EMPIRICAL PROCESSES, VAPNIK-CHERVONENKIS CLASSES
AND POISSON PROCESSES

BY

MARK DURST (LIVERMORE, CALIFORNIA)
AND RICHARD M. DUDLEY (CAMBRIDGE, MASSACHUSETTS)

Abstract. For background of this paper see [2]. Given a probability space \((X, \mathcal{A}, P)\), let \(G_P\) be the Gaussian process with mean 0, indexed by \(\mathcal{A}\), and such that

\[
E(G_P(A)G_P(B)) = P(A \cap B) - P(A)P(B), \quad A, B \in \mathcal{A}.
\]

(1) Let \(\mathcal{C} \subseteq \mathcal{A}\) and suppose that, for all probability measures \(Q\) on \(\mathcal{A}\), \(G_Q\) has a version with bounded sample functions on \(\mathcal{C}\). (For example, suppose \(\mathcal{C}\) is a "universal Donsker class".) Then, for some \(n\), no set \(F\) of \(n\) elements has all its subsets of the form \(C \cap F, C \in \mathcal{C}\), i.e. \(\mathcal{C}\) is a Vapnik-Chervonenkis class. An example shows that limit theorems for empirical measures need not hold uniformly over a Vapnik-Chervonenkis class of measurable sets, unless further measurability is assumed.

(2) For a law \(P\) on \(X = \{1, 2, \ldots\}\), the collection \(2^X\) of all subsets is a Donsker class if and only if

\[
\sum_m P(m)^{1/2} < \infty.
\]

(3) For any probability space \((X, \mathcal{A}, P)\), suppose \(\mathcal{C}\) is a \(P\)-Donsker class, \(\mathcal{C} \subseteq \mathcal{A}\). Let \(T_a\) be a Poisson point process with intensity measure \(aP, a > 0\). Then, as \(a \to \infty\), \((T_a - aP)/a^{1/2}\) converges in law, with respect to uniform convergence on \(\mathcal{C}\), to the Gaussian process \(W_P\) with mean 0 and \(EW_P(A)W_P(B) = P(A \cap B), A, B \in \mathcal{A}\).

1. Introduction. Let \((X, \mathcal{A}, P)\) be any probability space. Let \(G_P\) and \(W_P\) be the Gaussian processes, indexed by \(\mathcal{A}\), with mean 0 and such that for all \(A, B \in \mathcal{A}\)

\[
EW_P(A)W_P(B) = P(A \cap B) \quad \text{and} \quad EG_P(A)G_P(B) = P(A \cap B) - P(A)P(B).
\]

* This research was partially supported by National Science Foundation Grant MCS-7904474.
Then for all $A \in \mathcal{A}$ we can write

$$W_p(A) = G_p(A) + P(A)H,$$

where $H := W_p(X)$ is a standard Gaussian variable independent of G_p.

Let X_1, X_2, \ldots be independent and identically distributed with law P, and let P_n be the random empirical measure $n^{-1}(\delta_{X_1} + \ldots + \delta_{X_n})$. Let $\mathcal{E} \subset \mathcal{A}$. In [2], \mathcal{E} was called a P-Donsker class if the convergence of laws $\mathcal{L}(n^{1/2}(P_n - P)) \to \mathcal{L}(G_p)$ holds with respect to uniform convergence on \mathcal{E} in a suitable sense, together with some measurability conditions. Here we will need only the following Skorohod-Wichura form of convergence (see [2], p. 900-902):

1.1. If \mathcal{E} is a P-Donsker class, then there is a probability space $(\Omega, \mathcal{B}, \Pr)$ and for $n = 1, 2, \ldots$ there are processes $(\omega, C) \to A_n(\omega, C)$, $\omega \in \Omega$, $C \in \mathcal{E}$, such that, for each fixed n, the laws of the processes $n^{1/2}(P_n - P)$ and A_n are the same and such that

$$\limsup_{n \to \infty} |A_n(\omega, C) - G_p(C)(\omega)| = 0 \text{ a.s.},$$

where G_p is defined on the probability space Ω. It follows that

$$\sup_{C \in \mathcal{E}} |G_p(C)(\omega)| < \infty \text{ a.s.}$$

Sections 2, 3 and 4 use the above, but are independent of one another.

2. Universal Donsker classes are Vapnik-Chervonenkis classes. For any set X let 2^X be the collection of all its subsets (power set). Let $\mathcal{C} \subset 2^X$. Then \mathcal{C} is said to shatter a set $F \subset X$ if $2^F = \{ F \cap C : C \in \mathcal{C} \}$. Also, \mathcal{C} is called a Vapnik-Chervonenkis class if, for some finite n, no set F with n elements is shattered by \mathcal{C}.

