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i , 
Abstract. When testing simple hypotheses @ Pi, Q Q, in a -. 

! , = I  i = l  

robust framework one usually considers neighbourhoods of Pi and 1 '  
I Q, in terms of  contamination or total variation, which are 

j I  1 i describable in terms d capacities. In the present paper we consider 
! neighbourhoods which allow any departure from independence, but 

' retain the marginah Pi,  Qi of the test problem, i.e. we consider the 
I extreme case, where exact measurement of the components is 

i 1 possible but no assurnptiops can be made about the independence. 

t 
1 1  
1 I. Introduction. Let (Xi, q) be measure spaces, let M1(Xi, 2&.) denote 

the set of all probability measures on (Xi, 2&.), 1 < i < n, and define 

Furthermore, for Pi, Qi E M1 (Xi, 2Q, 1 < i < n, define 

and 

where q denotes the i-th projection on X and ni(P) denotes the image 
n n 

measure. MI, M, are neighbourhoods of @ Pi, @ Qi containing all 
i= 1 i=  l 

probability measures with i-th rnarginals Pi, Qi and arbitrary dependence 
structure. 

The robust test-model MI, M2 cannot be described in terms of 
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capacities as the usual &-contamination or total variation models and there 
do not exist least favourable pairs in the seng of Muber and Strassen [5j .  
We shall instead determine least favourable pairs as introduced by Baumann 
[I] which depend.on the level a and on n. It turns out that there is a large 
number of least favourable pairs and that for the determination of a robust 
test it is helpful to choose a suitable pair. To do this we develop in Section 2 
some tools which seem to be of some independent interest. 

It seems possible that similar methods as presented for our model will 
also be applicable to robust test models which are caused by dependence and 
which are less extreme as M , ,  M ,  are (f.i, considering only positive (negative) 
dependence or intersections with total variation neighhurhoods, but the 
author did not succeed in this point so far). 

2. Measure with given mrgirsals. Let M(X, 6% be the set of finite 
measures on (X, 2Q For P E M ( X ,  'N) define (PI = P(X) and for 
R i ~ M ( X i ,  q), i g i g r a ,  with IR,I= . . . = I  RnI define M ( R  ,,..., R,) as in 
Section 1. Clearly, M (R,, . . . , RJ # 0. 

Let for measures P, Q E  M ( X ,  'ill), P d Q, be defined as P(A) ,< Q(A) ,  
A E  X Then the following lemma is trivial: 

LEMMA 1. I i  Ri€ M(Xi, 2I,), I G i 6 IZ, 'and 

lRll =,m.in lRil, 
I 

then there exists an R E  M I X ,  '2$) with n, (R)  = R1 ~ n d  ni(R) < Ri (2 < i < n). 
For P ,  Q E  M(X, '2l) define P A Q E M ( X ,  %!I) by 

(B" denoting the complement of B) and 

By a simple, calculation d,(P, Q) = IPI -IP A Qj. 
Define for Pi c M ( X ,  +Q, i = 1, 2, 

The following proposition will be important for finding least favourable 
pairs for the testproblem M,, M, .  

PRoms~no~ 2. Let Pi, Qi G M ( X i ,  q.), 1 ,< i < n, with JP, 1 = . . . = 1 P,,], 
1Q,I = ... = 1Q.I. Then 

dv(M('~,..-,f'nl, M ( Q I , . - . , Q ~ ) )  = ,?a2 -1.n &(Pi, Qi). 

Proof.  The statement of Proposition 2 is equivalent to 
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Define Si = Pi A Qi, I < i 4 n, and assume that 

By Lemma 1 there exists an R E M ( X ,  5%) with n,(R) = S, and 
xi(R)<Si, 2 G i ' G n .  Now defining P;=Pi-ni(R), Q;=Qi-ni(R), 
1 < i G n, we obtain 

IPn'I = Pi (xi)- (ni (R))( xi) PI - R  

= If'~l-(~~(R))lxl) = Ipl-1P1 A Q I I  
and, similarly, 

k t  R ; E M ( P ;  ,..., PA, R ~ E M ( Q ;  ,..., Q3 and define R,  = R + R ; ,  R2 
= R + R ; .  Clearly, R < R, (i = 1, 2), R,EM(P, ,..., PA, R 2 € M ( Q  ,,..., Q,J 
and 

