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ON STOCHASTIC EQUATIONS 
FOB THE CLASS OF GAUSSIAN PROCESSES 
? - BY 

ANDRZEJ R er S S E K (SOPOT) 

Abstract. Ito stochastic equations are derived for a class of 
multidimensional Gaussian processes appearing in connection with 
generalized spline functions. Some analytic consequences for the 
spline interpolation are aIso given. 

1. Introduction. It is well known that the solution of a linear stochastic 
differential equation of the form 

where W is an n-dimensional-Brownian motion, is a Markov process. Very 
often one is interested in the following .problem: having a Gaussian Markov 
process, check if it is a solution of some equation of the form as above. 

For square mean continuous processes for which the covariance matrix 
E x ( t )  X (s)* is non-singular for all t, s such a problem is easy to solve 
using e.g. the results of Mandrekar [5]. Without the assumption on the 
covariance matrix function the problem is more complicated. 

In this note we derive the Ito stochastic equations for certain class of 
Gaussian processes for which EX(t)X(t)* degenerates at a finite number of 
points. Since in this case A is discontinuous and non-integrable, the main 
difficulty is to show that A ( t ) X ( t )  is integrable. Then the rest of the 
derivation becomes easy and can be done using known methods (see, e.g., [2]). 

The resulting Ito equations imply some interesting properties of the 
reproducing kernel Hilbert spaces associated with the considered class of 
processes. The properties are formulated in Section 4. 

The processes considered here appear in connection with generalized 
spline functions. The reproducing kernel Hilbert space associated with such 
processes gives a natural setting for the spline interpolation problem (see [3] 
and [7]). 
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2. Preliminaries and notation. Let L be an ordinary differential operator 
defined by 

where ai E Cm ( I ) ,  I = [0, 11,  and let A = (Ri, 1 d i S n) be a set of linear 
fu~lctionals of the form 

with some real numbers mi,, as coefficients and t ,  , . . . , t, E I .  It is assumed 
that ii are linearly independent of ker L. Let G ( t ,  s), t ,  S E  I ,  denote the 
Green function for the boundary value problem 

and let zi = zi  (t) , 1 G i d n, be the basis in ker L dual to (Aj). 
Suppose that on some probability space (Q, F', P) a set < = (ti, 1 < i < n) 

of independent Gaussian random variables (possibly degenerated) with mean 
zero is given and consider the process X = ( X ( t ) ,  t E I )  defined by 

where w = ( w ( t ) ,  t € 1 )  is some Brownian motion on (52,9, P) independent 
of 5: and J G ( t ,  s )dw (s) for each t  E I is a stochastic integral of Paley- 
Wiener-Zygmund type. 

The class of processes of the form (2)  with L, A and 5: defined as 
above will be denoted by M,.  For notational convenience it is assumed 
that the random variables (ti) in (2) are numbered in such a way that 

> O  for 1 d k d m ,  
ak=bk(S):=E(<:j = O  for n < k 9 n .  

It is not difficult to prove (see [6]) that for X E M, we have 
P ( X E C " - ' ( I ) )  = 1. For X E M , ,  let us denote by X = ( % ( t ) , t € I )  the 
n-dimensional Gaussian process given by 

Then X is a Markov process 161. 
Let R ( t ,  s) = wi*j_(t, s ) ] ,  0 < i, j G n-  1, t ,  s  E 1, denote the covariance 

matrix function of X. Obviously, we have RiJ ( t ,  s) = D('3j' R ( t ,  s ) ,  where I 
R (t , s) = E (X ( t )  X (s)) .  

It is easy to check that for each t $  ( t , ,  , , . . . , t,) there exists an inverse 
E(t ,  t)-' of the matriic R ( t ,  t). Now we define for t # t i ,  m < i < n, the 
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matrix function A by the formula 

(4) ~ ( t )  := D [ ~ ? * ) R ( ~ + ,  t)R(t, t)-l. 

It is of the form 

where E = [EiVj] is an [(a - 1) xn]-matrix with E,, = 0 except for j = i+ 1, 
E. z,l+ - - 1 = 1, and a. = (a,,, (t), .. . , an,,-, (t)) .  

3. Stochastic equati&. We want to prove that for X EM, the process X 
is a solution of the Ito stochastic equation 

(5 )  d X  (t) = A( t )  X (t) dt + ad W(t), 

where W is some n-diiknsional Brownian motion, A is given by (4) and 
a = [ u ~ , ~ ] ,  0 G i, j < n- 1, denotes the matrix defined by 

0 for 0 d i + j  < 21-2, 
6) a. . = 

1 for i, j =  n-I. 

