1]$, define

$$
h_{\alpha}(k)=\alpha k+\max _{1 \leqslant i \leqslant n} d_{v}\left(Q_{i}, k P_{i}\right)
$$

Theorem 6. Let $\alpha \in[0,1]$.
(a) $\beta\left(\alpha, M_{1}, M_{2}\right)=\min \left\{h_{\alpha}(k) ; k \geqslant 0\right\}$.
(b) Let $k^{*} \geqslant 0$ be a minimum point of h_{a} and let $\left(R_{1}, R_{2}\right) \in L\left(M_{2}, k^{*} M_{1}\right)$; then
(1) $\left(R_{1}, R_{2}\right)$ is the least favourable at level α for M_{1}, M_{2}.
(2) There exists an LQ-test φ^{*} for R_{1}, R_{2} with critical value k^{*} at level α which is a maximin test at level α for M_{1}, M_{2}.

Proof. (a) Let \bar{M}_{i} denote the closure of M_{i} in $b a(X, \mathfrak{g l})$ - the set of finitely additive set functions - w.r.t. weak*-topology, $i=1,2$. By Satz 5.3 of Baumann [1]

$$
\beta\left(\alpha, M_{1}, M_{2}\right)=\inf \left\{\alpha k+d_{v}\left(\bar{M}_{2}, k \bar{M}_{1}\right), k \geqslant 0\right\}
$$

(where d_{v} is defined in $b a(X, \mathfrak{g})$ as in $M(X, \mathfrak{g})$). Clearly, for $P \in \bar{M}_{1}$ we have $\pi_{i}(P)=P_{i}(1 \leqslant i \leqslant n)$ and, for $Q \in \bar{M}_{2}, \pi_{i}(Q)=Q_{i}(1 \leqslant i \leqslant n)$. Therefore,

$$
d_{v}(Q, k P)=\sup \{Q(B)-k P(B) ; B \in \mathfrak{A}\} \geqslant \max _{i \leqslant n} d_{v}\left(Q_{i}, k P_{i}\right)
$$

which implies, using Proposition 2,

$$
d_{v}\left(\bar{M}_{2}, k \bar{M}_{1}\right)=d_{v}\left(M_{2}, k M_{1}\right)=\max _{1 \leqslant n} d_{v}\left(Q_{i}, k P_{i}\right)
$$

and, therefore,

$$
\beta\left(\alpha, M_{1}, M_{2}\right)=\min _{k \geqslant 0} h_{\alpha}(k) .
$$

(b) If $\left(R_{1}, R_{2}\right) \in L\left(M_{2}, k M_{1}\right)$, then

$$
d_{v}\left(R_{2}, k^{*} R_{1}\right)=\max _{i} d_{v}\left(Q_{i}, k^{*} P_{i}\right)
$$

and, therefore,

$$
\begin{aligned}
\beta\left(\alpha, M_{1}, M_{2}\right) & =h_{\alpha}\left(k^{*}\right)=\alpha k^{*}+\max _{i} d_{v}\left(Q_{i}, k^{*} P_{i}\right) \\
& =\alpha k^{*}+d_{v}\left(R_{2}, k^{*} R_{1}\right) \\
& \geqslant \inf \left\{\alpha k+d_{v}\left(R_{2}, k R_{1}\right) ; k \geqslant 0\right\}=\beta\left(\alpha, R_{1}, R_{2}\right) .
\end{aligned}
$$

Since trivially $\beta\left(\alpha, M_{1}, M_{2}\right) \leqslant \beta\left(\alpha, R_{1}, R_{2}\right),\left(R_{1}, R_{2}\right)$ is least favourable at level α. Point (b) of (2) is well-known from the duality treatment of test problems (cf. fi. Baumann [1]).

Remark 3. (a) As is clear from Theorem 6, there are many least favourable pairs at level α and the least favourable pairs generally depend on α (cf. the following example). Therefore, there are no least favourable pairs in the sense of Huber and Strassen [5].
(b) If there is a component, say $i=1$, such that

$$
d_{v}\left(Q_{1}, k P_{1}\right)=\max _{j} d_{v}\left(Q_{j}, k P_{j}\right) \quad \text { for all } k \geqslant 0
$$

then there is a least favourable pair independent of α and a maximin-test can be chosen depending only on the first component of the observation. This is especially true if $P_{1}=\ldots=P_{n}$ and $Q_{1}=\ldots=Q_{n}$. But in the other case the maximin-power is strictly larger (for some α) than the maximum power of the tests concerning the individual components only.
(c) For the determination of a maximin-test it is useful to choose a suitable least favourable pair $\left(\boldsymbol{R}_{1}, R_{2}\right)$ in order to have a randomization region as small as possible. The following example shows how to choose (R_{1}, R_{2}) in certain cases and how to manage the necessary optimization problems concerning the randomization region.
4. An example. Consider the case $n=2$ and measures P_{i}, Q_{i} on $[0,1]$ determined by $P_{i}=f_{i} \lambda^{1}(i=1,2), f_{1}(x)=2 x(x \in[0,1]), f_{2}(x)=1(x \in[0,1])$ and $Q_{1}=P_{2}, Q_{2}=P_{1}$; i.e. we consider $M_{1}=M\left(P_{1}, P_{2}\right), M_{2}=M\left(P_{2}, P_{1}\right)$. Then

