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Abstract. Two members of an exponential family can be 
represented as two points in the natural parameter space of that 
family or as two points in the expectation parameter space. The 
theorem describes a simple relation between the interpoint dis- 
tances in the two spaces, also relating to the symmetrical Kullback- 
Leibler distance between the two distributions. 

1. The Theorem. A kdimensional exponential family 3 has density 
functions of the form 

with respect to some carrier measure v(x)  on the sample space %, which 
is contained in Bk. Here u is the natural parameter and A is the natural 
parameter space, the convex set in Bk consisting of all a having the 
normalizing function 

e@lK) j eayx dv (x) 

I less than infinity. In order that B not reduce to a lower-dimensional 
exponential family, we assume that v ( x )  does not concentrate a1  its mass 
on any (k - 1)dimensional hyperplane. 

The expectation vector and the covariance matrix of x, 

p = E, x and Ea = Cov, x, 

exist finitely in the interior of A and can be obtained by differentiation 
of $. Let Va be the gradient operator 

a 
da (I) ' aa (2) ' "" am (k) 



Then 

(1-1) V a ~ = B  and V e @ V L = E a .  

This last result can be written as /IF'; = Em or, more evocatively, as 

(1.2) d p  = Zadx. I 

The mapping a + P ,  from the natural parameter u to the expectation 
parameter 8, is one-to-one inside A, mapping A into the expectation parameter 
space 3 (not necessarily convex; see 121). The matrix Z,, which is positive 
definite, will also be denoted by Z8 when convenient, this being understood 
to mean See [2] and [3], Chapter 2, for general properties of expo- 
nential families. 

I 

Fig. 1 'shows two points a, and a, inside A and the corresponding 
points /I, and 8 ,  in 3. The straight-line segment LA connecting a, to or1 
maps into a curve /3(LA) in B, while the straight-line segment LB connecting 
Po to  /I, maps into a curve ct(LB) in A. It is assumed that L, is inside 3, 
though a weakened version of the theorem which follows can be proved 
without this assumption. In all the usual cases, B is convex, so this assump- 
tion is automatically fulfilled. 

Fig. 1 
R - the natural parameter space. B - the expectiltlon parameter space 

If a, is infinitesimally close to  a,, then (1.2) gives 

( ~ l - ~ o ) ' ~ o ( ~ l - ~ o ) ~ ( 8 1 - P o ) ' ~ ~ 1 ( ~ 1 - ~ o ) ~  & = E r n  =zp 0 0 '  

What if a, is not close to a,? Define the averages 

- 1 1 

* . I  a 0 a  - a o  0 and = Zit+b(P1 -Po,d8 
0 0 

of Z, along LA and of Z i l  along LB, respectively. Define also the 



A distance theorem 

Kullback-Leibler distance 

THEOREM. The following four quantities are equal: 

(1) . b 1 -  a01'~0,1 (a1 - a013 

(4) l )+ i ( l ,O) . . . - -  
R e m a r k  1. If orl # a,, then all four quantities are positive. In particular, 

(al - ao)' (PI -Po) > 0, implying that the mapping a + f l  is monotone in 
a certain obvious sense. 

R e m a r k  2. The theorem is true in the wider framework of smooth 
convex dual mappings z + ,4, as remarked in Section 7 of [2], following 
the lead of Barndorff-Nielsen [I]. 

2. Prod of the Theorem. Let V p  be the gradient operator 

Then, because of (1.2), Vpa' = Eil, and for any function h we obtain 
V p  h  = Xi1 Vd h ,  h being thought of as defined in both A and B. In particular, 

From definition (1.3) we derive 

Integrating along the straight-line segment 
I 

LB = { P  0+8(f11-f10):0 < 0  <.I),  

with dB = (p, - Po) d o ,  gives 

Integrating (2.1) along LB gives 

1 

(2-3)  p pi) - $ (Po) = J ( 8 1  -Po)' Ci;+o(p -pO) IBo + 0 (PI -Po)]  do. 
0 

Subtracting (2.2) from (2.3) yields 

(2.4) 
- 

C$ ( P I )  -$ (boll -I(Bo, B l )  = (Bl  -BO)'G,; P o .  
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An interchange of Po and /I, in (2.4) gives 
- 

(2.5) C-  rk (PI)+ $(Bo)l-r ( P I ,  Po)  = ( P o  - PI)'Eo,: PI 9 

I ' which added to (2.4) results in 

Now put 
p{a) E arp-$(Cx). 

I 

The differentiation results (1.1) and (1.2) show that 
I 

I V l r q  = &a. 

They also imply, by (1.31, that 
! 

V a I ( u ,  uO) = za(u-~o) .  
The same argument as in (2.2)-(2.6), now integrating along LA = {ao+ 

-t d (a, - a,)),  results in 

(2.7) ( c t l - ~ o ) ' ~ o , ~ ~ ~ ~ - ~ o )  = I ( 0 ,  l )+i( l ,Q).  I I 

Finally, comparing (1.3) with (2.4) gives . 

I 

I 
- 

(ul - uOlr a, = ts, - B ~ F , :  po. 
Interchanging the arguments 1 and 0 and subtracting from (2.3), we 

obtain 
- 

I (2.8) (a1 -aoY (81 - P o )  = (PI - B o ) ' z i , :  (Br -Po)- 

The Theorem follows from (2.6), (2.7), and (2.8). 
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