2.1. Theorem. For any set X and collection \mathcal{C} of subsets of X which is not a Vapnik-Chervonenkis class, there are a purely atomic probability measure P on X and a countable collection $\mathcal{D} \subset \mathcal{C}$ such that G_p is almost surely unbounded on \mathcal{D}.

Proof. Since \mathcal{C} shatters sets of all sizes, for each $n = 1, 2, \ldots$ there is a set F_n with 4^n elements, shattered by \mathcal{C}. Let

$$G_n := F_n \setminus \bigcup_{j < n} F_j.$$

Then the G_n are disjoint and have cardinality

$$\text{card}(G_n) \geq 4^n - \sum_{j=1}^{n-1} 4^j = 4^n - (4^n - 4)/3 > 2^n,$$

with G_n shattered by \mathcal{C}. Take $E_n \subset G_n$ with $\text{card}(E_n) = 2^n$. Then E_n remain disjoint and are shattered by \mathcal{C}.

Let \(P \{ \{ x \} \} = 6/(\pi^2 n^2 \cdot 2^n) \) for each \(x \in E_n \), and let \(P = 0 \) outside \(\bigcup_{n=1}^{\infty} E_n \). Then \(P \) is a purely atomic probability measure on \(X \).

Let \(\mathcal{D} \) be a countable atomic subset of \(\mathcal{C} \) which shatters each of the \(E_n \).

Let us fix \(n \). Then, for each \(C \in \mathcal{D} \),

\[
W_p(C) = W_p(C \cap E_n) + W_p(C \setminus E_n).
\]

Thus for any \(K, 0 < K < \infty \), we have

\[
\{ \omega : | W_p(C)(\omega) | < K \text{ for all } C \in \mathcal{D} \} \subseteq \mathcal{E}_1 \cup \mathcal{E}_2,
\]

where

\[
\mathcal{E}_1 := \{ \omega : | W_p(B) (\omega) | \leq 2K \text{ for all } B \subseteq E_n \},
\]

\[
\mathcal{E}_2 := \{ \omega : \text{for some } B \subseteq E_n, | W_p(B)(\omega) | > 2K, \text{ and for all such } B \text{ and all } C \in \mathcal{D} \text{ with } C \cap E_n = B \text{ we have } | W_p(C \setminus E_n)(\omega) | > K \}.
\]

Let

\[
S_n := \sum_{x \in E_n} | W_p(\{ x \}) |.
\]

Then since sup \(\{ | W_p(B) | : B \subseteq E_n \} \geq S_n/2 \), we have \(\mathcal{E}_1 \subseteq \{ S_n \leq 4K \} \). For each \(x \in E_n \), \(W_p(\{ x \}) \) is a normal random variable with mean 0 and variance

\[
\sigma^2 := 6/(\pi^2 n^2 \cdot 2^n). \quad \text{Thus}
\]

\[
E|W_p(\{ x \})| = (2/\pi)^{1/2} \sigma_n \quad \text{and} \quad \text{var} (|W_p(\{ x \})|) = \sigma_n^2 (1 - 2/\pi).
\]

Then

\[
ES_n = 2^n (2/\pi)^{1/2} \sigma_n \quad \text{and} \quad \text{var} (S_n) = (6/(\pi^2 n^2)) (1 - 2/\pi),
\]

since \(W_p \) has independent values on disjoint sets. Hence, by Chebyshev's inequality, for large \(n \) we get

\[
\Pr \{ S_n \leq 4K \} \leq \Pr \{ |S_n - ES_n| \geq ES_n - 4K \} \leq n^{-2}/(4K - ES_n)^2 \leq 1/(4Kn - 2^{n/2} (12/\pi^3)^{1/2})^2 := f(n, K) \to 0 \quad \text{as } n \to \infty
\]

for any fixed \(K \).

Now we consider the event \(\mathcal{E}_2 \). Let \(t(n) := 2^{2n} \). Enumerate \(2^{E_n} \) by \(B(1), \ldots, B(t(n)) \), and let

\[
M_1 := \{ \omega : | W_p(B(1))(\omega) | > 2K \},
\]

\[
M_m := \{ \omega \notin \bigcup_{j=1}^{m-1} M_j : | W_p(B(m))(\omega) | > 2K \}, \quad m \geq 2,
\]

\[
D_j := \{ \omega \in M_j : \text{for all } C \in \mathcal{D} \text{ such that } C \cap E_n = B(j), | W_p(C \setminus E_n)(\omega) | > K \}.
\]

