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Abstract. This paper gives further developments of the theory
of uniformly minimum variance unbiased estimation (UMVUE) in
Euclidean vector spaces as originated by W. Kruskal, G. Zyskind
and J. Seely. It gives necessary and sufficient conditions for the
existence of a UMVUE for each estimable function in any subspace
of linear estimators with no restrictions posed on the covariance
operators. Also conmstruction of UMVUE’s in a given “subspace of
linear estimators, if they exist, is considered. The developed theory
is illustrated by two examples: estimation of variance components
in a general mixed linear model and estimation of the mean
in a multivariate linear model.

1. Introduction. In the paper we consider a random element Z with
values in an arbitrary Euclidean vector space % endowed with an inner
product denoted by [-,-]. The expectation EZ and the covariance Cov Z
(for definitions, see [10]) are assumed to exist. EZ is assumed to be an
element of a known subspace & of #. The symbol @ stands for the
minimal convex cone containing all covariance operators of Z and is assumed
to be known. For our considerations we may assume without loss of

generality that there is no functional relationship between EZ and Cov Z.

Let .# (&, ©®) denote a model as described above.
The problem we consider is the estimation of functions of the form
[A, EZ] defined on the parameter space A x &, say. We confine attention

to the class of estimators of the form [B, Z], where B may stand for any ‘

element in a given subspace A, of . The function [A4,EZ] is said to
be A y-estimable if there exists a Be X'y such that [B,EZ] = [4,EZ].
Within this model context the entire collection of ",-estimable functions
can be presented as {[4,EZ]: AeXA,}. The estimator [4, Z], where
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? Ae Ay, is called A y-best for a A y-estimable function g if [A,EZ] =g |
f and if Var[A, Z] < Var [B, Z] for each Be X, such that {B,EZ] = g.
The model # (&, ©) is said to be A y-regular if there exists a A -best
estimator for each A -estimable function. Throughout the paper, # -best
estimators are called 51mp1y best estimators.

The purpose of this paper is to provide conditions whlch are necessary
and sufficient for .# (€, @) to be A ,-regular. The problem of ﬁndlng A o -best
} estimators, when ones exist, is also considered.

' Most of the problems of linear estimation in llnear models and of
Y quadratic estimation of variance components in mixed linear models are
B special cases of the problems considered in this paper. Also some problems
of estlmatlon in multivariate linear models are covered by the developed
theory.

i In Section 2 we summarize for the sake of completeness a number of
facts on linear operators which are used throughout the paper. In Section 3,
1 Lemma 3.2 extends a result of Secly [17] on the representation of estimable
functions. Theorem 3.1 extends a result due to Seely and Zyskind [20].
It gives a necessary and sufficient condition for a model # (&, ®) to be
A y-regular. In Section 4 we introduce a concept of a A ,-Gauss-Markov
estimator (X ,-GME) which is as related to 5 ,-estimable functions as the
usual GME is related to X -estimable functions. These results extend recent
works on Gauss-Markov estimators of Mitra and Moore [14] and of
Drygas [1]. . ’

In the next section we deal with the problem of constructing ", -best
estimators under various assumptions posed on ¢ o- In particular, we con-
sider the situation where " % < &, which is of special interest, because
under this assumption each J,-best estimator is also J#'-best. The results
in Section 5 are closely related to the work on locally best estimation of
variance components developed by Rao [15], [16], and Kleffe [8].

In the last section we show how to deduce from the developed theory
the results regarding the existence of best unbiased estimators of variance
components established under various degrees of generality-by Seely [17]-[19],
Seely and Zyskind [20], Zmysiony [21] [22], Kleffe and Pincus [9], Gnot
et-al. [5]-[7] and by Drygas [2].

2. Preliminaries. Throughout the paper, elements of the Euclidean vector
space A" are denoted by capital Latin letters (4, B, ..). For subspaces ./
and # of X', the expression & +% stands for the set of all vectors A +B,
where Ae/ and Be %, and the expressmn o NA for the set of all
vectors belonging to </ and to 4.