The definition of A is quite natural since 

where P,  denotes the orthogonal projection (acting on coordinates of X (u) 
independently) in L2 (52) onto span {D'X (t); 0 < i < n - 1) and Pt x (u) 
= E (~(u) lX( t ) ) .  

The proof of- (5) is rather standard (see [2]), the only doubtful point 
is the summability of A(t) X (t) in a neighbourhood of the knots tm + ,, . . . , t, 
where A is non-integrable. 

LEMMA 1. If X E M, and Y(t) = (Yl(t), . . ., Y,,(t)) i s  given by Y(t) = ~ ( t ) X ( t ) ,  
where A is defined by  (4), then for 1 < i < n w e  have 

Proof. We have 

I j t ~ " - ' x ( u ) .  Y(t) = (Dx (t), . . . : Dn- X (t), Y, (t)), where Y, (t) = - 
du .= t+  

It is enough to prove that ( E J K ( ~ ) ~ ~ ) ~ / ~  is integrable. To do this we use 
the natural isometry between X( i )  = span {X(t); t~ I} c L2(52) and the 
Hilbert space L2, : = L2 (I) x Rm with the scalar product 



where b = (hi) and m are given by (3), and with the norm 1) - 11 = (., . ) ' I2 .  
By (2) and the well-known properties of stochastic integrals, the isometry 
is given by the linear extension of 

Applying (7) we obtain 

- 
(E I Y, ( t ) ~ ~ ) ' / ~  = IlFf 1 1 ,  where F, = - Pt G,.,-I, 

P,  being the orthogonal projection in Li onto G, = span {G, . , ;  0 < i d n- 1) 
with GtYi = {G,(", zji'}, G,") = ~ ( ' 1 ~ )  G ( t ,  .), zji) = ( z t ) ,  . . , D z ( t ) )  ~ e t  I 

{ H I " ,  vii)}, 0 G i < n-  1 ,  be the basis in Gt duaI to (G,J and let 

n- 1 

K t  ls,  T) = Hiij(s) Gii) (t). 
i=O 

Elementary calculations lead to the formula 

where 

d  n - 1 n - 1 

dt = - 1  z (GF - I), ~ 0 ) )  t o t  z(i) + x ( (n - 11, U ( i ) )  Z(il. 
du .=t+ i=O 

z* t b t  
i = O  

By the well-known properties of the Green function, for fixed u E l the 
function G?-') = G ( u ,  -) is continuously differentiable on the intervals 
[0, u) and (u, 11 and we have 

Moreover, K t ( . ,  s )  for fixed t, s ~ l  is continuous on the intervals ( t ,  11 
and 10, t) .  Thus for u > t  we can split the integral in (8) and differentiate; 
consequently, we obtain 

+ K ~ ( u ,  S ) [ D ( ~ - ~ , O ) G ( U ,  M - ) - D ( ~ - ~ , ~ ) G ( U ,  U + ) J  

1 
= Kt  (z , s )  GI") ( t )  d t  + Kt (u , s )  . 

0 
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Analogous calculations show that for u > t  

Taking u 4 t +  and applying once more the formula for P, in terms of 
dual basis, we get from (8) 

R-1 

F , ( s ) = K , ( t + , s ) + f ;  and d , =  C H ~ i ) ( t + ) z j i ) + x , ,  
i - -0  . - 

where. ( A ,  x,) = P,  {GI"', z)"') . But since Lz, (t) = 0 and LG(t ,  s) = O for t # s, 
I 

13:") and zjn) are linear corn1 pinations of Giil and zii), 0 < i < n - 1 ,  respectively, 
and thus (f,, x,) = {Gin), 2:"). I t  is easy to see that 

sup ( 1 1  ( G  j"), zi"') 1 1  ; t E I )  < m , 

thus the lemma will follow if we show that 

where n - 1  

K, = (K, (t +, a), h,) , h, = dt - x, = ( t +  )z:i'. 
i = 0 

The function B(t) = ((K,(( is continuous and bounded outside of an 
arbitrary but fixed neighbourhood of the knots t,, , ,  . . . , t, and has right-hand 
limits for t  + t i .  Therefore, it is enough to examine /I ( t )  for t 7 to and fixed 

( tm+l i  -.-, 4)- 
For each 7 = (f, x} E Lt and t E I\(t . . . , t,,) we have the equality (Kt,?) 

