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Abstract. This paper gives further developments of the theory 
of uniformly minimum variance unbiased estimation (UMVUE) in 
Euclidean rector spaces as originated by W. Kruskal, G. Zyskind 
and J. Seely. It gives necessary and sufficient conditions for the 
existence of a UMVUE for each estimable function in any subspace 
of linear estimators with no restrictions posed on the covariance 
operators. Also construction of UMVUE's in a given subspace of 
linear estimators, if they exist, is considered. The developed theory 
is illustrated by two examples: estimation of variance components 
in a general mixed linear model and estimation of the mean 
in a multivariate linear model. 

1. Introduction. In the paper we consider a random element Z with 
values in an arbitrary Euclidean vector space X endowed with an inner 
product denoted by [., a]. The expectation EZ and the covariance Cov Z 
(for definitions, see [lo]) are assumed to exist. E Z  is assumed to be an 
element of a known subspace d of X .  The symbol 8 stands for the 
minimal convex cone containing all covariance operators of Z and is assumed 
to be known. For our considerations we may assume without loss of 
generality that there is no functional relationship between E Z  and Cov Z. 
Let A(&, 8) denote a mode1 as described above. 

The problem we consider is the estimation of functions of the. form 
LA, EZ] defined on the parameter space X x 8, say. We confine attention 
to the class of estimators of the form [ B ,  a, where B may stand for any 
element in a given subspace X ,  of X.  The function [ A ,  EZ] is said to 
be X,-estimable if there exists a B E No such that [B, EZ] = [ A ,  E q .  
Within this model context the entire collection of Xo-estimable functions 
can be presented as ( [ A ,  EZ] : A E X,). The estimator [A, 4, where 
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A E X O ,  is called X ,  -best for a X ,  -estimable function g if [A, EZ] = g 1 
and if Var IA, Z] < Var [B ,  2-J for each B E  X, such that [ B ,  EZ] = g. 
The model .A'(&, O) is said to be Xo-regular if there exists a A'",-best 
estimator for each Xo-estimable function. Throughout the paper, X-best 
estimators are called simply best estimators. 

The purpose of this paper is to provide conditions which are necessary 
and sufficient for A (8, O )  to be X, -regular. The problem of hd ing  Xo - best 
estimators, when ones exist, is also considered. 

Most of the problems of linear estimation in linear models and of 
quadratic estimation of variance components in mixed linear models are 
special cases of the problems considered in this paper. Also some problems 
of estimation in multivariate linear models are covered by the deveIoped 
theory. 

In Section 2 we summarize for the sake of completeness a number of 
facts on linear operators which are used throughout the paper. In Section 3, 
Lemma 3.2 extends a result of Seely [17] on the representation of estimable 
functions. Theorem 3.1 extends a result due to Seely and Zyskind [20]. 
It gives a necessary and sufficient condition for a model A(&, 8) to be 
Xo-regular. In Section 4 we introduce a concept of a Xo-Gauss-Markov 
estimator (X,-GME) which is as related to X,-estimable functions as the 
usual GME is related to S-estimable functions. These results extend recent 
works on Gauss-Markov estimators of Mitra and Moore [14] and of 
Drygas C11. - 

In the next section we deal with the problem of constructing Xo-best 
estimators under various assumptions posed on X, .  In particular, we con- 
sider the situation where X i  c b, which is of special interest, because 
under this assumption each X,-best estimator is also X-best. The results 
in Section 5 are closely related to the work on locally best estimation of 
variance components developed by Rao [15], [I 61, and Kleffe [8]. 

In the last section we show how to deduce from the developed theory 
the results regarding the existence of best unbiased estimators of variance 
components established under various degrees of generality-by Seely [17]-[19], 
Seely and Zyskind [20], Zmyilony [21], 1221, Kleffe and Pincus [93, Gnot 
et al. [5]-[7] and by Drygas [2]. 

2. Preliminaries. Throughout the paper, elements of the Euclidean vector 
space X are dendted by capital Latin letters (A, 3 ,  . . .). For subspaces d 
and of Y,  the expression d + g  stands for the set of all vectors A+B, 
where A E ~  and J3 E 99, and the expression Lc4 ng for the set of all 
vectors belonging to d and to 99. 

