
PROBABILITY 
AND 

MATHEMATlCAL STATISTICS 

FOR NON-STATIONARY STOCHASTIC PROCESSES 

Abstract. It is presented a relation betwken the Wold decomposi- 
tion for a second order stochastic process x(t) ,  ~ E R ,  having a spec- 
tral representation and the Lebesgue decomposition, with respect to 
the Lebesgue measure, for the spectral measure of x ( t ) ,  r E R .  

introduction. We are concerned with the construction of the Wold de- 
composition for non-stationary quadratic mean (q.m.) continuous stochastic 
processes x :  R -+ LZ(SZ, A, P)  having a spectral representation in the form 

(*I x ( t )  = 1 eitL d p  (A), t E R , 

where p is a bounded vector measure on R with values in L2(iR, A, P). 
It is well known that the Wold decomposition for a q.m. continuous 

stationary stochastic process x: R + L2(12, A, P) can be stated in terms of 
the Lebesgue decomposition for its spectral measure p with respect to the 
Lebesgue measure m on R (cf. [13], p. 115 and 116). 

In this paper we present a relation between the Wold decomposition for 
a stochastic process x: R + L2(0 ,  A, P)  of the form (*) and the Lebesgue 
decomposition for its spectral measure p with respect to m (cf. Theorem 3). 
It appears that, in general, the m-singular and m-continuous parts of p do 
not fully characterize the deterministic and purely nondeterministic parts of 
x: R + L2 (a, A, P), respectively (cf. Example 2). However, it is shown that 
the Wold decomposition for a stochastic process x: R -r ~ ' ( 0 ,  A, P) of the 
form (*) can be explicitly stated in terms of the Lebesgue decomposition for 
its spectral measure p with respect to rn provided that x: R -, LZ(S2, A, P) 
is in addition in the class of uniformly bounded linearly stationary stochastic 
processes introduced by Tjostheim and Thomas [16] (6. Theorem 5). 
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1. A Lebesgue decomposition theorem for bounded vector measures and 
their orthogonally scattered dilations. In this section we present a relation 
between the Lebesgue decomposition for a bounded vector measure p with 
values in a Hilbert space and the Lebesgue decompositions for the so-called 
orthogonally scattered diIations of p. The result is merely a reformulation 
of results obtained in [10], Theorems 7-9. . 

Let T be a locally compact Hausdorff space. By C , ( T )  we denote the 
linear space of all continuous functions f: T + C vanishing at infinity, 
carrying the supremum norm topology. 

- Let p:  C,, (T) -t-B be a bounded vector measure with values in a (complex) 
~ a i a c h  space 3, is . ,  p is a bounded linear mapping. By 6pp(p) we denote 
the linear space of all the functions 21: T -+ C for which JuJP is p-integrable, 
p = 1 , 2 .  By sp {p] we denote the closure of p (C, ( T ) )  in B. Recall that 

j u d p ~ s p { p }  for all u ~ P ( p ) .  

(In this paper we apply the integration technique of vector measures intrbduced 
by Thomas [15].) 

Let p: C,(T)  + B be a bounded weakly compact vector measure with 
values in a (complex) Banach space B and let P be a positive Radon 
measure on T. Recall that there exist bounded weakly compact vector 
measures pa: C ,  (T) + Sj5 {p), pi: C , (T)  + (,u} and a Borel set E* c T 
such that p(E*)  = 0, p = ps +p,, ps is P-singular, pc is p-continuous, 
T1 (PI ( ~ 3 ,  y1 (PI Lfl (PC) and 

where X E  stands for the characteristic function of a Borel set E c T (cf. [12], 
Theorem 4.5, [3], [lo], Theorem 3, and the references given therein). 