(R, A R,I 3 (RI = min /Pi  A QiJ.  
l i i < n  

On the other hand, for P E  M ( P I , .  . . , P,), Q E  M(Q1,. . . , Q,) the bound 

JP A QI G +R ]Pi A QiI 
l d l $ ~  

is obvious by definitisn. Therefore 

( R ,  A R,( = (Rl = mjn lPi A Qil 
I ,<lSn 

(and any pair R;,  R; is orthogonal!), which implies Proposition 2. 
Remark  1. (a) The proof of Proposition 2 shows that there are many 

pairs (R,, R2) minimizing the distance d, between MIPI, ..., P;) and 
M(Q1 ,,..., Q,) and how to construct them. 

(b) Assume that IPi/ = JQ$ = 1, 1 < i < n. For the product measures we 
get the (probably well known) bounds: 

I 

I For the proof of relation (1) observe that by Fubini's theorem and 

/ induction on n one obtains 
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From relation (2) we see that the independent case does not typically 
correspond to a least favourable situation. To be more precise let 

let A, = {dPl/dQl 2 1 )  be a Jordan-Hahn set and assume that Q1 (A,) > 0. 
If there exists uan i, 2 6 i < n, such that Qi(A,)  > 0, where A, 

= (dQ JdPi > PI (AlMQI ( A I ) ) ~  then 

Proof. Since 

we obtain 

dv ( OPj, OQj) 2 PI (A , )  Pi (4) - QI CAI) Qi (AD 
> P I ( A I ) - Q ~  ( A d  = maxdv(Pj,  Q j ) .  

(c) If ri = 2, Xi (i = 1 ,  2) are Polish spaces, [PiI = JQil = 1. IP1 A Q1l 
< IP, A Q21 and Q € M ( Q l ,  Q2)  such that 

Q ( A x B )  > P I  A Q i ( A ) + P z  A Q Z ( B ) - I P ~  A Q Z I  
for all A E '$I1 ,  B E  212, then 

i.e. one can find a P E  A4 ( P I ,  P2) such that the pair P, Q  is a "least favourabie" 
pair in Mi, M 2 .  

Proof. By Theorem 4 of Hansel and Troallic [4] our assumption 
implies the existence of an R E  M(X, with w ,  (R)  = P,  A Q , ,  
n2 (R)  < P2 A Q2 and R d Q. Therefore, the proof of Proposition 2 implies 
our statement. 

A similar but more complicated sufficient condition can be given for n 
2 2 using Theorem 1 of Gamte and Riischendorf [3]. 

Let now ( X I ,  24) = . . . = (X,, '3J and define, for BE '$II, 

A,(B) = .((x,. .., x ) ~  X ;  X E  B) .  

Assume that A,(B) is measurable. In the following proposition we 
construct a measure with given marginals which is maximally concentrated 
on the diagonal A,. 

PRo~osmo~ 3. Let P i ~ M ( X l ,  %Ill), l,<i,<n, with J P , J =  . . .=I P,J. 
Then: 
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(a) sup{P(A.(B)); P E M ( P , ,  ..., PJ] = P1 A ... A P,,(B), where  BE^^. 
(b) There exists an R1 E M ( P I , .  . . , Pn) such fhar 

Pr  o of. Let (M, 23, p) be a  measure space, let f: ( M ,  4 -P ( X I ,  a1) be 
such that f ( p )  = PI A ... A Pn and define R E M ( X ,  PI) by R = (  S,...,f)(p) 
- the image of p under ( A , .  . , f ). Then, 

for all BE %. By Lemma I there exists an R1 E M ( P l ,  .. ., P,J with R 6 R, 
and, therefore, R1 ( ~ ~ ( 3 ) )  3 P1 A . . . A P,(B). On the other hand, let 

be a  measurable disjoint partition of B and let P E  M ( P 1 , .  .., P,J. Then 

which impIies 

Remark 2. (a)  If n = 2 and B = X I ,  Proposition 3 yields for 
Pi E M 1  ( X I ,  al), i = 1, 2, 

This result on the Wasserstein-distance 2 is due to Dobrushin [2]. 
(b) Some further optimization problems concerning M ( P I ,  . . . , P,,) are 

considered in RIischendorf [6]. 
LEMMA 4. If P i € M ( X 1 ,  %?Il), 1 < i < n, and 

then there exist P,(E M ( X , ,  g l ) ,  1 < i d n, with Pi < Pi, Ipi'l = lPlt and 
Pi A P ,  =Pi A P , ,  2 < i < n .  