Note that

(A+B)NE =ANEC+RB

provided & —« € < A,
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We write o @ instead of o +& if & "% = {0}. The set of all vectors
orthogonal to & = X is denoted by &L Then

(K +H = bt and  (F nH) = atv o),

provided ", and X", are subspaces of A .

Let & be the space of all linear operators transforming J into X .
Elements of ¥ are denoted by capital Greek letters (I, 2, ...). The adjoint
of 'eZ is denoted by I". The operator I'e & is said to be self-adjoint
if I' = I'", nonnegative-definite if [T'A, A] > 0 for all AeX, and positive-
definite-if [T'd, A] > O for all AeX except for A =0. For any I'e %,

I'(s#/) and I'"' (/) stand for the image and the inverse image of & by I,
respectively. In case o = A, we write 2 (I') instead of I'(X’). Furthermore,
N (I) stands for the null space {AeX: I'(A) = 0}. For I';,I,e ¥ and
for each I'e ¥ we define a linear operator I'y ® I'; from & into itself by

(r®r,)r =r,rr,.

As usual, I'" denotes a generalized inverse and I'" the Moore-Penrose
inverse of 'e &. .

Let L be a linear operator transforming 4 into a linear space #~
endowed with an inner product (-,:), The following standard set theory
facts are useful in the sequel:

@1 L YL(#)} = A +.4 (L),
2.2) | LL Y () = R(L)n A,
2.3) - r-'() = I { n R+ (D).

For a self-adjoint operator I'e &,
24) A=T" iff IT*AIT* =T".

Now let 2, and ", be disjoint subspaces of #". Any vector Ae X, @ XA,
has a unique decomposition 4 = A, +A4,, where A, € %, and A,e X ,.
Then IT is said to be a projection operator onto A | along A , if ITA = A,
for every Ae X @A, and the corresponding A,. The projection operator
II is unigue iff Jf @ A, coincides with the entire space .

IfITis a prQ]CCthIl operator onto %, along A ,, then

(i) for any o <« X, ® X ,,

Aed+HA, it IHAell(H)

provided Ae A, ® X ,;
(i) IT Ae(H @ A, for each Ae A,
(iil) ' A—Ae(H, @A ,) for each Ae A+
From (ii) and (iii) it follows that IT'(X') = 44+ Moreover, II' is the
projection operator onto '3 along H't.if H, @A, = A,
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3. Main resuits. In this section we present results which are basic in our
discussion of the problem of existence of X j-best estimators.
Throughout the paper, -#", stands for a subspace of # and # = £+ A 3.

LEmMMA 3.1 (Lehmann and Scheffé [13]). Let Ae X y. Then [A, Z]
is A y-best for [A,EZ] iff TAe % for all T€®.

LEMMA 3.2. Let o be a subspace of # o, and let %, be the class of all
A o -estimable functions. Then

G, ={[A4,BZ]: Ac st} iff A+FL=uoA,.

The proof of Lemma 3.2 for #, = A is given by Seely [17]. The
above-given extension may be established in the same manner.

By virtue of Lemmas 3.1 and 3.2 we obtain immediately the following
result:

LeMMA 3.3, The model 4 (&, @) is A o-regular iff there exists a subspace
A < A such that |

and »
(3.2) r# c% fordle®. )

A subspace # < A", which satisfies conditions (3.1) and (3.2) is said
to be A y-best. A A ,-best subspace is said to be minimal if none of its
proper subspaces is J# ,-best. A J ,-best subspace # is minimal iff
HNnFL = {0}

If # is A ,-best, then for each A ;-estimable function there exists an
element A€ # such that [A4, Z] is its A ,-best estimator, and for each
Ae # the estimator [A, Z] is A y-best for [A, EZ]. Moreover, if # is
a minimal J ,-best subspace, then for each £ ;-estimable function g there

" exists exactly one element A€ # such that [4, Z] is a A ;-best estimator

of g. Finally, if # is a J ,-best subspace, then -
H < (\ I Y(F)
I'e®
by Lemma 3.3. ‘

To include in our considerations the case where there is no invertible
operator in @ we introduce the concept of a maximal element. The operator
2 €@ is said to be maximal in © if g

S H(EZ) = [ AD).
I'e®@

Clearly, if 2 is maximal in @, then for all '€ @ we have Z(I') = Z(2).
One can easily show that there exists a maximal element in @ (see Lemma 1
in [12]). Throughout the paper, X will stand for a maximal element in @.