Note that 
(d+99)nW = dnW+a 

provided c Gg c X .  
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We write instead of d + B  if d n &I = (0). The set of all vectors 
orthogonal to d c X is denoted by dl. Then 

( x , + x ~ ~ = x + ~ x ~  and ( X , ~ X , ~ = X ~ + X & ,  

provided X ,  and X ,  are subspaces of X .  
Let 2 be the space of all linear operators transforming X into X .  

Elements of Y are denoted by capital Greek letters (f, L?, ...). The adjoint 
of T E . ~  is denoted by T'. The operator r~dP is said to be self-adjoint 
if r = rf, nonnegatiue-definite if [I'A, A] 3 0 for all A E Sf, and positive- 
de8nite' if [TA, A] > 0 for all A E % except for A = 0. For any r E 9, 
T(d) apd 'r-l(&') stand for the image and the inverse image of d by r, 
respectjvely. In case d = X ,  we write 9 (r) instead of T ( X ) .  Furthermore, 
Jf in stands for jhe null space {A E 2": T ( A )  = 0). For T ,  , r2 E 9 and 

I for eaph FEY &'define a linear operator TI @ r 2  from 2' into itself by 

As usual, r- denotes a generalized inverse and T+ the Moore-Penrose 
inverse of r E 9. 

Let L be a linear operator transforming X into a linear space W 
endowed with an inner product (., .), The following standard set theory 
facts are useful in the sequel: 

For a self-adjoint operator r E 9, 

(2.4) A = r- iff rr+nrr+ = r+. 
Now let XI and Sf2 be disjoint subspaces of X .  Any vector A E  X ,  @ S, 

has a unique decomposition A = A ,  + A 2 ,  where A, E X, and A2 E X,. 
Then Il is said to be a projection operator onto XI along X,  if l7A = A, 
for every A E XI @ X2 and the corresponding A , .  The projection operator 
f l  is unique iff X ,  @X,  coincides with the entire space X .  

If ll is a projection operator onto XI along X , ,  then 
(i) for any d c TI 8 X,, 

A E & + X ,  iff l I A ~ n ( d )  

provided A E X ,  @ X,; 
(ii) II' A E (XI @ X2F for each A E 3-t; 

(iii) n' A -  A E  (XI OX,)l for each A E  .Xi.  om (ii) and (iii) it follows that nf(3f) c Xf. Moreover, II' is the 
projection operator onto X& along X i  if X', @ X ,  = X .  
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3. Main r ~ u l t s .  In this section we present results which are basic in our 
discussion of the problem of existence of X,-best estimators. 

Throughout the paper, -KO stands for a subspace of -X and 9 = b +x&. 
LEMMA 3.1 (Lehmann and Schefl6 [13]). Let A E X , .  Then [A, Z] 

is Xo-best for [ A ,  EZ] T A E F  for a11 r ~ @ .  
LEMMA 3.2. Let d be a subspace of X, and let 9, be the class of all 

.To -estimable functions. Then 
-. - 

go=-1-[A,EZ]: A E ~ )  iff d + p L = X , .  

The proof of Lemma 3.2 for X ,  = X is given by Seely [17]. The 
above-given extension may be established in the same manner. 

By virtue of Lemmas 3.1 and 3.2 we obtain immediately the following 
result: 

LEMMA 3.3. The mode! . M ( 6 ,  8)  is X,-regular iff there exists a subspace 
.X c X such that 

and 

A subspace X' c X ,  which satisfies conditions (3.1) and (3.2) is said 
to be %,-best. A So-bes t  spbspace is said to be minimal if none of its 
proper subspaces is Xo-best. A %,-best subspace S is minimal iff 
% n ~ l  = {O). 

If 3Ea is Xo-best, then for each X,-estimable function there exists an 
element A  E 2 such that [A, ZJ is its So- best estimator, and for each 
A E 2' the estimator [A, a is So- best for [A, EZ]. Moreover, if 2' is 
a minimal X,-best subspace, then for each Xo-estimable function g there 
exists exactly one element A E  S such that [A, Z ]  is a =To-best estimator 
of g .  Finally, if H is a X,-best subspace, then 

z c n r-l(s) 
I'd3 

by Lemma 3.3. 
To include in our considerations the case where there is no invertible 

operator in 0 we introduce the concept of a maximal element. The operator 
C E @ is said to be Pnaxirnai in 8 if " 

Clearly, if Z is maximal in 8, then for all T E O we have W (T) c W (Z). 
One can easily show that there exists a maximal element in O (see Lemma 1 
in [12]). Throughout the paper, C will stand for a maximal element in 8. 