$$
f_{1}(k)=\alpha k+d_{v}\left(Q_{1}, k P_{1}\right)= \begin{cases}1-(1-\alpha) k, & k \leqslant \frac{1}{2} \\ \alpha k+\frac{1}{4 k}, & k>\frac{1}{2}\end{cases}
$$

and

$$
f_{2}(k)=\alpha k+d_{v}\left(Q_{2}, k P_{2}\right)= \begin{cases}1-(1-\alpha) k+\frac{k^{2}}{4}, & k<2 \\ \alpha k, & k \geqslant 2\end{cases}
$$

Furthermore,

$$
\inf _{k} f_{1}(k)=\tilde{f_{1}}\left(\frac{1}{2 \sqrt{\alpha}}\right)=\sqrt{\alpha}
$$

and

$$
\inf _{k} f_{2}(k)=f_{2}(2(1-\alpha))=1-(1-\alpha)^{2}
$$

Finally,

$$
h_{\alpha}(k)= \begin{cases}\tilde{f_{2}}(k), & k \leqslant 1, \\ \tilde{f_{1}}(k), & k \geqslant 1\end{cases}
$$

and

$$
\inf _{k \leqslant 1} \tilde{f}_{2}(k)=\left\{\begin{array}{ll}
\tilde{f_{2}}(2(1-\alpha)), & \alpha \geqslant \frac{1}{2}, \\
\tilde{f_{2}}(1), & \alpha<\frac{1}{2},
\end{array} \quad \inf _{k \geqslant 1} \tilde{f}_{1}(k)= \begin{cases}\tilde{f_{1}}\left(\frac{1}{2 \sqrt{\alpha}}\right), & \alpha<\frac{1}{4} \\
\tilde{f_{1}}(1), & \alpha \geqslant \frac{1}{4}\end{cases}\right.
$$

Therefore,

$$
\inf _{k \geqslant 0} h_{\alpha}(k)= \begin{cases}\tilde{f_{1}}\left(\frac{1}{2 \sqrt{\alpha}}\right)=\sqrt{\alpha}, & \alpha<\frac{1}{4} \\ \tilde{f_{1}}(1)=f_{2}(1)=\alpha+\frac{1}{4}, & \frac{1}{4} \leqslant \alpha \leqslant \frac{1}{2} \\ \tilde{f_{2}}(2(1-\alpha))=1-(1-\alpha)^{2}, & \alpha>\frac{1}{2}\end{cases}
$$

Therefore, for $\alpha<\frac{1}{4}$ the maximin-test is based only on the first component of the observation (x_{1}, x_{2}) while for $\alpha>\frac{1}{2}$ it is based only on the second component. For $\alpha \in\left[\frac{1}{4}, \frac{1}{2}\right]$ the maximin-power is strictly larger than the power of the marginal tests and we can choose $k^{*}=1$ independent of $\alpha \in\left[\frac{1}{4}, \frac{1}{2}\right]$.

Since we have $P_{1} \wedge Q_{1}=P_{2} \wedge Q_{2}$, there exists, by Proposition 3(a), $R \in M\left(P_{1} \wedge P_{1}, P_{2} \wedge Q_{2}\right)$ which is concentrated on the diagonal Δ_{2}. Since $\dot{P}_{1} \wedge Q_{1}=g \lambda_{1}$ with

$$
g(x)= \begin{cases}2 x, & 0 \leqslant x \leqslant \frac{1}{2}, \\ 1, & \frac{1}{2} \leqslant x \leqslant 1,\end{cases}
$$

we have $\left|P_{1} \wedge Q_{1}\right|=|R|=\frac{3}{4}$. To determine a least favourable pair, define g_{1} $=f_{1}-g, g_{2}=f_{2}-g$; then $g_{2}(x)=g_{1}(1-x)$ and $\int g_{1} d \lambda_{1}=\int g_{2} d \lambda_{1}=\frac{1}{4}$.

