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Abstract. Main results are given in Theorems 1-3. Theorem I 
asserts that a mixture of independent random elements of (D, 4 
satisfying the Central Limit Theorem in (D, d) also satisfies the 
Central Limit Theorem in ( D ,  d). Theorem 2 determines an upper 
bound for P {X(t,) = X(tz) # X(c)), where f, < t < tP, t2  - t, is 
small and X is a breakdown process. Theorem 3 gives sufficient 
conditions under which a breakdown process satisfies the Central 
Limit Theorem in (D, d). 

1. Introduction. A stochastic process X assuming values 0 and 1 at any 
time is called the binary process. The class of binary processes plays an 
important role in reliability theory. The assumption that the value 0 is 
taken on if a component of a system is functioning and the value 1 if the 
component is failed allows us to use the class of binary processes for 
describing the behaviour of a system. The first moment at which a system 
fails is an important characteristic. If the state of a system is described 
by the number of failed components, i.e, by a sum of binary processes, 
then such a moment can be defined as the first passage time into some 
set. Thus an investigation of the asymptotic behaviour of sums of binary 
processes seems to be important. A subclass of the class of binary processes, 

p ,  
calIed breakdown processes, is considered in Section 3. For those processes 
we give sufficient conditions under which the normalized sums of independent 
and identically distributed breakdown processes converge in distribution to 
a Gaussian process. 

4 

2. Central Limit Theorem for mixture of independent random elements 
of (D, d). Denote by D the space of all real-valued right continuous functions 
on [0, a) which have left-hand limits in (0, a). We consider D with metric 
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[ I  defined in [ S ]  where it was shown that ( D ,  d )  is a complete separable 
metric space. Let fi denote the space of D-valued right continuous functions 
on [0, ao) which have left-hand limits in (0, m). The space with 
metric 2 defined in [ 6 ]  is a complete separable metric space. By Do we 
denote the set of those elements of D which are non-negative and non- 
decreasing. Let (dm, 8) and (D;, P) denote the Cartesian product of m copies 
of the spaces (B, 2) and ( D o ,  4, respectively. Define the mapping t of fi x Do 
in b by t(x,o) = x o v ,  where (xov)(t) = x ( o ( t ) )  for XED, U E D ~ ,  t 2  0 .  
In  [6] it has been .shown that .t is a measurable and continuous mapping 
on- 5; x C,, where 2: and C,  are subsets of the sets of continuous functions 
belonging to fi and Do,  respectively. By t we denote the mapping of 
dln x D;;l in dm defined by 

- - 
wherc x = (x,, XI, ..., x , )ED and o = fv, ,  v , ,  ..., v , ) E D ~ .  Hence t is con- 
linuous on ?"' x C;,  where Crn and C: denote the Cartesian product of m 
copies of f and C,, respectively. 

A random element Y of (D, d )  is said to satisfy the Central -Limit 
Theorem (CLT) in ( D ,  d) if there exists a Gaussian process Z with sample 
paths in D which is the limit in distribution in ( D ,  d) of the sequence 
{in). where 

and Y, ,  Y, ,  . . . are independent copies of Y on the same probability space. 
Let 6  = (61,  d2, . . . $ 6 , )  be the random vector of Rm the components 6,  

of which take on the values 0 or 1 and dl  + 6 ,  + ... + a ,  = 1 .  Put pi 
= P { d i =  1 )  for O < p , <  1 ,  i =  1 , 2  ,..., rn. 

THEOREM 1 (I). Let Yl , Y,, . . . , Ym be independent random elements of ( D ,  d )  
sutisfying the C L T  in ( D ,  d) .  Then 

rn 

Y = C s i x  
i = l 

sutisfies the CLT in ( D ,  d).  
Proof. Let 

where k 3 1 1 ,  i = l , 2  ,..., m, and {ak = (6 ,,,, S , , , , .  ; . ,6, , ,) ,  k 2 1) are 
independent sequences of independent copies of 5,  i = 1,2, . . . , m, and of 

( ' 1  Theorem I was suggested by Prof. C. Ryll-Nardzewski. 
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6 = (S,, S,, . .., a,), respectively. Notice that En has the same distribution 
as the random element 

where v, = (v ,,,, v ,,,, ..., v,,,) is a random vector in Rm with multinomial 
distribution, i.e. 

and tr, is independent of K v i ,  i = 1 ,  2, . . ., rn, n 2 1. 
Write 

- 
Ai(t)  = EY,,i(t), . t 2 0,  A = ( A  A ,  A ) ,  Y,,j = Y n,r . - A  i ,  

Note that Rqi, E n S i ,  z, En are random elements of ( d ,  z), (Do, d ) ,  (dm, p) 
and (D!, d"), respectively, and Ai E D, A E Dm. 