Now we are in a position to prove the main rgsult of the paper.
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THEOREM 3.1. The model M (&, O) is A o-regular iff
(3.3) [(HonEZ " (F)cF foral TeO.
Proof. If # (£, ®) is K ,-regular, then the subspace
Hy = foﬂ[ﬂel""(?’)]
®

satisfies conditions (3.1) and (3.2). Thus to prove the sufﬁmency one needs
only to show that

(G4 - T Hy = Ky nEUP).
Using an easily proved set theory fact 3 ,
RQE) < ZFH+ AL+ F L,
and the assumption '

R = R(Z) for all TeO,

we obtain
&Y c SFY+ AL+ F Ay for all TeO.
Hence . » |
(3.5) L HE S B (FYIAHE+F A,

Using (3.1) we get v
CHENF A, = {0).

On the other hand, since X e @, we obtain
(3.6) Hoy < HonEZ HF).
- Coﬁsequently, by (3.5),
GBI . #Lc D FH+ A

Now, combmmg 3 6) and (3.7), we get (3.4), and the sufficiency is
established. "
Now suppose that (3 3) holds Using elementary set theory - methods

one can easily show that
HonZ YF)V+FL =A,.
Thus A, N X~ 1(F) satlsﬁes condltlons (3.1) and (3.2), and the necessity

is estabhshed

Theorem 3.1 shows that, once it is established that .# (&, @) is A, -regular,
calculating - best estimators within .# (£, @) reduces to calculatmg A o-best
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estimators within .# (£, ©,), where @, = {xX: xe Z*}. Obviously, for ),
= A condition (3.3) reduces to .

rr-Y(¢cé& for al ree.

Moreover, the £ j-estimation within .# (&, @) is in a sense equivalent
to the estimation in the class of all linear estimators within an appropri-
ately induced linear model. To show this let us introduce some additional
notatlon

~As previously, let L be a linear operator transformmg A into W such
that R(L)=A,. Now define a random vector Y = LZ. Then

EY=L1L0eé, =L(&) and CovY=LILe®d, = LRYL(O),
where § = EZ and I' = Cov Z. With this notation we have

{(W,Y): We "IV} ={[L'W,Z]: We¥#} ={[A,Z]: Ae A ,}.
- If (W, Y) is a uniformly best estimator of (W, L6) within {(W, Y): We#'},
then, by Lemma 3.1,

LIr'Lweé, for all 'e®
or, equivalently, '
ITL'WeL 'L(6) for all T'e®.
Now, by (2.1), ' '
L YL@} = 6+X%

Applying Lemma 3.1 shows that (W, Y) is uniformly best iff
VFL’WG€’+_J(§L for all 'e ®.

Thus the following result is established:

LEMMA 34. The estimator (W, Y) is best for (W, L60) within {(W, Y):
WeWw} iff [L'W,Z] is #o-best for [L'W,0] = (W, L) within {[A, Z]:
Ae Xy},

*This lemma yields mlmedlately the followmg 1mportant conclusion:

THEOREM 3.2. The model M (&, @) is A o-regular iff the model M (8, ®;)
is regular.

4. A - Gauss-Markov estimators. As previously, let .# (£, ©) be a model
consisting of a # -valued random vector Z such that EZe & and Cov Ze®.

Let L, be the orthogonal projection onto a subspace A, = X and let
Z, = Ly Z. Finally, let

Q={II: X > X, R(UT) < Ko, ENIZ = EZ,}.
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The estimator I, Z is said to be a X ,- Gauss-Markov estimator (X ;- GME,
for short) if

@) HyeQ,

(i) Var[A4, I, Z] < Var[A,1Z] for all AeX and all ITeQ.