Proof. Define 4 = P i - P I  A Pi and fi = P I - P ,  A Pi,  2  < 5 < n. Then 
A, pi are orthogonal and I f i f  < /A i / .  With 

the assertion of Lemma 4 holds. 



COROLLARY 5.  Let Pi, Qi E M1 (XI, TII), 1 d i < n, 

and assume that P1 A .. . A P, 6 Q1 A . .. A Q,. 
Then there exists an REM(X,CL[)  with xl(R)=P,  A Q , ,  

q ( R )  < Pi A Qi, 2 < i < n, and 

R(d,(A)) = sup (p(A,(A)); f ' ~  M(PI, .  . ., P,)) 

for all A E  'illl. 
Br o of. Let P;' 6 Pi A Qi be measures with I Pi1 = IP1 A Q1l and 

as in Lemma 4. 
Then by Proposition 3 there exists an R€M(P1 A Q1, Pi, ..., P'h with 

where 

3. I P e t e r ~ m h n  of r o h t  tests. Consider now the test problem MI, M2 
from Section 1. For subsets gi c M1(X, W), i = 1, 2, and U E  [0, 11 let 

B(a9 9 1 , 9 2 1  = SUP inf Ep F 
Q - ( P ~ )  Q d 2  

denote the maximin-power at level a, where rP,(Yl) are 'the tests of level a. 
Let R, E Mi, i = 1, 2; then (R,, R2) is called least favourable of level a if 

(cf. Baumann [I]). 
Define, for k 0, 

3L(M2, kM1) = ((R1, Rz); Ri€ Mi, i = 1, 2, d, (M2,  kM1) = d,(Rz, kR1)). 

The proof of Proposition 2 shows that L(M2, kMl) # @ and how to 
find elements of L(M2, kMl). Finally, for k 0, a €  LO, 11, define 

& (k) = ark + max d, (Qi, kPi). 
l G i d n  
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THEOREM 6. Let a E f0, 13. 
(a) B(a, M1, M2) = min {h%(k);  k 2 0). 
{b) Let k* 2 0 be a minimum point ofk, and let (El,  R2)€ L(M2, k * M 1 ) ;  

then 
(1)  ( R ,  , Rz) is the bast favourabIe at level a for MI, M2. 
(2) There exists can LQ-test cp'for R1, R2 with critical value k* at level ci 

which is a maximin test ~t leuel u fur MI, M,. 
Proof. (a) Let Mi denote the closure of Mi in ba(X, - the set of 

finitely additive set functions - w.r.t. weak*-topology, i = 1, 2. By Satz 5.3 
of Baumann [l] 

(where d, is defined in ba(X, as in M (X; q). Clearly, for P E  MI we have 
xi(P) = Pi ( 1  < i < n) and, for Q E Ma, xi (Q) = Qi (1 < i 6 n). Therefore, 

d, ( Q ,  kP)  = sup ( Q  ( B )  - kP(B);  B E a) 2 max d, (Qi, kPt) 
i S n  

which implies, using Proposition 2, 

d,(M,, k M 1 )  = dv(M2, kM,) = maxdu(Qi, kPi) 
1 g n  

and, therefore, 

B (a , MI , M2) = min h, (k) . 
t 3 0  

(b) If @ I ,  R2)€L(MZ, kM1), then 

and, therefore, 

B(a, MI,  M,) = h, (k*) = ak* + max dv(Qi, k* Pi) 
i 

= ak* +dv (R2, k* R1) 
2 inf {ak+d,(R,, kR,); k 2 0) = P(a, R1, R2). 