Using Theorem 1 from [2] we infer that (t,i) converges in distribution 
in (d ,  3 t o  a Gaussian random element Wi of ( d ,  2). Furthermore, W i  
is a homogeneous random element of (B, 2) with independent increments 
having continuous paths with probability one and such that Wi(0) = 0 and 
W i ( l )  has the same distribution as the limit in distribution of 

Hence 2 W = ( W l ,  W 2 ,  ..., W,) in (Dm, 2). By the law of large 
numbers and the Central Limit Theorem for multinomial distribution we 
have 

D 
~ , - - , v a . e .  and V n + N = ( N l , N  , , . . . ,  N,), 

where t; ( t )  = (p l  t ,  p2 t , . . . , pm t )  and N is a Gaussian random vector in Rm 
the expected value of which is the zero vector. From the separability of the 
metric spaces Em, D';: and Rm it follows that ( x ,  E,,, Vn) is a random element 
of bm x D ;  x Rm with the product topology. Hence and from properties of 
.r we obtain 



in fi x Rm with the product topology. Since the mapping + is continuous 
I 

on x D (see [dl), so (1) yields 

in ( D ,  d). The left-hand side of (2) is equal to the random element 

1 which at t is equal to 
I 

Hence we obtain the assertion of Theorem 1. 
! 
i Note that the arguments above prove Theorem 1 also for m = a. 

Remark 1. For rn = 2 the covariance function r of the limiting Gaussian 
process is of the form 

where r ,  and r, are the covariance functions of Yl and I;, respectively, 
and q ( t )  = E Yl ( t ) -E  Y, ( t ) ,  t  3 0 .  

3. Breakdown processes. Let (es,, n 2 0 ) ,  (v,, n 2 I ) ,  (4, n 2 1) and 
I 
I 

{vk, n 2 0) be independent sequences of positive random variables which 
have no atoms at zero and are defined on the same probability space. 
Assume that u,  and vb have distribution functions (d.f.'s) Go and F, ,  
respectively, u,, u; (n 2 1) have d.f. G and v,, vi (n 2 1 )  have d.f. F. 

Let 
I 

Zo  = uo, Z ,  = Zn- l+v ,+un ,  n 2 1,  

I D e h e  the process X, setting X, (w ,  t )  = 1  if there exists an n 2 0 such 
I 

that Z ,  (o) < t < Z,  (o )+v , ,  (o) and setting X ,  (a,  t )  = 0  if t  < uo (o) or 

I if there exists an n 2 0 such that 2, (w) + u, + , (a) < t < 2, + , jw) . Analogical- 
, ly, define the process Xl setting X,(w, t) = 1 if there exists an n 2 0 such 
1 that Zk(w) < t c Zk(w)+v:(w) and setting X, (o, t) = 0 if there exists an 

n 2 0 such that 2: (o) + 0; (a) < t < Z:+ , (o). Hence X, and X, are random 
I elements of ( D ,  d). 

Let 6 be a random variable taking on the values 1 and 0 with 
probability p and 1 - p ,  respectively, 0 < p < 1. Define the process X 
setting X = 6 X ,  + (1 - 6)  X , .  In reliability theory, X , ,  XI and X are 

. known as breakdown processes (see [3], Section 7). 



Central Limit Theorem 53 

For each s 3 0 define y (s) as the time to the nearest change (to the 
right of s) of a state of the .process X, i.e. 

I 

y(s) = inf { t - s , t  > s , X ( s )  f XM). 

Similarly, for each s 3 0 define yo ( s )  and y ,  (s) for X, and XI, respectively. 
All those random variables have no atoms at zero. 

