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Abstract. In this note we give a new characterization of Banach 
spaces of stable type. 

I. Intrduction Throughout this paper, E stands for a separable real 
Banach space. A Banach space E is said to be of Rndemacher type p (R-type p, 
for short) if for every sequence (x,) c E the convergence of IlxnllP implies 
the a.e. convergence of rnxn, where (r,) is the Rademacher sequence. 
If E is of R-type p, then there exists a constant C > 0 such that 

for all E-valued independent random vectors XI, . . . , X, satisfying conditions 
E lXillP < ~o and E Xi = 0 for i = 1, .. ., n, n 2 1 (see 151). A Banach space 
E -is said to be of stable type p if for every sequence (x,) c E the con- 
vergence of C IlxnllP implies the a.e. convergence of g,xn, where the g,'s 
are independent stable random variables with characteristic functions 
E exp (itg,) = exp ( - It1 P). It is known (see [4], [8] and [lo]) that every 
Banach space is of stable type p for p < 1. Moreover, E is of stable 
type p for p < 2 if and only if there exists a number p' > p such that 
E is of R-type p'. A Banach space is of stable type 2 if and only if it is 
of R-type 2. A space Lq(S, C, m), where rn is a-finite, is of stable type p 
for p < q. Finite-dimensional normed spaces and Hilbert spaces are of stable 
type p for every 0 < p G 2. 

2. A characterization of Banach spaces of stable type. Let (0,9,  P) be 
a probability space. By LP(E) = LP(B, 9, P; E), 0 5 p < oo, we denote a 
standard Frichet space of random vectors. For each 0 < p < co let A, 
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be a function defined on Lo(E) by 

A,(X)  = suptPP{IIXII > t). 
1s 0 

It is easy to note that A, is a p-homogeneous metrizable modular and, 
consequently, 

forms a Frkchet space with the topology of convergence in A, (for details 
see '[I 11, p. 17). Moreover, for every q, 0 6 q c p ,  

and the natural imbeddings are continuous. 
A symmetric random vector X (or probability measure Y ( X ) )  is said 

to be stable of order p if Y (ax, +bX2) = 6P((aP+bp)'Ip~) for a11 a, b > 0, 
where XI, X, are independent copies of X, and 9 ( X )  denotes the distri- 
bution of X. It is well known that if X is a non-degenerate stable random 
vector of order p for 0 c p < 2, then E IJXIJP = co. However, in this case, 
A, (X) < oo as shown in [I]. 

The following theorem was inspired by the weak law of large numbers 
in the spaces of stable type p for 0 < p < 2 established by Marcus and 
Woyczynski in [7] : 

THEOREM 1. A Banach space E is of stable type p for 0 < p < 2 if and 
only iJ there exists a constant C > 0 such that 

for all symmetric independent E-valued random vectors X I ,  ..., X, such that 
Ap(Xi) < m, i = 1, ..., n, n 2 1. 

P r o  of. As in the Introduction, let gj (j = 1, . . ., n) denote independent 
random variables with characteristic functions E exp (itgj) = exp (-It\?. Let 
Xj = gj xj, where xj E E, j = 1, . . . , n . If (2) holds, then 

Since Ap(gl) < m, the convergence of C j(xjlJp implies the a.e. conver- 
gence of gjxj for every sequence (xj) c E. 

Now, let E be of stable type p for 0 < p < 2. Then there exists a number 
p' > p such that & is of R-type p'. Let C' be the constalit appearing in (I) 
for p = p'. Now let XI, . . . , X, be independent symmetric random vectors 
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such that Ap(X , )  c m for i = 1, .. ., n.  Let = Xi llllxil s ,,. We have 
n n 

P { ( I  xi\\ > 1) $ P { ( I  xi(\ > 1, l ~ c >  IIXiiI < l )+p ( max IIXill > 1) 
i= 1 - 1 - n  I S i S n  1=1 

and 

Putting C = p f ( p ' - p ) '  C'+l, we obtain 

Finally, replacing Xi by t-' Xi, t > 0, we get 

Thus (2) is proved. 
PROPOSITION 1. Let E be a Banach space of stable type p for 0 < p < 2 

and let C be the corresponding constant in (2). If F is a closed subspace 
of E, then inequality ( 2 )  holds with the same constant C for independent 
and symmetric random vectors taking values in the quotient space E/F. 

Proof. I t  is enough to observe that if E is of R-type p', then'E/F is 
of R-type p' with the same constant C'. 