Now we are in a position to  prove the main result of the paper. 
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THEOREM 3.1. The model d ( b ,  8) is Xo-regular iff 

(3.3) ( o n 1  for u n r ~ O .  

Proof. If A(&, 8) is Xo-regular, then the subspace 

xo = x o n [ n  i-~e r - l ( ~ ) ]  
e 

satisfies conditions (3.1) and (3.2). Thus to prove the sufficiency one needs 
only to show that 

-. - - 
(3.4) - .Yo = .Yo n x-I (9). 

Using an easily proved set theory fact . - 

9 ( E )  c Z ( p l ) + X & + F  nXo 

and the assumption 

& ( r ) c . % ( Z )  for all r ~ 8 ,  
we obtain 

~(9'~) c ~(9~)+3?&+9 n X ,  for all I-E 0 .  

Hence 

(3.5) xi$ = , Z ( @ = - ~ ) + X ~ + P  nXo. 

Using (3.1) we get 

~ i $ n ~ n X ,  = (0). 

On the other hand, since E E 8, we obtain 

(3.6) S', c Xo n,ZP1(F). 

Consequently, by (3.9, 

(3.7) xi c Z(S~)+ x&. 
Now, combining (3.6) and (3.7), we get (3.4), and the sufficiency is 

established. -- 

Now suppose that (3.3) holds. Using elementary set theory methods 
one can easly show that 

Xo n , Z - l ( 9 ) + P L  = X 0 -  

Thus Xo n E - l ( F )  satisfies conditions (3.1) and (3.2), and the necessity 
is established. 

Theorem 3.1 shows that, once it is established that M (8, 69) is Xo -regular, 
calculating X, -best estimators within JV (8, 8) reduces to calculating Xo - best 
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estimators within A(&, 8,), where 8, = (xE: X E  B'). Qbviously, for Z, 
= X condition (3.3) reduces to 

r.Z- '(8) c 8 for all r E @ 

Moreover, the Xo=estimation within A (8, 8) is in a sense equivalent 
to the estimation in the class of all linear estimators within an appropri- 
ately induced linear model. To show this let us introduce some additional 
notation. 

- As previously, let L be a linear operator transforming X into W such 
that B(L1) = X,. Now define a random vector Y = LZ. Then 

E Y = L B E & ~ =  L(8) and CovY- LTL'€BL= L@L(0),  

where 8 = EZ and r = Cov 2. With this notation we have 

{(W, Y): WEW} = {[L'W,Z]: W E W }  = ( [ A , Z ] :  A E X ~ ) .  

If (W, Y) is a uniformly best estimator of (W, LO) within {(W, Y): WE W ) ,  
then, by Lemma 3.1, 

Lr'L) WE gL for all r E 8 
or,- equivalently, 

~ L ' W E L - ~ L ; ( & )  for all r ~ 8 .  
Now, by (2.1), 

Applying Lemma 3.1 shows that (W, Y )  is uniformly best iff 

~L 'WE&+.X+ for all r ~ 8 .  

Thus the following resuIt is established: 
LEMMA 3.4. The estimator (W, Y) is best for (W, LO) within {(W, Y): 

W E  W )  iff [L' W, is A'",-best for [L' W, 81 = (W, LO) within ([A, a: 
A E X,} . 

This lemma yields immediately the following important conclusion: 
THEOREM 3.2. The model A (&, 8 )  is ifo-regular iff the model 4 (b,, OL) 

is regular. 

4. Xo - Gauss-Markov estimators. As previously, let AY (8, 0) be a model 
consisting of a X-valued random vector Z  such that EZ E & and Cov Z E 8. 
Let Lo be the orthogonal projection onto a subspace X ,  c X and let 
Zo = Lo Z. Finally, let 

8 = (If: S f  + A'", 9(n') c X o ,  EnZ = EZo). 
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The estimator ZI, Z is said to be a X,-Gauss-Markov estimator (So-GME, 
for short) if 

0)  no^ Q, 
(ii) Var [A, no < Var [A, 1721 for all A E  X and all Z l  E a. 
Clearly, a X D - G M E  coincides with the usual GME as defined in [l], 

say, if To = x. 
Now put W = X and let us specialize L to Lo. Let A(&,, 83 be 

the induced linear model as defined in Section 3. We shall translate certain 
known facts about GME in the induced model A(&,, gL) to equivalent 
statements on X,-&E in the original setting of the model &(IF, 64). . 