Clearly, a A o-GME coincides with the usual GME as defined in [1],
say, if X' =A.

Now put # = X and let us spec1a11ze L to L,. Let # (6., @) be
the induced linear model as defined in Section 3. We shall translate certain
known facts about GME in the induced model .# (€., @;) to equivalent

~ statements on X ,-GME in the original setting of the model (&, ®).”

THEOREM 4.1. There exists a A o-GME iff # (&€, ®) is X y-regular.

Proof. If .# (€, ®) is A ,-regular, then 4 (&, @) is regular by The-
orem 3.2. Thus there exists a GME in .4 (€, @) to be denoted by II, Z,,
where II; projects on &, along ZL(6D). Now let IT = IT, L. Since e
and [A4,1I.Z,] = [4,1Z], Ae A, we infer that IIZ is a A j-GME within
the original model. To prove the reverse statement note that there exists
a linear operator II7: X'y — A, such that IT = II; L. Since Il Z, turns
out to be then a GME in .# (8., ®,), the original model is ¥ ;-regular.

The following theorem gives a method of constructing a X ,-GME if
one exists. '

THEOREM 4.2. Let # (£, ®) be a A -regular model. The estimator I1Z
is a X y-GME iff I projects on &, along X (FLH+ AL, where &, is the
orthogonal projection of & on X . ‘

Proof. To begin with note that, by (2.2),

(4.1) LL Y (&Y =2L)n&l = 7L

If I1Z is a X ,-GME in # (€, ®), then there exists a projection I
on &, = &, along Z.(#}) such that IT = II L. Since, by (4.1),

Z.(6) = LIL(L(6Y) = LZ(FY,

II = II, L projects on &, = &, along Z(go'l)wri

Now suppose that IT projects as indicated in the theorem. Then there
exists an operator II,: A 4 - Ay such that IT = II; L. To prove that IIZ
is a A o-GME within .# (&, ©) it is sufficient to show that IT, Z, is a GME
within Jl (€1, ©,). However, this follows from the assumption and from (4.1).

5. Representation of O ,-best classes. It is often difficult to find an
explicit formula of a projection operator as specified in Theorem 4.2.
There is another way of calculating J,-best estimators, when a set of

vectors which spans a Jf ,-best class is given (each best estimator may -

be then represented as a certain linear combination of vectors from this
set). For this reason we shall be concerned in this section with repre-

L \
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sentations of J ,-best classes in terms of some easily constructed operators.
We shall establish them under the following assumptions:

R(Z)+ A ¢ =A, EcRAQE) and A§cécRE).

Note that the first one is satisfied if A, < 2 ().

Now let L be defined as in Section 3 i'.e. let L: 4 - % and
R(L) = A ,.

. THEOREM 5.1. Let M (&, O) be A o-regular and let 9?(2)+9£’ =A
Then L
(5.1). - L(LZL) (€y)

is a minimal A y-best class. B
Proof: Since LXL is maximal in _@L, it follows from Theorem 3.1 that

HL = (LZL) (&)

is best for the induced model .# (€L, @L). The corresponding A o-best class
in the original model is then easily seen to be L'(5#). To show that L'(&;)
coincides with- (5. 1) note first that #(Z)+ A t= y1e1ds R(LZL)Y = R (L).
In fact, since L™'{L#(X)} = X, we obtain Z(L) = L(%(Z)), which is
obviously equivalent to #(LZL) = #(L). Next note that by applying (2.3)
we get

- Hp = (LEL’ )T (EL)+ A (LZL).

Using these results yields
L'(#) = L'(LEL)" (&y).

To conclude the proof note that, in view of (2.4), the Moore-Penrose
inverse may be here replaced by any generalized inverse.

Another important theorem is the following one:

. THEOREM 5.2. Let M (&, @) be A o-regular and let & = R (Z). Let &, be
the projection of & on X (A o) along H'L. Then Z*(&,) presents the orthoqonal
prajection of the K o-best class X o NZ7Y(F) on R (D).

Proof The assertion follows from the formula

(52) === woe  INE) = EEY(H)NET(F ﬂ@(z)}

which may be derived under the adopted assumption é" < #(X). Since the
algebra is standard, we omit the details.