3. Normal domains of attractions of stable measures. A symmetric random 
vector X is said to belong to the normal domain of attraction of a stable 
measure ,u of order p if 

n 

9(n-l1J'C as n + o o  
i = l  

for any sequence (X,) of independent copies of X. 
For a symmetric random vector X the following theorem may be easily 

deduced from Theorem 3.1 established by Araujo and Gin6 in [ 2 ] :  
THEOREM 2. Let E be a Banach space of stable type p for 0 < p < 2. 
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I f  X is a symmetric E-valued random uector such that 

(3) lim tP  P {Ix* XI > t }  exists for every x* E E* 
f + m  

and if 
(4) for every E > 0 there exists a finite-dinzensionai subspace F of E such that 

' 

sup tP P {dist (X,  F) > t) G E ,  
t B 0  

then X belongs to the normal domain of attraction of a stable measure of 

order p. . . 

Theorem 2 has been proved independently by Marcus and Woyczyhski 
in [7], but their conditions differ from (3) and (4). Our proof of Theorem 2, 
by using Theorem 1, is simpler than that given in [2]. 

Proof.  First we notice that condition (3) is equivalent to the following 
(see Theorem 5, VII, 35 in [3]): 

The weak limit of 

exists for every x* E E'. 

Thus it is sufficient to show that for every S > 0 there exists a finite- 
-dimensional subspace F of E such that 

n 

sup P {dist (n- Xi, F )  z 8 )  < 8 .  
i =  1 

Let 6 > 0 be fixed and let C be the constant appearing in (2). It follows 
from (4) that for E = S1+pC-l there exists a finite-dimensional subspace F 
of E such that 

sup tPP{dist (X, F )  > t }  < S l f p C - l .  
1 > 0  

Let n ~ :  E -t E/F denote the canonical surjection and ( ( . / I F  the standard 
norm in E/F. Using Proposition 1 we obtain 

P {dist (n- lip Xi, F )  B 8 )  = P (]In-lip x nF(xi)JJF > 6) 
i = l  i =  1 

This completes the proof. 
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Finally, we note that if X, XI, X,, ,.. are symmetric independent and 
identically distributed seal random variables, then the stochastical boundedness 

n 

of {a-li2S,}, where S,  = X i ,  implies the weak convergence in law. However, 
i = l  . 

for 0 < p < 2 we may construct a symmetric real random variable X such 
that (r~-~/pS,) is stochastically bounded and that 9 (n- 'IPSn) diverges at the 
same time. Indeed, by virtue of Theorem 1 the sequence {n-'Ip S,} is stochas- 
tically bounded if and only if Ap(X) < m. Therefore, it suffices to take 
a symmetric random variable X such that A, (X) < and lim t P  P {I XI > t )  

t-+m 

does not exist. Such a-random variable may easily be constructed. 
I 

REFERENCES 

[I] A. de Acosta, Asymptotic behauiour of stable measures, Ann. Probability 5 (19771, 
p. 494-499. 

[2] A. A r a u ~ o  and E. Gini, On tails and domains of attraction of stable measures in 
Banach spaces, Trans. Amer. Math. Soc 248 (1979), p. 105-119. 

13) 6 B. r ~ e n e n ~ o  a A.  H. K o n ~ o r o p o a .  npedeflb~ble pucnpede~enuu ~ J I R  cynsw ftejaeucu- 
MblX  c ~ ~ J W Q I ~ ~ U X  GeAUYUCL, roc. H3A. T ~ X H U K O - T ~ O P ~ T H S ~ C K O ~  nHlTpiLTypM, Moc~na - . ~ H M I ~ -  

rpan 1949. 
[4] J. Hoffmann - J@rgensen, Sums oj  independent Bonach space valued random variables, 

Aarhus U. Preprint Series 15 (1972173). 
[ 5 ]  - and G. Pisier, The law of large numbers and the central limit theorem in Banach 

spaces, Ann. Probability 4 (1976), p. 587-599. 
[6] J. Kuelbs and V. Mandrekar, Domains of attraction of stable measures on a Hilbert 

space, Studia Math. 50 (19741, p. 149-162. 
171 M. B. Marcus and W. A. Woyczyriski, Stable measures and central limit theorems in 

spaces of stable type, Trans. Amer. Math. Soc. 251 (1979), p. 71-102. 
[8] B. Maurey and G. Pisier, Siries de variables aliatoires uectorielles indipendantes et 

propriitks ggiomkbiques des espaces de Banach, Studia Math. 58 (1976), p, 45-90. 
[9] K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New 

York 1967. 
[lo] G. Pisier, Sur les espaces qui Re contiennent pas de uniformbent, C. R. Acad. Sci. 

Paris 277 (1973), p. 991-994. 
Ell] S. Rolewjcz, Metric linear spaces, PWN - Polish Scientific Publishers, Warszawa 1972. 

Institute of Mathematics, Wroclaw University 
pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland 

Received on 30. 6. 1979 