E x a m p l e  (Pop-Stojanovic [Ill). Let p: C ,  (T) + H be a bounded vector 
measure with values in a Hilbert space H. Suppose, in addition, that p is 
orthogonally scattered, i.e., there exists a (uniquely determined) bounded 
positive Radon measure v: C ,  (T) + C such that 2' (p) = 6p2 (v) and 

(JudpI Sodp) = Su~dv for all u, v ~ Y l ( p )  

(cf. [ 5 ] ,  Theorem 5.9). Let be a positive Radon measure on T and let 
p = ps + H and v = v, + v, be the Lebesgue decompositions with respect to fi 
for p and v ,  respectively. Then: 

(i) p, and p, are orthogonally scattered; 
(ii) furthermore 

(iii) W ( P )  = W {PJ OW { K ) .  
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The following lemma is obvious: 
LEMMA 1. Let B and B' be two (complex) Banach spaces. Suppose that 

p:  C, ( T )  4 B is a bounded weakly compact vector measure, /? is a positive 
Radon masure on T and p = p,+p, is the Lebesgue decomposition for p with 
respect to  p. if A: sp ( p )  + B' is a bounded linear operator, then 

(i) p' = A o p  is a bounded weakly compact vector measure; 
(ii) p: = Ao p, and p: = A o p c  are the /?-singular and /?-continuous parts 

of p', respectively; 
(iii) if, in addition, A:'sp ( p ]  +Zj3 (p') has a bounded inverse 

A - l :  @ {p ' )  -rW { p ) ,  

then 

A (sp I P S ) >  = sp ( P : )  A - @ MI? = w {PJ  9 

A m { ~ , ) ) = s p . I ~ : l ,  A - ~ ( % { ~ : ~ ) = S P { P ~ ) .  

In what follows, by PK we denote the orthogonal projection of a Hilbert 
space H onto its given closed linear subspace K. 

The following theorem can now be proved as Theorem 13 in [7] by 
applying Theorems 7-9 in [lo] (cf. [I], [2], Theorem 3.1, and [6] ,  
Corollary 6). 

THEOREM 1. Let p: C o ( T )  -, H be a bounded vector measure with values 
in a (complex) Hilbert space H ,  let P be a positive Radon measure on T 
and let E* c T be a Bore1 set in T such that P ( E * )  = 0 and 

are the P-singular a d  #Lcontinuous parts of p, respectiuely. Then there exist 
a (complex) Hilbert space H' and a bounded orthogonally scattered vector 
measure p': C, ( T )  + H' satisfying the following conditions: 

(i) T1 (P') y1 (PI- 
(ii) The  /?-singular and /?-continuous parts of p are 
-. ._ 

P: (f) = ~ X P  d ~ ' ,  P: (f? = ~XT\F. dp', f E C, ( T ) ,  

respectively. 
(iii) There exists a linear mapping j :  i@ (p) + H' such that j :  3j5 { p )  4 

+ j (@ { p ) )  is an inner product preserving isomorphism and, for all u €9' (p'), 

(la) j(S ~ d p )  = Pj(q(p~)(S u d ~ ' ) ,  

( l b )  j ( S udpS) = P j ( ~ b , ) )  ( S u d ~ 3  

(14 j (S udpC) = P j e  [,,I) ( S  4 4 ) .  
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(iv) The bounded vector measure p: Co ( T )  + H is @-singular (respectively, 
I #?-continuous) and only if there exists a /3-singular (respectively, @-continuous) 

bounded orthogonally scattered vector measure p': C , ( T )  + H' satisfying (la). 
i Remark. Statement (iii) in Theorem 1 can also be formulated as follows: 

The diagram 

is 'commuting for all pairs: 
(a) ji = p,  P' = p'; 

(b) fi  = PSY J' = pi;  

(4 c = P C ,  iir = p:. 

I 2. Wold decomposition for g.m. corntinuow Vboanded stochastic processes. 
! Let H be a (fixed) complex Hilbert space; one may choose, e.g., 

i H = L2(12, A, Pj, where (a, A,  P)  is a probability space. In this paper 
I a stochastic process is  always a mapping x: R -, H .  
I Let x( t ) ,  t~ R,  be a stochastic process. For t E R,  by ij5 { x ;  t )  we denote 
r the closed linear subspace in H spanned by the set {x(sjls < t ) ,  and by sp (x) 
I we denote the closed linear subspace in H spanned by the set (x(s)ls E R ) .  

Furthermore w-e put 

The stochastic process x( t ) ,  t~ R ,  is called purely non-deterministic if 
- 
sp { x ;  - co) = { O } ;  it is called deterministic if @ { x ;  - co) = @ { x ) .  