Let 
m 

H' = F*" * G*' , Hogo = Go * F * HI, HoTl = Go * H', 
n = U  - - .  . 

. , 

Hl,o = Fo*Hr, H -1 = F , * G * H 1 ,  H o  = (l-p)Ho,o+pHl,o, 

a - - H 1 = ( l - p ) H o , l + p H l , ~ ,  H = H o + H l ,  

where * denotes the convolution operation of d.f.'s. All the functions are 
non-negative and non-decreasing. 

LEMMA 1. For 0 < s < t < a, y 2 0 and i = 0 , l  we have 

Proof.  Put ~,,~(s, y) = P { X i ( s )  = j ,  y i (s )  > y )  for i, j = 0, 1 .  Note that 
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Analogically we obtain 

Notice that 
S 

(3) - P{y,(s)  > yj  = J ( ~ - F ( ~ + Y - ~ ) ) ~ H O . I ( ~ ) +  
0 

Setting y = 0  in (3 )  and (4) and using the fact that 

P{y,(s) > 0) = P ( y ,  (s) > 0 )  = 1 

we obtain . 

S S G,(s) i f i = O ,  
j ( 1  - F ( s - u ) ) d H i , ,  (u )+J(1  - G ( s - ~ ) ) ~ H ~ . ~  (u )  = 
o o Fo(s )  if i =  1. 

Now, putting the so-calculated Go (s +y )  and F,{s+ y) in (3) and {4), 
respectively, we obtain the assertion of Lemma 1 for i = 0 ,  1. The second 
assertion follows from the first one and from the definition of X. 

COROLLARY 1. For 0 < s < t  < cc and i = 0,l.  we have 

P{yj(s) < t-s) < H i ( t ) - H i ( s ) ,  P ( y ( s )  < t - s )  < H ( t ) - H ( s ) .  

Define a function F by 

F ( t ) = m a x { G , ( t ) , F , ( t ) ; G ( t ) , F ( t ) } ,  t > 0 .  

L E M M A  2. For 0  < t l  Q t < t2  and i = 0 , l  we haue 

( 5 )  P ( x i { t l )  = x i ( t 2 )  # Xi( t ) )  P{y i ( t , )  < t - t l ) f ' ( t z - t ~ ) ,  

(6) P ( x ( ~ , )  = ~ ( t , )  z ~ ( t ) )  9 ~ { y ( t , )  < t - t , )F( t , - t , ) .  

Proof.  We prove (5)  for i = 0 .  The other assertions are proved in 
a similar way. 



Central Limit Theorem 55 

Define random variables s, and S,, by s,, = u,, S Z ~ + I  = V,+ I  and 
S, = S 0 + S 1 4  ... +s ,-,, n 2 1 .  Let 

if so > t ,  
N ( t)  = 

m a x { k :  Sk-, G t )  if so G t .  I" 
I f  X,(t,) = X,(t,) # X ( t )  for t1  < t < t,, then N ( t l )  < N ( t )  < N( t2 ) .  

Thus 

(7) P {Xo( t i )  = Xo(t2) + XO(~))-.< P { S N ( I ~ )  < 1, SND < f23  N ( t ) -  N(tl) > 01 
t - t l  

= 1 P { S N ( ~ ]  < t 2 ,  N(t)-N(t1)  > Q 1 SN;~, ,-L~ = u)dP{Siv(t1,-tl 9 u).  
0 

Since SN,,,-tl = yo(tlj, the right-hand side of (7) is equal to 

Note that the integrand does not exceed 

(8) P {SN(~)-SN(*,,  < t2 - t i ,  N( t ) -N( t1)  > Ol~O(t1) = 4 

Hence in view of (7) and (8) we obtain (5) for i = 0. 
THEOREM 2. If 

l i m F ( t ) t - " <  oo for s o m e a > O ,  
r -0 

then for each c > 0 there exists a number b such that for t1  C t  C t2  and 
i = 0, 1 the following inequalities hold: 

(9) P { X i  ( t l )  = Xj ( t2)  # Xi( t ) )  C b (fii ( t2) - f i i  (t1)yB1 3 

(10) P ( X ( t l )  = X ( t 2 )  # X( t ) )  C b(fi(t2)-fi(tl)) '",  

where = m i n ( l , a ) ,  f i , ( t )  = Hi(t)+t,  B ( t )  = H(t )+ t .  