= f ( t + ) ,  where (f, 2 )  = P,T. It now follows that 

= llR,ll = sup l (Kt ,  7)l = sup [ f ( t  + ll < y ( t ) ,  

where the supremum is taken over all 7 ~ ~ 2 ,  such that 11711 < 1 and 

But for fixed to E ( t m , ,  , . . . , tn) we have the following estimate proved in 
the Appendix : 

(9) ? ( t o - t )  = ~ ( t - ' / ~ )  for tT tO  

Thus @(to  -t) = 0 ( t -I t2)  for tit, and the lemma follows. 
Now we can proceed in a standard way. Definition (4) of the matrix A 

and the Markov property imply that for t ,  s E I ,  t  2 s ,  we have 
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The integrability of the left-hand side follows from Lemma 1. Also by 
Lemma I the process 

is we11 defined and, moreover, from (10) and the Fubini theorem it follows 
that Z =  ( z ( t ) , t ~ I )  is a martingale with respect to the family 
5, := a { X  (s); s < t ) .  It follows from the special form of the matrix 
A = [aisj]  that the first la- 1 coordinates of Z are constant. For the n-th 
one we have 

LEMMA 2. I f  X E M, ,  then the process 

is a Brownian motion with respect to the family Fz = a {X (s); s S t ) .  

Proof .  Since the process Z = ( Z ( t ) ,  ~ E I )  is a continuous Gaussian 
martingale with respect to  Ff = a{X(s); s < t ) ,  t ~  I ,  the Iemrna will be 
proved if we show that E ( Z ( t ) 2 )  = t for t E I.  

We have 

+ 2 j j C a,, (u) a,, (s) D". J) R  (u  , s )  duds. 
0 s i , j = O  

But from the Markov property it follows that 

n - 1 

D("sk )R( t+ , s )=  C U , , ~ ( ~ ) D ( ' , ~ ) R ( ~ , S )  for s < t  a n d O 6 k G n - 1  
i = O  

Using this and the formula for E(Z( t ) l ) ,  after elementary calculations 
we obtain 

d d - E ( z ( ~ ) z )  = - ~ ( ~ - l , ~ - l ) ~ ( t ,  t ) - 2 ~ ( ~ ~ - l ) ~ ( t + ,  t). 
dt d  t  

In the Appendix we have proved that the last expression equals one. 
Now, if we take the n-dimensional Brownian motion W = ( W ( t ) ,  t E I) 

such that W ( t )  = (W, ( t ) ,  . . . , W , - ,  ( t ) ,  Z  ( t ) ) ,  then because of the special form 
of A(t )  and by Lemma 2 we obtain 

t t 

X ( t ) - X ( ~ ) = j ~ ( u ) X ( u ) d u + j ~ d ~ ( u )  for t , s ~ I ,  t > s ,  
S S 

where a is given as in (6). Thus we have proved the following 
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THEOREM 1. I f  X E M , ,  then the process 

x = ( x ( t ) , t ~ l ) ,  where x ( o = ( X ( t ) , D X ( t )  ,..., D " ' X ( ~ ) ) ,  

is a uniqire solution of the stochastic equation (5). 

The uniqueness part of the theorem can be easily proved using classical 
results on each of the subintervals (ti, ti+,), 1 < i G n -  1. . 

4. Reproducing kernel Hilbert space. For a Gaussian process X the 
reproducing kernel Hilbert space generated by the kernel R (t, s) = E(X (t) X(s)) 
is denoted by H(X)I_Let us recall that the Hilbert spaces H(X) and 

I X ( 1 ) : -  span (X(t); t ~ l }  c L2(i2, 9, P )  are isometric under the map J, 
where (see, e.g., [4J) 

If X is given by (2), then using, e.g., Theorem 3.1 of [I] it is easy to - 
check that the function R (t, s) = E (X (t) X (s) ) ,  t, s E I, is the reproducing 
kernel for the Hilbert space 

H $ : =  { f ~ H " ( I ) ; i l , ( f )  = O for m < i G n] 

with the scalar product 

Here Hn(I) denotes the Sobolev space of real-valued functions on I such 
that f E Cn-I (I), P- f being absolutely continuous with D" f E L~ ( I ) ,  and bi 
and m are given as in (3). 

Lemma 2 permits us to obtain another representation of the scalar 
product in Hi'. Namely, let X E M ,  and let Z be the Brownian motion 
from Lemma 2. Let, moreover, X (0) : = span {D' X (0); 0 < i < n - I). We 
have 

(12) x (I) = z (I) 0 X (0). 