Define:

$$
\begin{aligned}
& h_{1}(x, y)=4 g_{1}(x) g_{2}(y)= \begin{cases}4(2 x-1)(1-2 y), & x \geqslant \frac{1}{2}, y \leqslant \frac{1}{2} \\
0 & \text { else }\end{cases} \\
& h_{2}(x, y)=4 g_{2}(x) g_{1}(y)= \begin{cases}4(1-2 x)(2 y-1), & x \leqslant \frac{1}{2}, y \geqslant \frac{1}{2} \\
0 & \text { else. }\end{cases}
\end{aligned}
$$

Then $R_{i}^{\prime}=h_{i} \lambda_{2} \quad(i=1,2)$ define elements of $M\left(P_{1}-P_{1} \wedge Q_{1}, P_{2}\right.$ $\left.-P_{2} \wedge Q_{2}\right)$, resp. $M\left(Q_{1}-P_{1} \wedge Q_{1}, Q_{2}-P_{2} \wedge Q_{2}\right), \lambda_{2}$ denoting Lebesgue measure on $[0,1]^{2}$. Our choice yields measures $R_{1}^{\prime}, R_{2}^{\prime}$ with maximal support. Now define, as in the proof of Proposition 2, $R_{1}=R+R_{1}^{\prime}, R_{2}=R$ $+R_{2}^{\prime}$ and define the $L Q$-test

$$
\varphi(x, y)= \begin{cases}1, & x \leqslant \frac{1}{2} \\ \gamma, & x \geqslant \frac{1}{2}, y \geqslant \frac{1}{2} \\ 0 & \text { else }\end{cases}
$$

with $\gamma=4\left(\alpha-\frac{1}{4}\right)$. Then

$$
\begin{equation*}
\sup \left\{E_{P} \varphi ; P \in M\left(P_{1}, P_{2}\right)\right\}=E_{R_{1}} \varphi=\frac{1}{4}+\frac{\gamma}{4}=\alpha \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\inf \left\{E_{Q} \varphi ; Q \in M\left(Q_{1}, Q_{2}\right)\right\}=E_{R_{2}} \varphi=\frac{1}{2}+\frac{\gamma}{4}=\alpha+\frac{1}{4} . \tag{2}
\end{equation*}
$$

To prove (1) and (2) observe that, for $P \in M\left(P_{1}, P_{2}\right)$,

$$
P\left\{x \leqslant \frac{1}{2}, y \leqslant \frac{1}{2}\right\} \leqslant P\left\{x \leqslant \frac{1}{2}\right\}=\frac{1}{4}
$$

and, therefore,

$$
P\left\{x \leqslant \frac{1}{2}, y \geqslant \frac{1}{2}\right\} \geqslant \frac{1}{4} \quad \text { and } \quad P\left\{x \geqslant \frac{1}{2}, y \geqslant \frac{1}{2}\right\} \leqslant \frac{1}{4} .
$$

The sup in (1) is, therefore, bounded by $\frac{1}{4} \cdot 1+\gamma \cdot \frac{1}{4}$, which is attained for $P=R_{1}$. The inf in (2) is attained for a $Q \in M\left(Q_{1}, Q_{2}\right)$ such that $Q\left\{x \leqslant \frac{1}{2}, y\right.$ $\left.\geqslant \frac{1}{2}\right\}=\frac{1}{3}$ and, therefore, $Q\left\{x \leqslant \frac{1}{2}, y \leqslant \frac{1}{2}\right\}=0, Q\left\{x \geqslant \frac{1}{2}, y \geqslant \frac{1}{2}\right\}=\frac{1}{4} . Q=\boldsymbol{R}_{2}$ is an element with these properties. (1) and (2) imply that φ is a maximin-test at level α.

Using Corollary 5, this example could be discussed in greater generality. Generally, the measures $R_{1}^{\prime}, R_{2}^{\prime}$ should be chosen as the product measure in order to obtain the smallest possible randomization region.

RĖFERENCES

[1] V. Baumann, Eine parameterfreie Theorie der ungünstigsten Verteilungen, Z. Wahrscheinlichkeitstheorie verw. Geb. 11 (1968), p. 40-60.
[2] R. L. Dobrushin, Prescribing a system of random variables by conditional distributions, Theory Prob. Applications 15 (1970), p. 458-486.
[3] N. Gaffke and L. Rüschendorf, On a class of extremal problems in statistics, Math. Operationsforsch. Statist, Ser. Optimization, 12 (1981), p. 123-136.
[4] G. Hansel and J. P. Troallic, Mesures marginales et théorème de Ford-Fulkerson, Z. Wahrscheinlichkeitstheorie verw. Geb. 43 (1978), p. 245-251.
[5] P. J. Huber and V. Strassen, Minimax-tests and the Neymann-Pearson lemma for capacities, Ann. Statist. 1 (1973), p. 251-263.
[6] L. Rüschendorf, Sharpness of Fréchet bounds, Z. Wahrscheinlichkeitstheorie verw. Geb. 57 (1981), p. 293-302.

Institut für Mathematische Stochastik
Universität Freiburg
Hebelstr. 27
7800 Freiburg