Proof. There exist numbers u and b,, u C e, such that P( t )  C bl ta for 
t  C u. Hence for e there exists a constant 6 ,  such that F(t )  C b2 ta for 



t d c. By Lemma 2 and Corollary 1, for 0 < t ,  G t S r ,  B c we have 

(11) P ( X i ( ' l )  = x i ( t2)  # xi(t1) b , (Hi ( t , ) -Hi ( t l ) ) ( t , - t , ) ' -  

Now there exists a number b such that the right-hand side of (11) does 
not exceed 

b(Hi(t2)-Hi(t11 (t2-tl))'l G ~ ( f i i ( t 2 ) - ~ i ( ~ l ) ) 2 " .  

This completes the proof of Theorem 2. 

4 CLT for breakdown processes. From the definition of X = 6X, + 
+(I- 6) X o  and Theorem 1 we get 

COROLLARY 2. I/ XI and X, satisfy the CLT in (D,  d ) ,  then X satisfies 
the CLT in ( D ,  d). 

The following technical lemma will be used in the sequel: 
LEMMA 3. If u and v are random variables such that lul S 2,  lvl d 2, 

Eu2 $ a, EV' < a and Eu2v2 C a'' for some a > 0, then 

where ,!I = min (2a, 3/2), A = 90 B ~ O - ~ ,  Po = 2 ma* (1, a), and B is such that 
3 > I and 16a/B < 1. 

P r o  of. Calculating (U - Eu)' (V - ED)', taking the expectation and next 
using the Schwarz inequality, we see that E (u- Eu)' (v - Ev)' does not exceed 

. (12) Eu2 v 2  + 3Eu2 Ev2 + 2 Ev2 (Eu4)11' + 2 ~ t . 4 ~  ( E V * ) ~ / ~  + 
+4(EuZ Ev2 Eu4 Ev4)11'. 

By assumptions we infer that (12) does' not exceed 

- 

This completes the proof. 
THEOREM 3. If 

lim F(t ) t -"  < 
t-ro 

1 
for some o! > - 

2 

and H,, and H I  are continuous, then X o  and X I  satigy the CLT in (D ,  t ) .  
Proof .  Note that the following equalities are true for 0 b t ,  < t 

Q t 2  < co and i = O , l :  

( I 3 )  E ( X i ( ' ) - X i ( ~ ~ ) ) 2 = ~ ( x i ( ~ l ) # X i ( t ) ) Q ~ ( ~ i ( t , ) < ~ - t l ) ,  

( X i  ('1 - Xi (t, 1)' (Xi (t2) - Xi (t))' = P {Xi (t,) = Xi (t,) + xi (t)) .  
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By (13) and Corollary 1 we have 
I 

I 

Now Lemma 3 yields, for 0 G t ,  < t  < t2  < c, ~ 
E ( X i  ( t ) -  EXf ( t )  - Xi ( t , )  f EXi (t1))2 (Xi (tZ) - EXi ( f 2 ) -  Xi ( t )+ E X i  (t))2 

I 

~ ( ~ i ( t 2 ) + t 2 - ~ i ( ~ 1 ) - t l y ,  
~ 
t 
I 

where A depends on c and /3 = min (2a, 3/2). Now using Theorem 2 from 
[4] we infer that Xi (i-= 0 ,  1) satisfy the CLT in D [ Q ,  c] ,  c > 0, with . 

the Skorohod topology. Hence, in view of Theorem 3' in 151, we conclude 
that X i  ( i  = 0 ,  1) satisfy the CLT in ( U ,  d). This completes the proof of 
Theorem 3. 

Using the arguments analogical to those in [l] (see p. 151-153) it can 

i 
be shown that if F,, Go,  F and G are continuous, then X does not satisfy 
the CLT in D endowed with the topology of uniform Convergence on 
cornpacta in [0, m). It is a consequence of the fact that 

with Xi being independent copies of X, is a random element of (D, d) 
but not a random element of D with the topology of uniform convergence 

i 

on cornpacta in [0, a). 
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