- To construct a A y-best class in case A¢ < & @(Z). we - introduce
some additional notation. Let A stand for an invertible and self-adjoint
operator in % such that A7'4 = X* 4 for any Ae#(Z). One of the
possible choices of A is X+I—XX*, where, as usual, I stands for the
identity operator in %. Dealing with an invertible A instead of with X
simplifies the problem of constructing a % ,-best class.
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"THEOREM 5.3. Let # (&, ®) be a A o-regular model and let &, be the
projection of & on A(X,) along Ay If A8 < R(T), then A~HE,)
is a minimal X o-best class within the model # (8, ©).

Proof. It is sufficient to show that A~1(£,) satisfies (3.1), (3 2) and
that A~1(&,) N &L = {0}.

Since A is invertible, we have

) ‘ AKX YDA G = A
Usmg At < € yields--
& = éan(xo)@aﬂ

HCHCC } PO
E,=8n A(.J(f 0)-

Consequently, using & = #(2) leads to _
53) ATHE) = HonAYE) = HonIT (&) ,xfonz 1(&).

The set A~ !(&,) satisfies condition (3.2) because the considered model
is o ,regular. Now, since A~ (€)®&L = A and since by (5.3) the
relation A71(£,) < A, holds, we note that

ATNE)DELNH g = K.
This is equivalent to
ANE) DL = A,

smoe & = &,+AL Hence (3.1) is satisfied. Finally, (5.3) implies that
A~Y(&) N &L = {0}. Thus the proof of the theorem is completed.

To end this section we present three theorems Wthh may be derived
immediately from Theorems 5.1, 5.2 and 5.3. .

THEOREM 54. Let R(Z)+X ¢ = A'. Then M (8, @) is .%’ o-regular iff
TL(LZL) (&) < &€ for all T€®.
THEOREM 5.5. Let & — R(X). Then M (&, ©) is A o-regular iff
rs-@)<F forall TeO.
THEOREM 5.6. Let X¢ < & < R(Z'). Then M (6, 0) is A -regular iff
FA-'&,) <& forall TeO.

6. Two special cases.
1. Let y be a normal random vector of order nx 1. Let Ey = X8 and let

k-
Covy= Y o V.

i=1
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The (n x p}-matrix X and the n xn nonnegative-definite matrices V,, ..., ¥;
are assumed to be known. The (px1)-vector B and the (kx 1)-vector
g = (0y,...,0,) are unknown. When the problem consists in the best

estimation of ¢’'g, where ce %", attention is usually restricted either to all
quadratic unbiased estimators or to quadratic unbiased estimators which
are invariant with respect to all translations moving y into y+ XB. Let %,
and %, stand for the parametric functions ¢’¢ which have a quadratic
unbiased estimator and an invariant quadratic unbiased estimator, respec-
tively. Note that 4,-= ¥, if PV, = V,P (i = 1, ..., k), where P is the ortho-
gonal projection on % (X). , '

Suppose that we want to characterize those models in which there
exists a uniformly minimum variance quadratic unbiased estimator (UM VQUE)
for each function in %, and those ones in which there exists a uniformly
' minimum variance invariant quadratic unbiased estimator (UMVIQUE) for
each function in %,. To apply the developed theory we specialize J to
the space of all nxn symmetric matrices endowed with the usual trace
inner product. Putting Z = yy’ we note that

(6.1) EZ = Covy+Ey(Ey)
and .
6.2) CovZ = 2[EZQEZ—Ey(Ey) ®Ey(Ey)].