THEOREM 4.1. There exists a Y o - G M E  i f f  A(&, B) is So-regular. 
P r o  of. If A (8, 8) is X, -regular, then 4 (b,, gL) is regular by The- 

orem 3.2. Thus there exists a GME in A ( & ,  @) to be denoted by n,Z0, 
where nL projects on gL along EL(&). Now let n = n,L. Since L! E 
and [A, IIL Z,] = [ A ,  nZ], A E  X ,  we infer that 172 is a X,-GME within 
the original model. To prove the reverse statement note that there exists 
a linear operator DL: X ,  -, .TO such that n = n L L .  Since DLZ, turns 
out to be then a GME in A(&,, 8d, the original model is Xo-regular. 

The following theorem gives a method of constructing a X D - G M E  if 
one exists. 

THEOREM 4.2. Let A'(&, 8) be a %,-regular model. The estimator 27Z 
is a Xo -GME @ I7 projects on do along Z (sL)+ %&, where B0 is the 
orthogonal projection of d on X,. 

Proof. To begin with note that, by (2.2), 

If l7Z is a X , - G M E  in A(&, O), then there exists a projection DL 
on 8L = 8, dong ~ ~ ( 8 4 )  such that ll = n L L .  Since, by (4.1), 

I7 = l IL  L projects on 8, = b0 along Z(F~)+X&.  
Now suppose that ZI projects as indicated in the theorem. Then there 

exists an operator nL: X0 -, Xo such that I7 = n L L .  To prove that IIZ 
is a X, - G M E  within A ( & ,  8) it is sufficient to show that D L  2, is a GME 
within e L ) .  However, this follows from the assumption and from (4.1). 

5. Representation of S o - b e s t  classes. It is often difficult to find an 
explicit formula of a projection operator as specified in Theorem 4.2. 
There is another way of calculating Xo-best estimators, when a set of 
vectors which spans a Xo-best class is given (each best estimator may 
be then represented as a certain linear combination of vectors from this 
set). For this reason we shall be concerned in this section with repre- 
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sentations of Sf, - best classes in terms of some easily constructed operators. 
We shall establish them under the following assumptions: 

W ( Z ) + X & = X ,  &cW(C) and X $ c ~ c g ( ~ ) .  

Note that the first one is satisfied if X ,  c BIZ'). 
Now let L be defined as in Section 3, i.e. let L: X 4 W and 

B (L!) = so. 
.THEOREM 5.1. Let A (8, 8) be X o  -reguIar and let 3 (z)+.X& = X.  

Then .. - 

(5.1) . L' (LZL') - ($$ 

is a minimal Xo-best  class. 
Proof. Since LEE is maximal in 0 ~ ,  it follows from Theorem 3.1 that 

is best for the induced model A (EL, BL). The corresponding X, - best class 
in the original model is then easily seen to be L 1 ( R L ) ;  TO show that L'(bd 
coincides with (5.1) note first that 3 {E)+ 378 = .X yields 9 (LEE) = W (L). 
In fact, since L p  ' {LW ( E ) )  = X ,  we obtain W (L) = L (g (L)), which is 
obviously equivalent to 9(LZL!) = 9 ( L ) .  Next note that by applying (2.3) 
we get 

X L  = (LEE) + (tYL) + lip (LEE). 

Using these results yields 

To conclude the proof note that, in view of (2.4), the Moore-Penrose 
inverse may be here replaced by any generalized inverse. 

Another important theorem is the following one: 
THEOREM 5.2. Let A(&, 8)  be So -regular and let E c 92 (2). Let 8, be 

rho projection of 8 on 2 I . f o )  along X&. T h ~ n  Z+ (8, ) presents the orthogonal 
prqjcction qf the .Yo-best class N o  n Z-'  (3) on .J?(Z). 