Let x(t), t E R ,  be a stochastic process. The decomposition 

is called the Wold decomposition for x ( t ) ,  t E R ;  it is the only decomposition 
for x ( t ) ,  t E R ,  in the form x( t )  = v:(t)+u:(t), ~ E R ,  with the properties 
(cf. [4], Theorem 1): 

(W1) vL(t), t E R ,  is deterministic; u:(tj, t~ R ,  is purely non-deterministic; 
(W2) sp (0:)  1 sp {u:) ; 
(W3) sp {v:; t )  c sp { x ;  t ) ,  sp {uk; t )  c @ (x; t )  for all t E R. 
Recall that a stochastic process x ( t ) ,  t E R ,  is q.m. continuous if the 

mapping x :  R + H is continuous; and it is in addition V-bounded if there 
exists a uniquely determined bounded vector measure p: C, (R)  -, Hy the 
spectral measure of x( t ) ,  t~ R ,  such that 

x (t)  = j ei'Qp ( A ) ,  t E R 

(cf. [6] ,  [8]-[lo] and the references given there). 
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I f  x ( t ) ,  t E R ,  is a q.m. continuous V-bounded stochastic process and 
if p is its spectral measure, then i j i  ( x )  = @ (p). 

In this paper we are concerned with the construction of the Wold 
decomposition for a given q.m. continuous V-bounded stochastic process 
x( t ) ,  t E R ,  in terms of the Lebesgue decomposition for its spectral measure 
p with respect to the Lebesgue measure m on R. 

Example  1. Let x( t ) ,  t E R ,  be a stationary stochastic process, i.e., 
(x (s)lx (t)) depends only on s - t ,  s, t E R.  If x (t), t E R ,  is in addition q.m. 
continuous, then it is even V-bounded and its spectral measure p is ortho- 
gonally' scattered. Put 

where p = p,+p, is the Lebesgue decomposition for p with respect to m. 
Then : 

(i) x, (t) ,  t E R ,  is deterministic and x, ( t ) ,  t E R, is either deterministic or 
purely non-deterministic; 

(ii) x ( t ) ,  t E R,  is deterministic if and only if x,(t), t E R, is deterministic; 
(iii) if xc (t), t E R,  is  purely non-deterministic, then 

sp ( x ;  - co) = sp {Y,) = sg (ps) ,  SP -$XI = SP {PC) 
(cf. [13], p. 115 and 116). 

The following theorem can be proved as Theorem 11 in [81, by applying 
Theorem 1 (cf. [ l j  and [6], Theorem 5). 

THEOREM 2. Let x :  R + H be a q.m. continuous V-bounded stochastic 
process QPld let p: CO(R) +?@ (x) be its spectral measure. Then there exist 
a HiEbert space H' and a q.m. continuous stationary stochastic process 
x': R 4 H' such that p, H' and the spectral measure p': C,(R) +a ( x r )  
of xr(t) ,  t E R, satisfy the conditions stated in Theorem 1, and by applying 
the notation introduced in (2) and Theorem 1: 

j ( x  (t)) = PjPtx)) ( ~ ' ( t ) ) ,  t~ R7 

The following lemma is due to Abreu [I]. 
LEMMA 2. Let X: R + H be a stochastic process. Suppose there exist 

a stochastic process x': R + H' and a bounded linear mopping A: @ {xr}  -, 
-r (x) such that x(t)  = A(x'(t)), t E R. Then: 

(i) A(sp{xr ;  -a)) c V ( x ;  -a); 
(ii) &! x'(t), t E R ,  is deterministic, then x(t), t~ R ,  is deterministic. 
Remark. The inclusion relation stated in Lemma 2 (i) may be strict. 
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LEMMA 3. Let ~ ( t ) ,  t E R, be a stochastic process and let M c Sfi {x; - a) 
be a closed linear subspace in Xp (x). Put 

Then 
(i) y(t), t E R ,  is deterministic; 

- 
(ii) i p ( y ; t )  ~ s p { x ; t } ,  s p j z ; t ) c @ { x ; t ) ,  ~ E R ;  sp fy )  c W ( x ) ,  

.p (2) c sp {x); sp {y; - 02) c= rn {x; - a}, sp ( z ;  - 0 3 )  C @(x; -a}; 
(iii) e ( Y )  1 sp.1~0; 

.(iv) @,{x; -oo] = M @ @  ( 2 ;  -a); 
(v) v,(t) = Y(T)+V,(t), u,(t) = U , ( t ) ,  tER.  