Applying the isometry (ll), for f E Hf = H (X) we get 

(13) Ilf liZ = E(Yf)+E(Y22) 

whenever f (t) = E (YX (t)), Y = Y, + Y, , Yl E Z (I), and Y, E X (0). It is known 
and easy to check that if Z is a Brownian motion on I, then its reproducing 
kernel Hilbert space is equal to 
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Thus we have 

where f ( t )  = E (Y,X (t))  and 

j = O  

For Y, E X ( 0 )  we have 
. . 

where cis ] ,  0 G i ,  j < n-  1 ,  are constants satisfying 

n - 1 

C c i . j B , i R , j = S , m ,  g ~ . m = E ( D k X ( O O m X ( 0 ) ) .  
i , j = O  

Now from (12) and (13) we obtain H$ = Ho @HI,  where H ,  := J(X{O]) ,  
H ,  := J ( Z ( I ) ) ,  and 

with fi ( t )  = E (x X ( t ) )  for i = 1,2.  But Y ,  1 Z ( I )  implies Mf' = 0 ,  and 
since Y, 1 D' X (0) for O < i < n - 1, we have Di f I  (0 )  = 0 .  Hence 

(15) I I  111: = J I M ~ ( ~ ) I '  at+ "il ci, D~/ . (o)  ~ j f ( 0 )  
I i,j=O 

and 
H f  = H o O H , ,  

where 
Ho = { f ~ ~ f ; ~ f  s o )  

and 
n - 1 

- .  HI = If E H ; ;  q , jDi f  (0) = O for o < i 4 n - 1 ) .  
j=O 

APPENDIX 

Pr oof of (9). The Green function in (2) is given -by (see [I]) 

R 

(16) G I t ,  3) = g ( t ,  s)-  C z j ( t ) h j ( s ) ,  
j = O  
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where 

and g ( t ,  s) is a Green function for the initial value problem Lf = F, I 

Dif (0)  = 0 for 0 < i < la-1, and thus g ( t ,  s )  = 0 for t  < s and ~ ( ' , ~ ) ~ ( t + ,  t) 
= Si,,- ,. Therefore 

(17) - lim it to ~ ( ' ~ O ) g ( t , ,  t ) ( to-t) '+ipn = 1. 

Take 
-. . 

A - 1  

{J; x) E G,, f  (s) = C ck ~ ( ~ 3 ~ )  G ( t ,  s). 
k = O  

We have 

The last expression for t  < to can be written in the form 

At;! ( t )  g (ti, t )  D(P*') g ( t j ,  t )  
k , ~  i.j 

which for t < to is bounded by 

C A$p ( t )  D(k,O) g ( to ,  t )  

const 
to 

3 

A$Y ( t )  j D(*so1 g ( to ,  S )  D ( p s 0 )  g ( to ,  s)ds 
k . ~  t 

where A$P (t) = (t) and to = ti,. 
Now, because of (17), we can estimate this by a similar expression with 

(to-t)'-l-k in place of D(k,o)g ( to ,  t ) .  The latter is easily seen to be of the 
form (to -t)-' c t t )  with c continuous and bounded near to .  Hence for t l  to 
we have I f  (t+)(z/lj{ f, x)lj2 < const - ( to - t ) - l  for each ( f ,  x )  E G,, which 
proves (9). 

Proof of the last  par t  of Lemma 2. Since G is given by (16), the 
covariance function can be written as 

(18) R ( t ,  s) = To@,  s ) + r , ( t ,  4 ,  
where T o  ( t ,  s) = j g ( t ,  u) g (s, u) du. But since g ( t ,  s) is a Green function for 
Lf = F, Di f  (0)  = 0 ,  0 < i < n- 1,  T o  ( t ,  s) is a Green function for the 
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boundary value problem 

L*Lf= I;, Dif(0) = 0 ,  U i ( f )  = 0 ,  0 < i < n - 1 ,  

where L* is the formal adjoint to L and 

Therefore, T o  is a symmetric function of the form 

2 n  

c i ( t ) y , ( s )  for t < s ,  
i = l  

(19) 
d i ( t ) y i ( s )  for t > s, 

r - 1  

where c i ,  d i ,  y, (1 < i < 2nj are solutions of the equation L* Lf = 0 such that 

2 n  2 n  

C c i ( t ) D k y j ( t ) -  C d i ( t j D k y i ( t )  = 
for 0 d k d 2 1 - 2 ,  

i = l  i = l  - 1  for k = 2n-1. 

Differentiating this equality for k = 0, 1, . . . ,2n - 2 we obtain 

(201 
2 n  2 n  

C Dk ci ( t )  D jy i  ( t )  - C Dk di ( t )  Dj yi ( t )  = 
for k + j  6 2 n - 2 ,  

i = l  i = l  i" (- l)n+k for k + j  = 2 n - 1 .  

Now, using the symmetry of To, formulas (19) and (20), it is not difficult 
to check that for t  # ti (1 < i 6 n) 

Moreover, elementary calculations and application of formula (18) show 
that (for t # t i )  
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