Proof. The assertion follows from the formula 

(5.2)-- -  - -  Z + ( & , ) = Z E + ( X , ) n Z + { F n & ( Z ) j ,  

which may be derived under the adopted assumption d c g ( Z ) .  Since the 
algebra is standard, we omit the details. 

To construct a X,- best class in case X$ c 8 c 9 ( Z )  we introduce 
some additional notation. Let A stand for an invertible and self-adjoint 
operator in Y such that A- 'A  = Cf A for any A E B ( Z ) .  One of the 
possible choices of A is C + I - EZf, where, as usual, I stands for the 
identity operator in 9. Dealing with an invertible A instead of with C 
simplifies the problem of constructing a X, -best class. 
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I 
THEOREM 5.3. Let A(&, 8) be a X,-regular model and let C2 be the ! 

projection oj  8 on A ( X o )  along %$. I f  X i  c 8 c g(Z), then A- '(8,) 
is a minimal So -best class within the model (8, @). 

Proof. It is sufficient to show that satisfies (3.1), (3.2) and 
that A- l (g2>  n d?l  = (0). I Since A is invertible, we have I 

I 

-. A (So) $ x& = x. 
Using X i  c t yields 

8 = & n ~ ( ~ , ) d 3 ~ & .  

Hence 
8, = 8 n A ( X o ) .  

I 
Consequently, using 8 c W(L) leads to 

The set A -  l (8,) satisfies condition (3.2) because the considered model 
is go-regular. Now, since A-I (g2)@8& = X and since by (5.3) the 
relation c X, holds, we note that 

This is equivalent to 

since 8 = 8, +X$. Hence (3.1) is satisfied. Finally, (5.3) implies that 
A-'(8 , )  n 8l  = (0). Thus the proof of the theorem is completed. 

To end this section we present three theorems which may be derived 
immediately from Theorems 5.1, 5.2 and 5.3. 

THEOREM 5.4. Let R ( Z ) + X $  = X.  Then A(&, 8) is Xo-regular i$ 

TL' (LEI,')- (8=) c b for all r E 8 .  

THEOREM 5.5. Lee d c W (E). Then A ( & ,  6) is Xo-regular iff 

( )  for all r ~ 8 .  
THEOREM 5.6. Let X6 c B c 9?(Z'). Then A (1,8) is So-regular # 

A 1 ( )  for all r ~ @ .  

6. Two specid eases. 
1 .  Let y be a normal random vector of order n x 1. Let Ey = XB and let 

k 

Covy = C ui&. 
i= 1 
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The (n xp)-matrix X and the n x n  nonnegativedefinite matrices V,, ..., 5 
are assumed to be known. The (p x 1)-vector #? and the (k x 1)-vector 

= (bl, . . . , bk)l are unknown. When the problem consists in the best 
estimation of c'a, where c € B k ,  attention is usually restricted either to all 
quadratic unbiased estimators or to quadratic unbiased estimators which 
are invariant with respect to all translations moving y into y-kXB. Let 9, 
and 9J2 stand for the parametric functions c'cr which have a quadratic 
unbiased estimator and an invariant quadratic unbiased estimator, respec- 
tively. Note that 3, -= 9, if PI$ = P  (i = 1 ,  ..., k), where P is the ortho- 
gonal projection on W (X). 

Suppose that we want to characterize those models in which there 
exists a uniformly minimum variance quadratic unbiased estimator (UMVQUE) 
for each function in 3, and those ones in which there exists a uniformly 
minimum variance invariant quadratic unbiased estimator (UMVIQUE) for 
each function in g2. To apply the develoded theory we specialize X to 
the space of all n x n  symmetric matrices endowed with the usual trace 
inner product. Putting Z = yy' we note that 

(6.1) EZ = Cov y + E y ( E y ) '  
and 

(6.2) CovZ = 2[EZ@EZ-Ey(Ey)'@Ey(Ey)']. 

Thus we are led to a model A(&, B), where d is the subspace 
spanned by (6.1) and 8 is the minimal convex cone containing all covariance 
matrices (6.2). 

Now let S  be maaimal in the convex cone spanned by (6.1). Using 
routine algebra one may show that C = S Q S  is maximal in 8 and 
that C c R (g .  