- -  Proof. Since A4 c @ ( x ;  -a), we have 

Y ( t )  = PM (x (t)) = PM (v, (t)) , t E R . 

Thus, it follows from Lemma 2 that y(t), t e R ,  is deterministic, proving (i). 
Assertions (ii) and (iii) follow immediately from the definitions of y (t), 

~ E R ,  and z ( t ) ,  ~ E R .  
In order to prove (iv), we first note that the inclusion M @ 3j5 { z ;  - co) 

c Sp(x; - co) is clear. On the other hand, suppose w E 3jT ( x ;  - m). Put 
w = w, -t w,, where w1 E M  and w, EV ( x ;  - a), IU, 1 M. In order to show 
that W ~ E @  (z; -m), note that for any E > 0 and for any W'E@ {x; t), 
t E R, of the form 

satisfying Ilw-w'll < E ,  we have 

11 (1 - PM) (w - w') 11 < E 
and 

n 

(I-PM)(w-w') = w,- akz(tk). 
k = l  

Thus, the fact that w E sp (x; - oo) implies w, E a (z; - co), proving (iv). 
Finally, assertion (v) follows immediately from (iv). 
The lemma is proved. 
The forthcoming theorem follows now from Theorem 2, Example 1, 

Lemmas 2 and 3. (Statement (ii) in Theorem 3 was already presented 
in [lo], Theorem 3.) 

THEOREM 3. Let x(t), t~ R ,  be a q.m. continuous V-bounded stochastic 
process and let p = p , + ~  be the Lebesgue decomposition with respect to rn 
for its spectral measure p:  C ,  (R) + @ (x} . Then, by applying the notation 
introduced in (2): 

(0 S p I ~ l s l  C -03). 
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(ii) If pc = 0, then x (t) , t E R, is deterministic. 
(iii) Put 

w I t )  = x, (t) - Pg(pd (xc (t)) , t E R . 
Then 

uX (t) = x, ( t )  + Pspesl (x, (t)) + V, (t) , U, (t)  = U, (t) , t E R . 
(iv) u,(t) and v,(t) for I E  R are q.m, continuous V-bounded stochastic 

processes with spectral measures 

P, = P;+PSP(JJ~) OK f Pw,; - ,I OCP, -Pm[p,~ O PC) 
and 

P" = (1 - P,{,, - ,I) 0 ( P C  - PTIP~) 0 PC), . 

respectively. 
Remark. (i) The stochastic process w (t), t E R, defined in Theorem 3, 

is a q.m. continuous V-bounded stochastic process with an m-continuous 
spectral measure. 

(ii) If a q.m. continuous stationary stochastic process has an m-continuous 
spectral measure, then it is either deterministic or purely non-deterministic. 
The following example shows that, in general, this statement is not valid I 

for q.m. continuous V-bounded stochastic processes. 
Example 2. For convenience we consider here only the discrete time 

case. The example can be transformed, in a straightforward way, into the 
continuous time case by applying a suitable smoothing function. 

Suppose ~ , E H ,  llekll = 1, k = 1 ,2 ,  and e, 1 e,. Define x(k), ~ E Z ,  by 

x(O)=e,,  x (k)=O for k > O ,  x ( k ) =  k-le, for k < 0 .  

Then x (k), k E Z, is a V-bounded sequence with an m-continuous spectral 
measure (cf. [14], p. 183 and 184). Furthermore, 

v,(k) = k- le ,  for k < 0, u,(k) = 0 for k 3 0 ,  

u,(O) = el, u,(k) = 0 for k # 0, 

i.e., v, # 0 and u, # 0 even if the spectral measure of x(k), k E Z, is 
m-continuous. 

The next theorem follows immediately from Theorem 12 in [lo] and 
from Theorem 3. It can be considered as a vector-valued version of the 
well-known result by F. and M. Rksc concerning the m-continuity of 
scalar-valued bounded measures with Fomier-Stieltjes transforms vanishing 
on a half-line. 