Since trivially P(a, MI, Mz) 4 B(a, R1, R2), (R1, R2) is least favourable 
at level a. Point (b) of (2) is weI1-known from the duality treatment of t a t  
problems (cf. f.i. Baumann [I]). 

Remark 3. (a) As is clear from Theorem 6, there are many least 
favourable pairs at level a and the least favourable pairs generally depend on 
a (cf. the following example). Therefore, there are no least favourable pairs in 
the sense of Huber and Strassen [5]. 

(b) If there is a component, say i = I, such that 

d, (Q,, kP, )  = max dv(Qj, kP,) for all k 2 0, 
j 



then there is a least favourable pair independent of u and a maximin-test can 
be chosen depending only on the first component of the observation. This is 
especially true if P,  = . . . = P, and QI = ... = Q,. But in the other case the 
maximin-power is strictly larger (for some a) than the maximum power of the 
tests concerning the individual components only. 

(c) For the determination of a maximin-test it is useful to choose a 
suitable least favourable pair (R , ,  R,) in order to have a randomization 
region as small as possible. The following example shows how to choose 
(R,, R,) in certain cases and how to manage the necessary optimization 
problems concerning the randomization region. 

4. An example. Consider the case n = 2 and measures Pi, Qi on [O, I ]  
determined by Pi = 1' (i = 1, 21, f, (x) = 2 x  ( x  E LO, 11)' f2 (x) = 1 ( x  E [0, 11) 
and Q, = P,,  Q ,  = P , ;  i.e. we consider M ,  = M ( P , ,  P2), M ,  = M ( P , ,  PI). 
Then 

and 
n 

1 1  a ) ,  k < 2 ,  
4 J; (k) = ~k +d, (Q2 ,  kP2) = {sky . k 2 2 .  

Furthermore, 

and 

inf.&(k) = f , ( 2 ( 1  -a)) = 1-(1-a)' .  
k 

Finally, 

and 

1 1 
L(2(l-a)), a 2 - Y  2 

inf fi (k) = i d  (k) = 
Rdl 1 k > l  1 fi ( I ) ,  a <- 2' 
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Therefore, 

Therefore, for oc <$  the maximin-test is based only on the first 
component of the observation (x , ,  x2) whiIe for u > it is based only on the 
second component. For U E  [i, *] the maximin-power is strictly larger than 
the power of the marginal tests and we can choose k* = 1 independent of 
a€[ ; ,  +]. 

Since we have PI A Q1 = P, A Q,, there exists, by Proposition 3(a), 
R E  M ( P ,  A P I ,  P ,  A Q,)  which is concentrated on the diagonal A , .  Since 
P, A Q1 = gl, with 

we have ]PI A Q,1 = JR( = i. To determine a least favourabIe pair, define g ,  
=fi-g ,  9 2  = f 2 - g ;  then g,(x)=g,(l-x) and S g l d l ,  = Sg2dAl =$. 

Define: 

Then Rj = hi 1, (i = 1, 2) define elements of M ( P ,  -PI A Q,, P,  
- P 2  A Q2), resp. M ( Q , - P I  A Q,, Q , - P ,  A Q,), 1, denoting Lebesgue 
measure on 10, 11'. Our choice yields measures R;, R; with maximal 
support. Now define, as in the proof of Proposition 5 R,  = R +  R;, R,  = R 
+R; and define the LQ-test 

1, x < + ,  
Y ,  x > + , y 2 + ,  
0 else, 

with y = 4(a-i). Then 



To prove (1) and (2) observe that, for P E  M ( P , ,  P,),  

and, therefore, 

The sup in (1) is, therefore, bounded by 4 . 1  + y -4, which is attained for 
P = R,.  The inf in (2)  is attained for a Q E  M(Ql, QZ) such that Q {x G i, y 

1 - 1  2 i} = 4 an4 therefore, Q (x < 4, y < 4) = 0, Q {x 2 i, y 2 - r. Q = R, is 
an element with these properties, (1) and (2) imply that cp is a maximin-test at 
level a. 

Using Corollary 5, this example could be discussed in greater generality. 
Generally, the measures R;, R; should be chosen as the product measure in 
order to obtain the smallest possible randomization region. 
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