By the independence of \(W_p \) on disjoint sets, we have

\[
\Pr (D_j) = \Pr (M_j) \Pr \{ \text{for all } C \in \mathcal{D} \text{ such that } C \cap E_n = B(j), | W_p(C \setminus E_n)(\omega) | > K \} \leq \Pr (M_j) \cdot 2\Phi(-K),
\]
where \(\Phi \) is the standard normal distribution function, since, for any fixed set \(A \), \(W_P(A) \) is normal with mean 0 and variance less than 1. Now,

\[
\mathcal{E}_2 \subset \bigcup_{1 \leq j \leq t(n)} D_j,
\]

so that

\[
\Pr(\mathcal{E}_2) \leq \sum_{1 \leq j \leq t(n)} \Pr(M_j) \cdot 2\Phi(-K) = 2\Phi(-K) \Pr(\|W_P(B)\| > 2K \text{ for some } B \in E_n) \leq 2\Phi(-K).
\]

It follows that

\[
\Pr(|W_P(C)| < K \text{ for all } C \in \mathcal{D}) \leq f(n, K) + 2\Phi(-K).
\]

Making \(K \) large enough, and then \(n \) large enough, completes the proof.

It follows that if \(\mathcal{C} \) is a universal Donsker class, i.e. it is a \(P \)-Donsker class for all \(P \) on the \(\sigma \)-algebra \(\mathcal{A} \rightarrow \mathcal{C} \), then \(\mathcal{C} \) is a Vapnik-Chervonenkis class. In [2], Section 7 and Correction, it is shown that every Vapnik-Chervonenkis class satisfying some measurability conditions is a universal Donsker class. The remaining problem is to find what measurability conditions are needed. The following example shows that some further measurability is necessary.

2.2. PROPOSITION. There exist a set \(X \) and a class \(\mathcal{C} \) of countable subsets of \(X \), which shatters no 2-element set, and a probability measure \(P \) such that almost surely

\[
\sup_{A \in \mathcal{C}} (P_n - P)(A) = 1 \quad \text{for all } n.
\]

Assuming the continuum hypothesis, we can take \(X = [0, 1] \) and \(P \) to be Lebesgue measure.

Proof. Let \((X, <)\) be an uncountable well-ordered set such that all its initial segments \(\{x: x < y, y \in X\} \), are countable. Let \(\mathcal{C} \) be the collection of all these initial segments. Then \(\mathcal{C} \) does not shatter any set with two elements. Let \(P \) be any probability measure on \(X \) which is 0 on countable sets and 1 on their complements. Given any finite set \(\{X_1, \ldots, X_n\} \subset X \), there is a set \(A \) in \(\mathcal{C} \) containing all the \(X_i \), so \((P_n - P)(A) = 1 \), which completes the proof.

Steele [3] assumes that all sets in \(\mathcal{C} \) are measurable and that \(\sup_{A \in \mathcal{C}} |(P_n - P)(A)| \) is measurable. These conditions are both satisfied in the example above. Thus it appears that further measurability conditions need to be added to some of the statements and proofs in [3].

3. When is \(2^X \) \(P \)-Donsker for \(X \) countable? Let \(X \) be a countable set, say \(X = \{1, 2, \ldots\} \), and let \(P \) be a law on \(X \) with \(P\{m\} := p_m, m = 1, 2, \ldots \)
3.1. **Theorem.** The collection 2^X of all subsets of X is a P-Donsker class if and only if
\[\sum_m p_m^{1/2} < \infty. \]

Proof. Suppose (*) holds. We have $E(v_n \{m\})^2 = p_n - p_m^2$ for all n and m, where $v_n := n^{1/2} (P_n - P)$. Thus $E|v_n \{m\}| \leq p_m^{1/2}$, and
\[\sup_n E \sum_{j \geq m} |v_n \{j\}| \to 0 \quad \text{as} \quad m \to \infty. \]

So, for any $\varepsilon > 0$,
\[\sup_n \Pr \left\{ \sum_{j \geq m} |v_n \{j\}| > \varepsilon \right\} \to 0 \quad \text{as} \quad m \to \infty. \]

Thus condition (b) in Theorem 1.2 of [2] holds; as the other conditions also hold for $\mathcal{C} = 2^X$, X countable, it is a P-Donsker class.

On the other hand, if $\sum_m p_m^{1/2} = \infty$, then
\[\sum_m |G_p \{m\}| = \infty \quad \text{a.s.} \]

by Proposition 6.6 of [1], letting $b_m := p_m^{1/2}$, $\varphi_m = 1_{[m]} / p_m^{1/2}$, and recalling the relations $L(I_A) = W_p (A) = G_p (A) + P(A) W_p (X)$. Thus G_p has sample functions almost surely unbounded on 2^X (it is enough to consider the countable collection of finite sets). Consequently, 2^X is not a Donsker class, which completes the proof.