THEOREM 4. Let x(t), t E R ,  be a purely ~lon~deterministic q.m. continuous 
V-bounded stochastic process. Then: 

(i) the spectral measure ,u of x(t), t E R ,  is m-continuous; 



(ii) if there exists a Bore1 set E c R such that m (E )  > 0 and p (E') = 0 
for all Bore/ sets E' c E ,  then p = 0 ond, a fortiori, x(t) = 0 ,  t ER. 

' W e  close this paper by considering a special case where the results 
stated in Theorem 3 can be improved. 

Recall that a stochastic process x( t ) ,  t E R ,  is uniformly bounded linearly 
stationary (UBLS) if one of tbe following three equivalent conditions holds 
(cf. [16]): 
. (i) There exists a constant M 3 0 such that 

for all U ~ E C ,  s, t j € R ,  j = 1 ,..., n,  EN. 
(ii) There exists a uniquely determined group of operators T,: ( x )  + 

4 @ { x ) ,  the shift operator group o f  x ( t ) ,  t E R, such that 

' i : , ( x ( t ) )=x ( tS s ) ,  ((T,JI < M  for alIs,  ~ E R .  

(iii) x(t), t E R, bas a stationary similarity ( y ,  B), i.e., there exist a sta- 
tionary stochastic process y@), t~ R, and a bounded linear operator 
B :  sp ( y )  + @ ( x )  with a bounded inverse B - l :  i j 5  ( x )  4 ?$5 { y )  such that 
x ( t )  = ~ ( y ( t ) ) ,  ~ E R .  

Remark.  Since any UBLS stochastic process has a stationary similarity, 
any q.m. continuous UBLS stochastic process is even V-bounded (cf. [9], 
Theorem 4). 

Statements (i)-(iii) in the following theorem were proved in [9] (Lemma 6, 
Theorems 7 and 8), statements (iv)-(vii) are implied by Lemma 1,  Example 1 
and Theorem 3. 

THEOREM 5. Let x(t) ,  t~ R ,  be a UBLS stochastic process and let ( y ,  B )  
be a stationary similarity of x (t), t E R. Then: - 

(i) sp ( x ;  -a} = B ( @  ( y ;  -co)), sp { y ;  -a) = B - ' ( @  (x; -a}); - 
S P  (x) = Brn { Y I ) ,  sg ( ~ 1  = B-l(sp (4); 

(ii) x ( t) ,  t E R , is deterministic (respectively, purely non-deterministic) if 
and only ij y(t), t E R,  is deterministic (respectively, purely non-deterministic); 

(iii) the stochastic processes 

x' ( t )  = B (v, (t)), x" (t)  = B (u, (t)) , t E R , 

are UBLS stochastic processes having the same shift operator group as ~ ( t ) ,  
t E R ; x' ( t) ,  t E R ,  is deterministic and xU(t) ,  t E R, is purely non-deterministic. 

Suppose, in addition, that x( t ) ,  t E R ,  is q.m. continuous and that 11 = ps+pc 
is the Lebesgue decomposition with respect to m for the spectral measure p 
of x ( t ) ,  t E R. If  x (t) ,  t E R ,  is not deterministic, then by applying the 

I 
I notation introduced in (2): 
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(iv) x' ( t )  = x, ( t )  und xr' ( t )  = X, ( t )  for t  E R;  ' 

(v) @ ( x ;  -4 = s p ( p , ) ;  
(vi) for all t E R 

ux 0) = Xs (t)+ Pw[s,) (x, ( t)) ,  ux ( t)  = x, (t)- PmcPs) (x, (t)); 

(vii) the spectral measures of vx ( t )  and u, ( t )  for t  E R are 

and pv = pc- P~P{ ,~ )  O K ,  - K = ~ u , + P T ( ~ , ~ ~ F I E  
.. - 

respectively. 
Remark. (i) A q.m. continuous UBLS stochastic process with an 

m-continuous spectral measure is either purely non-deterministic or de- 
terministic. 

(ii) In [9 ] ,  Theorem 14, it is presented a necessary and sufficient 
condition fox a so-caIled harmonizable UBLS stochastic process to be 
deterministic (respectively, purely non-deterministic). 

Ac k n owl  e dg emen t. The final form of this paper was prepared during 
the author's stay at the Technical University of Wroclaw. The author wants 
to express his gratitude for the hospitality offered to him during his stay 
in Wrodaw. 
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