To deduce the desired necessary and sufficient conditions we specify 
X0 as X,, = N ( P  63 F )  for 9, and as XO2 = R ( M  @ M )  for 8,. Here 
P = XXf and M  = I -  P ,  I  being the unit matrix. Clearly, X,, c X,, .  
The operator 

IT, = I @  I -  G Q  G ,  where G = P(PS-  P)- P S + ,  

projects on A(%-,,) along X&, where A = S, Q S , ,  S 1  = S + I - S S ' ,  while 
the operator 

n, = ( I - G ) O ( I - G )  

projects on Z(Xo,) along X$,. Finally, let 

^y. = span {Vl, ..., T/,). 

Since X i l  c B c W(ZI), Theorem 5.6 implies that A(&,  8 )  is A'",,- 
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regulaf iff 

( A S ; 1 @ ~ ~ ; 1 ) l I l ( a ) c - 6  for all A € & ,  

where I l l  (8) = ( 1 8 1 - G @ G ) ( V ) .  
The model A(&, 8) being Xol -regular, y' Ay is a UMVQUE of its 

expected value if A can be represented in the form 

A = ( s - l @ S - I ) B  for B ~ n ~ ( b ) .  

In case S = I, this-expression reduces to the well-known formula 
I 

A = ( I@I -P@P)B for B E Y ' .  ! 

Moreover, since d c g(Z), it follows from Theorem 5.5 that the 
considered model is Xo2-regular iff 

(AS; €3 AS;) I72 (4 n2 (4 I 

for all A E n2 (&), where n2 (8) = span {(I - G) I( (I - G'): i = 1 ,  . . ., k) and 
I 

s2 = (Z-G)S(I-G). 
As known [2 ]  the above-given condition is satisfied iff I12(d') is an 

S+-quadratic subspace of X,  i.e. iff AS' A E ~ , ( & )  for all A E ~ , ( & ) .  The 
model A(&', 8) being Xo,-regular, it follows from Theorem 5.2 that y' Ay 
is a UMVIQUE of its expected value iff 

In fact, Theorem 5.2 insures that 

where, as usual, S? = X,, n Z- l (8 ) .  Since S+ (I - G) = MS+ (I- G), we 
easily see that 

Hence 

(6.6) x c z+ n , ( 6 ) + N ( q n X O , .  

Next, using d c W(C), we have n2 (b )  c 9. Hence 

(6.7) C +  n,(b)  c C- ' (9) .  

Combining (6.5) and (6.7) leads to 

(6.8) z+ n2(&) c x. 
The inclusion reverse to (6.6) follows from (6.8) because N (q c Z- l (9 ) .  

Thus the assertion is established. 
If W ( M )  c 9 ? ( S ) ,  which is equivalent to X,, c W(C), formula (6.3) 
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reduces to 

Finally, note that under the assumption W ( M )  c W (5') Theorem 5.1 
gives the following formula alternative to (6.8): 

where Vo is maximal in the convex cone spanned by Y. 
Formulas (6.9) and (6.10) have been derived first by Rao [15], [16] 

under slightly stronger assumptions. 

2. Now consider a multivariate random variabIe Z = ( y i i ) ,  where 
i = 1,  ... ; n and j = 1. ..., p .  Assume that EZ = { a i + p j ) ,  where ol's and #?'s 
are unknown, and that Cov Z = 1@V,  where V is unknown and ranges 
over the set of all p x p covariance matrices. Note that 

and that 
@ = ( I B V :  V20). 

Now we specify X as the space of all (n xp)-matrices with the usual 
trace inner product, and restrict attention to estimators of the form [A, Z], 
where A E X .  As shown by Eaton [3], the model .A!(&, O) is not regular, i.e. 
not all parametric functions of the form [A, E q  admit a best estimator. 
However, there exists a best estimator for each parametric function of 
the form (a'l) (b' l )+nb 'P ,  where u = (a,, .,., a,)', fl = (PI ,  ..., P,)' and 
b E W\ i.e. for each &-,-estimable function, where .No = 9 (1 Q I ) + Q ~ .  

Assuming I O I  to be maximal in 8 and noting that 

X & C &  and X , n Z - 1 ( F ) = 9 ( l Q l ) ,  

we can write condition (3.3) in the form 

Since this condition is satisfied for each p x p  covariance matrix V, we 
conclude that &(&, 8 )  is Sf,-regular, as asserted. 

Acknowledgment. The authors are gratefuI to the referees for their 
comments which helped very much to improve this paper. 
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