4. **A limit theorem for Poisson processes.** Let (X, \mathfrak{A}, μ) be a σ-finite measure space. Then the Poisson process T_μ with intensity measure μ is indexed by the measurable sets A with $\mu(A) < \infty$; $T_\mu(A)$ is a Poisson variable with parameter $\mu(A)$, and T_μ has independent values on disjoint sets, being additive for (finitely many) disjoint sets. These conditions, as is known, consistently define a stochastic process.

For $0 < \mu(X) < \infty$, let $T(X) = n$ be a Poisson variable with parameter $\mu(X)$. Then let
\[T = \sum_{1 \leq i \leq n} \delta_{X_i}, \]
where the X_i are independent and identically distributed with law $\mu/\mu(X)$, and independent of n. It is easily seen that this T is a Poisson process T_μ.

Now let P be a probability measure and $0 < \lambda < \infty$. Then, as $\lambda \to \infty$, $(T_{\lambda P} - \lambda P) / \lambda^{1/2}$ converges in law to W_p, at least on any finite collection of measurable sets. For $\mathcal{C} \subset \mathfrak{A}$, we say that this convergence in law holds with respect to uniform convergence on \mathcal{C} if there exists a probability space (Ω, \Pr) carrying a process W_p and processes S_λ, $0 < \lambda < \infty$, such that for
each λ the process S_λ has the same law (as a process on \mathcal{C}) as $(T_{\lambda P} - \lambda P)/\lambda^{1/2}$, and such that
\[
\limsup_{k \to \infty} |(S_{\lambda k} - W_P)(C)| = 0 \text{ a.s.}
\]

The following result was proposed by E. B. Dynkin in a discussion in Oberwolfach, March 1979.

4.1. Theorem. For any probability measure P and P-Donsker class \mathcal{C},
$(T_{\lambda P} - \lambda P)/\lambda^{1/2}$ converges in law to W_P with respect to uniform convergence on \mathcal{C}.

Proof. Take X_1, X_2, \ldots, independent with distribution P. For each λ, $0 < \lambda < \infty$, let $n = n(\omega, \lambda)$ be a Poisson variable with parameter λ, independent of the X_i. Then we can write $T_{\lambda P} = n(\omega, \lambda) P_{n(\omega, \lambda)}$ (in law).

Now $(n(\omega, \lambda) - \lambda)/\lambda^{1/2}$ converges in law to a standard Gaussian variable as $\lambda \to \infty$. To replace this convergence by almost sure convergence of real random variables, we use the following standard procedure. For any probability distribution function F on \mathbb{R} and for $0 < y < 1$, let
\[
F^{-1}(y) := \inf \{ x : F(x) \geq y \}.
\]

Suppose laws μ_n on \mathbb{R} with distribution functions F_m converge to a law μ_0. Then $F_m^{-1}(y) \to F_0^{-1}(y)$ whenever the interval $F_0^{-1}(y)$ contains at most one point. Thus $F_m^{-1}(y) \to F_0^{-1}(y)$ for all y, $0 < y < 1$, if F_0 has an everywhere positive density, e.g. if it is a non-degenerate normal distribution function. Thus if $\mu_\lambda \to \mu_0$ as $\lambda \to \infty$, where μ_λ has distribution function F_λ and μ_0 has an everywhere strictly positive density, then, for $0 < y < 1$, $F_\lambda^{-1}(y) \to F_0^{-1}(y)$ as $\lambda \to \infty$ (continuously).

Now, taking a new probability space if necessary, we may assume that, for all ω,
\[
\lim_{\lambda \to \infty} (n(\omega, \lambda) - \lambda)/\lambda^{1/2} = H,
\]
where H is a standard normal variable. Also, by 1.1, we can take $n^{1/2}(P_n - P) := \psi_n \to G_P$ uniformly on \mathcal{C} almost surely as $n \to \infty$, where the $n(\omega, \lambda)$ and H are independent of P_n and G_P.

Now $(n(\omega, \lambda) - \lambda)/\lambda \to 0$ a.s., so $n(\omega, \lambda)/\lambda \to 1$ a.s. and $n(\omega, \lambda) \to \infty$ a.s. Thus $\psi_n(\omega, \lambda) \to G_P$ uniformly on \mathcal{C} almost surely. So
\[
(n(\omega, \lambda) P_{n(\omega, \lambda)} - \lambda P)/\lambda^{1/2} = (n(\omega, \lambda)/\lambda)^{1/2} \psi_n(\omega, \lambda) + (n(\omega, \lambda) - \lambda) P/\lambda^{1/2} \to G_P + HP = W_P
\]
uniformly on \mathcal{C} almost surely as $\lambda \to \infty$, which completes the proof.
Empirical processes

REFERENCES

Room 2-245, M.I.T.
Cambridge, MA 02139, U.S.A.

Mathematics-Statistics Section
Lawrence Livermore Laboratory
Livermore, CA 94550, U.S.A.

Received on 14. 11. 1979