Thus we are led to a model # (&, ®), where & is the subspace
spanned by (6.1) and O is the minimal convex cone containing all covariance
matrices (6.2). _ _

Now let § be maximal in the convex cone spanned by (6.1). Using
routine algebra one may show that X = S®S is maximal in @ and
that & = #(2). _ o .
: To deduce the desired necessary and sufficient conditions we specify

Aoy as Koy = N (PRP) for ¥, and as Ky, = #(M M) for 4,. Here
P=XX"* and M = I—P, I being the unit matrix. Clearly, X'y, = A y,.
The operator

I, = I®I-G®G, where G = P(PS~ P)~ PS*,
projects on A (A ;) along H'¢y, where A = S, ®S,, S; = S+I—SS*, while
the operator '
I, =(I-6G)®(I-G)
projects on X (X ;) along A'¢,. Finally, let
| ¥ = span {V, ..., i}.
Since " %1 € & = #(Z), Theorem 5.6 implies that .#(&; ©) is K-
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regilar iff
(AST*®AST V)1 (6) =& for all Aeé,
whete I1,(8) = (I®I GRG)(Y).

The model # (£, @) being Ay, - regular, y' Ay is a UMVQUE of its
expected value if A can be represented in the form

_ =("'®s B for Be II,(6).
In case S = I, this_expression reduces to the well-known formula
A4=(1IRI- P®P)B for Be 7.

Moreover, since & — #(Z), it follows from Theorem 5.5 that the
consrdered model is A oz-regular iff

(AS7 ®AS;),(6) = II,(S)

for all AeIIZ(é"’) where Hz(é”) = span {I-G)V,(I-G): i=1,...,k} and
=I-G)S{U—- G). :
As known [2] the above-glven condition is satisfied iff IT,(€) is an
*_quadratic subspace of X, ie. iff AS* Aell,(€) for all Aell,(&). The
model M (&, @) being A y,-regular, it follows from Theorem 5.2 that y Ay
is a UMVIQUE of its. expected value iff .

63) - s A62+Hz(é’)+r/V(2)f\1’oz
In fact Theorem 5.2 insures that
6.4) ' ' H Xt H2(€)+JV(Z),

where, as usual, # = H'o, N X7} (F). Since S*(I-G) = MS*(I-G), we
easily see that

(6:5) ZtI,(6) < xfoz'.
Hence ' _ ' ‘ _
66) R - H2(£)+M(2)hx02.
Next,’ usmg &<« ﬂ(Z), we have Hz (é”) Herlee
(6.7) a z+n2((r) c I Y(#).

Combmlng (6. 5) and (6.7) leads to .
(6.8) 3 L rmL@ e

The inclusion reverse to (6.6) follows from (6.8) because A" (2) = X~ 1(97 )-
Thus the assertion is established.

If @(M) < ,@(S), which is equlvalent to Hop < @(2) formula (6. 3)
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reduces to
(6.9) : AeZ* I, (8).

-~ Finally, note that under the assumption #(M) < %£(S) Theorem 5.1
gives the following formula alternative to (6.8):

(6.10) Ae[(MV, M)® (MY, M)]* (¥),

' where V, is maximal in the convex cone spanned by 7.

Formulas (6.9) and-(6.10) have been derived first by Rao [15], [16]
under slightly stronger assumptions.

2. Now consider a multivariate random variable Z = {y;}, where
i=1,2;nand j=1,.., p. Assume that EZ = {a;+ B}, where a’s and B’s
are unknown, and that CovZ = I®YV, where V is unknown and ranges
over the set of all px p covariance matrices. Note that

&= RIQD+RA®I), where 1 =(l,..., 1),

and that
O={IQV:V=0}.

Now we specify J" as the space of all (nx p)-matrices with the usual
trace inner product, and restrict attention to estimators of the form [4, Z],
where A e A" As shown by Eaton [3], the model .# (£, ®) is not regular, i.e.
not all parametric functions of the form [4, EZ] admit a best estimator. .
However, there exists a best estimator for each parametric function of
the form (o'1)(b'1)+nb' B, where o= (ay,...,a,), B =(By,....B,) and
be R, ie. for each A j-estimable function, where Ay = Z(1QI)+ &L,

Assuming I® I to be maximal in ® and noting that

Hbcé and HonZN(F) =201,

‘we can write condition (3.3) in the form

I®V)(21®D) < ZARN+Z(I®1).
Since this condition is satisfied for each pxp covariance matrix ¥, we
conclude that .# (&, ©) is A ,-regular, as asserted.
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